# ADAR1-dependent miR-3144-3p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer

Hyung Seok Kim,<sup>1,6</sup> Min Jeong Na,<sup>1,2,3,6</sup> Keun Hong Son,<sup>4</sup> Hee Doo Yang,<sup>2,5</sup> Sang Yean Kim,<sup>2,5</sup> Eunbi Shin,<sup>1,2,3</sup> Jin Woong Ha,<sup>1,2,3</sup> Soyoung Jeon,<sup>1,2,3</sup> Keunsoo Kang,<sup>4</sup> Kiho Moon,<sup>5</sup> Won Sang Park<sup>1,2</sup> and Suk Woo Nam.<sup>1,2,3,5</sup>

<sup>1</sup>Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seochogu, Seoul 06591, Republic of Korea.

<sup>2</sup>Functional RNomics Research Center, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

<sup>3</sup>Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.

<sup>4</sup>Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea.

<sup>5</sup>NEORNAT Inc., Rm. #5104 Bldg. A, Omnibus Park, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

<sup>6</sup>These authors contributed equally: Hyung Seok Kim and Min Jeong Na.

#### Correspondence

Suk Woo Nam, Ph.D., Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 0659, Republic of Korea. email: swnam@catholic.ac.kr

## Supplementary tables

|        |     |          | TC        | GA_LIHC* |        | Ca     | tholic_mLIH | IC**   | ICO       | GC_LIRI*** |        | (         | GSE77314 |        |
|--------|-----|----------|-----------|----------|--------|--------|-------------|--------|-----------|------------|--------|-----------|----------|--------|
| Family | No. | Gene     | Non-tumor | Tumor    | Fold   | Normal | Tumor       | Fold   | Non-tumor | Tumor      | Fold   | Non-tumor | Tumor    | Fold   |
|        |     |          | (n=50)    | (n=371)  | change | (n=15) | (n=56)      | change | (n=202)   | (n=238)    | change | (n=50)    | (n=50)   | change |
|        | 1   | ADAR1    | 16.43     | 33.55    | 2.04   | 46.65  | 73.67       | 1.58   | 21.24     | 41.38      | 1.95   | 25.44     | 41.12    | 1.62   |
| ADAR   | 2   | ADARB1   | 0.67      | 1.02     | 1.53   | 4.93   | 3.76        | -1.31  | 2.40      | 2.71       | 1.13   | 3.62      | 2.83     | -1.28  |
|        | 3   | ADARB2   | 0.04      | 0.06     | 1.35   | 0.23   | 0.20        | -1.14  | N.E       | 0.12       | -      | 0.27      | 0.14     | -1.96  |
|        | 1   | AICDA    | N.E       | N.E      | -      | N.E    | N.E         | -      | N.E       | N.E        | -      | N.E       | N.E      | -      |
|        | 2   | APOBEC1  | N.E       | N.E      | -      | N.E    | N.E         | -      | N.E       | 0.46       | -      | N.E       | N.E      | -      |
|        | 3   | APOBEC2  | N.E       | 0.15     | -      | N.E    | N.E         | -      | 0.17      | 0.22       | 1.32   | 0.10      | 0.16     | 1.70   |
|        | 4   | APOBEC3A | 0.25      | 0.11     | -2.20  | 1.68   | 0.51        | -3.29  | 0.73      | 1.39       | 1.91   | 0.50      | 0.23     | -2.16  |
|        | 5   | APOBEC3B | 0.41      | 2.27     | 5.52   | 0.23   | 1.27        | 5.43   | 0.49      | 2.14       | 4.39   | 0.30      | 2.48     | 8.26   |
| APOBEC | 6   | APOBEC3C | 2.20      | 3.54     | 1.20   | 1.97   | 2.07        | 1.05   | 3.17      | 3.02       | -1.05  | 3.07      | 2.19     | -1.40  |
|        | 7   | APOBEC3D | 0.47      | 0.86     | 1.84   | 0.63   | 0.81        | 1.30   | 0.92      | 1.02       | 1.11   | 1.05      | 0.88     | -1.19  |
|        | 8   | APOBEC3F | 0.96      | 1.36     | 1.43   | 1.27   | 1.40        | 1.10   | 0.84      | 1.06       | 1.26   | 1.36      | 1.55     | 1.14   |
|        | 9   | APOBEC3G | 0.71      | 1.07     | 1.52   | 2.88   | 2.85        | -1.01  | 3.41      | 3.67       | 1.08   | 4.43      | 3.51     | -1.26  |
|        | 10  | APOBEC3H | 0.19      | 0.43     | 2.27   | 0.45   | 0.44        | -1.02  | 0.91      | 1.13       | 1.24   | 1.06      | 0.86     | -1.23  |
|        | 11  | APOBEC4  | N.E       | N.E      | -      | N.E    | N.E         | -      | N.E       | N.E        | -      | N.E       | N.E      | -      |

Supplementary Table 1. Differential expression of RNA editing gene families in liver cancer.

\*TCGA\_LIHC: The Cancer Genome Atlas\_Liver Hepatocellular Carcinoma

\*\*Catholic\_mLIHC: Catholic university\_multistage Liver Hepatocellular Carcinoma (GSE114564)

\*\*\*ICGC\_LIRI: International Cancer Genome Consortium\_Liver Cancer-RIKEN.JP

NE: Non-expression

| No. | Abbreviation | Study                                 | Samples | CTNNB1 | ADAR1 | Both | Neither | p-value | Tendency           |
|-----|--------------|---------------------------------------|---------|--------|-------|------|---------|---------|--------------------|
| 1   | LIHC         | Liver hepatocellular carcinoma        | 366     | 94     | 41    | 5    | 226     | 0.004** | Mutual exclusivity |
| 2   | STAD         | Stomach adenocarcinoma                | 393     | 27     | 18    | 6    | 342     | 0.01**  | Co-occurrence      |
| 3   | LUAD         | Lung adenocarcinoma                   | 230     | 5      | 33    | 4    | 188     | 0.039*  | Co-occurrence      |
| 4   | PRAD         | Prostate adenocarcinoma               | 492     | 13     | 11    | 2    | 466     | 0.056   | None               |
| 5   | SKCM         | Skin Cutaneous Melanoma               | 287     | 16     | 12    | 3    | 256     | 0.067   | None               |
| 6   | UCS          | Uterine Carcinosarcoma                | 56      | 0      | 4     | 1    | 51      | 0.089   | None               |
| 7   | UCEC         | Uterine Corpus Endometrial Carcinoma  | 242     | 70     | 17    | 3    | 152     | 0.094   | None               |
| 8   | OV           | Ovarian serous cystadenocarcinoma     | 311     | 5      | 26    | 2    | 278     | 0.124   | None               |
| 9   | PAAD         | Pancreatic adenocarcinoma             | 149     | 4      | 8     | 1    | 136     | 0.271   | None               |
| 10  | CESC         | Cervical squamous cell carcinoma      | 191     | 7      | 10    | 1    | 173     | 0.384   | None               |
| 11  | ACC          | Adrenocortical carcinoma              | 88      | 14     | 2     | 1    | 71      | 0.433   | None               |
| 12  | ESCA         | Esophageal carcinoma                  | 184     | 10     | 9     | 1    | 164     | 0.469   | None               |
| 13  | BRCA         | Breast invasive carcinoma             | 963     | 5      | 112   | 1    | 845     | 0.528   | None               |
| 14  | BLCA         | Bladder Urothelial Carcinoma          | 127     | 6      | 13    | 1    | 107     | 0.568   | None               |
| 15  | COADREAD     | Coloreactal adenocarcinoma            | 220     | 12     | 7     | 0    | 201     | 0.671   | None               |
| 16  | KIRC         | Kidney renal clear cell carcinoma     | 448     | 51     | 9     | 1    | 387     | 0.673   | None               |
| 17  | LUSC         | Lung squamous cell carcinoma          | 178     | 5      | 11    | 0    | 162     | 0.724   | None               |
| 18  | HNSC         | Head and Neck squamous cell carcinoma | 504     | 10     | 14    | 0    | 480     | 0.753   | None               |
| 19  | SARC         | Sarcoma                               | 243     | 5      | 12    | 0    | 226     | 0.775   | None               |
| 20  | PCPG         | Pheochromocytoma and Paraganglioma    | 162     | 1      | 6     | 0    | 155     | 0.963   | None               |
| 21  | LGG          | Brain Lower Grade Glioma              | 283     | 2      | 4     | 0    | 277     | 0.972   | None               |
| 22  | ТНҮМ         | Thymoma                               | 123     | 3      | 1     | 0    | 119     | 0.976   | None               |
| 23  | KIRP         | Kidney renal papillary cell carcinoma | 280     | 2      | 3     | 0    | 275     | 0.979   | None               |
| 24  | THCA         | Thyroid carcinoma                     | 399     | 2      | 1     | 0    | 396     | 0.995   | None               |
| 25  | LAML         | Acute Myeloid Leukemia                | 188     | 0      | 0     | 0    | 188     | 1       | None               |
| 26  | CHOL         | Cholangiocarcinoma                    | 35      | 0      | 5     | 0    | 30      | 1       | None               |
| 27  | GBM          | Glioblastoma multiforme               | 273     | 0      | 1     | 0    | 272     | 1       | None               |
| 28  | KICH         | Kidney Chromophobe                    | 66      | 2      | 0     | 0    | 64      | 1       | None               |
| 29  | DLBC         | Lymphoid neoplasm                     | 48      | 0      | 3     | 0    | 45      | 1       | None               |
| 30  | MESO         | Mesothelioma                          | 83      | 0      | 4     | 0    | 79      | 1       | None               |
| 31  | TGCT         | Testicular Germ Cell Tumors           | 149     | 0      | 1     | 0    | 148     | 1       | None               |
| 32  | UVM          | Uveal Melanoma                        | 80      | 1      | 0     | 0    | 79      | 1       | None               |

Supplementary Table 2. Systematic analysis of mutual exclusivity between ADAR1 amplification and CTNNB1 mutation in various cancers.

\*The genomic alteration and mutation data are acquired from cBioPortal (www.cbioportal.org)

|                                                                                                                                                                                                         |      |         | TCGA_LIHC Catholic_mLIHC |         |        | LIHC   | ICGC_LIRI |             |           |         |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------------------|---------|--------|--------|-----------|-------------|-----------|---------|--------|
|                                                                                                                                                                                                         | No   | Conos   | Non-tumor                | Tumor   | Fold   | Normal | Tumor     | Fold change | Non-tumor | Tumor   | Fold   |
|                                                                                                                                                                                                         | INO. | Genes   | (n=50)                   | (n=371) | change | (n=15) | (n=56)    | Fold change | (n=202)   | (n=238) | change |
|                                                                                                                                                                                                         | 1    | STXBP4  | 0.12                     | 0.43    | 3.48   | 3.49   | 6.61      | 1.89        | 0.37      | 0.89    | 2.37   |
| Canonical <i>miR-3144-3p</i><br>targets                                                                                                                                                                 | 2    | SUV39H2 | 0.69                     | 1.89    | 2.74   | 2.25   | 5.21      | 2.31        | 1.07      | 2.32    | 2.16   |
|                                                                                                                                                                                                         | 3    | MSI2    | 0.56                     | 1.44    | 2.56   | 14.56  | 25.21     | 1.73        | 1.75      | 3.44    | 1.96   |
|                                                                                                                                                                                                         | 1    | INMT    | 9.65                     | 2.53    | -3.82  | 26.95  | 9.6       | -2.79       | 11        | 3.5     | -3.14  |
|                                                                                                                                                                                                         | 2    | GHR     | 27.20                    | 7.56    | -3.60  | 84.66  | 26.75     | -3.17       | 33.28     | 10.33   | -3.22  |
| Edited_miR-3144(3_A <g) targets<="" td=""><td>3</td><td>GLYAT</td><td>58.82</td><td>21.38</td><td>-2.75</td><td>153.18</td><td>37.14</td><td>-4.12</td><td>100.66</td><td>44.71</td><td>-2.25</td></g)> | 3    | GLYAT   | 58.82                    | 21.38   | -2.75  | 153.18 | 37.14     | -4.12       | 100.66    | 44.71   | -2.25  |
|                                                                                                                                                                                                         | 4    | SLC38A4 | 114.84                   | 60.33   | -1.90  | 332.43 | 134.61    | -2.47       | 133.36    | 75.11   | -1.78  |
|                                                                                                                                                                                                         | 5    | HMGCS2  | 664.92                   | 436.49  | -1.52  | 826.03 | 347.58    | -2.38       | 652.14    | 350.01  | -1.86  |

Supplementary Table 3. Differential expression and fold change of miR-3144-3p and ED\_miR-3144(3\_A<G) target candidates in liver cancer RNA-seq datasets.

|      |        | С      | atholic_mLl | HC     | TC        | CGA_LIHC |        | ICGC_LIRI  |         |        |  |
|------|--------|--------|-------------|--------|-----------|----------|--------|------------|---------|--------|--|
| Na   | Caraa  | Normal | Tumor       | Fold   | Non-tumor | Tumor    | Fold   | Non-tumorl | Tumor   | Fold   |  |
| INO. | Genes  | (n=15) | (n=56)      | change | (n=50)    | (n=371)  | change | (n=202)    | (n=238) | change |  |
| 1    | HMGA2  | 0.07   | 1.15        | 16.08  | 0.003     | 0.16     | 51.56  | 0.17       | 1.68    | 9.65   |  |
| 2    | MKI67  | 0.70   | 6.69        | 9.53   | 0.20      | 1.57     | 7.81   | 0.39       | 3.29    | 8.36   |  |
| 3    | HOXA9  | 0.03   | 0.13        | 3.68   | 0.008     | 0.07     | 8.24   | 0.05       | 0.19    | 3.50   |  |
| 4    | MET    | 37.51  | 73.57       | 1.96   | 3.53      | 3.96     | 1.12   | 10.64      | 19.11   | 1.80   |  |
| 5    | SMAD3  | 8.45   | 11.33       | 1.34   | 1.83      | 2.55     | 1.39   | 7.70       | 12.01   | 1.56   |  |
| 6    | BECN1  | 23.09  | 27.53       | 1.19   | 2.01      | 2.47     | 1.23   | 14.01      | 23.86   | 1.70   |  |
| 7    | TGFBI  | 95.44  | 106.02      | 1.11   | 3.82      | 4.58     | 1.20   | 64.99      | 96.52   | 1.49   |  |
| 8    | LFNG   | 1.34   | 1.33        | -1.004 | 0.79      | 1.27     | 1.61   | 1.76       | 3.66    | 2.08   |  |
| 9    | NOTCH1 | 1.79   | 1.77        | -1.01  | 1.39      | 1.80     | 1.29   | 2.64       | 3.50    | 1.33   |  |
| 10   | IKZF2  | 3.84   | 3.74        | -1.03  | 0.22      | 0.23     | 1.08   | 0.65       | 0.57    | -1.12  |  |
| 11   | BMPR1A | 6.60   | 6.42        | -1.03  | 0.77      | 1.09     | 1.42   | 2.22       | 3.57    | 1.61   |  |
| 12   | PTEN   | 67.91  | 64.41       | -1.05  | 2.69      | 2.72     | 1.01   | 9.94       | 10.65   | 1.07   |  |
| 13   | KRAS   | 10.93  | 10.00       | -1.09  | 1.76      | 1.97     | 1.12   | 4.89       | 5.60    | 1.15   |  |
| 14   | BRD4   | 11.79  | 10.10       | -1.17  | 2.34      | 2.79     | 1.20   | 6.65       | 7.97    | 1.20   |  |
| 15   | NUMB   | 33.57  | 27.61       | -1.22  | 2.14      | 2.33     | 1.09   | 17.16      | 18.52   | 1.08   |  |
| 16   | LRIG1  | 15.95  | 11.66       | -1.37  | 2.48      | 2.60     | 1.05   | 7.90       | 8.78    | 1.11   |  |
| 17   | AHR    | 59.56  | 42.20       | -1.41  | 3.59      | 3.31     | -1.09  | 13.55      | 15.95   | 1.18   |  |
| 18   | FLT3   | 0.50   | 0.34        | -1.45  | 0.21      | 0.15     | -1.48  | 0.38       | 0.27    | -1.39  |  |
| 19   | CDKN1A | 35.99  | 22.39       | -1.61  | 5.33      | 5.18     | -1.03  | 65.02      | 54.62   | -1.19  |  |
| 20   | MYC    | 28.82  | 15.19       | -1.90  | 4.40      | 3.60     | -1.22  | 24.54      | 23.86   | -1.03  |  |
| 21   | AR     | 29.92  | 13.50       | -2.22  | 3.26      | 2.35     | -1.39  | 5.16       | 3.58    | -1.44  |  |
| 22   | ESR1   | 63.15  | 14.62       | -4.32  | 1.60      | 0.49     | -3.27  | 4.03       | 1.28    | -3.14  |  |
| 23   | LIN28A | 0      | 0.008       | -      | 0.001     | 0.04     | 35.46  | 0.03       | 0.51    | 16.56  |  |

Supplementary Table 4. Differential expression of MSI2 targeting genes in liver cancer.

| siRNA/miRNA                                                                                         | Accession No. | Strand    | Nucleotide sequence          |
|-----------------------------------------------------------------------------------------------------|---------------|-----------|------------------------------|
| Control siRNA                                                                                       |               | Sense     | 5'-CCUACGCCACCAAUUUCGU-3'    |
|                                                                                                     |               | Antisense | 5'-ACGAAAUUGGUGGCGUAGG-3'    |
| ADAR1 siRNA                                                                                         | NM_001025107  | Sense     | 5'-CACCAAGGGAAGUUGACUA-3'    |
|                                                                                                     |               | Antisense | 5'-UAGUCAACUUCCCUUGGUG-3'    |
| MSI2 siRNA                                                                                          | NM_138962     | Sense     | 5'-CAGCCGAAAGAAGUCAUGU-3'    |
|                                                                                                     |               | Antisense | 5'-ACAUGACUUCUUUCGGCUG-3'    |
| SLC38A4 siRNA                                                                                       | NM_018018     | Sense     | 5'-CAUUCUUGCUCACUUCUAU-3'    |
|                                                                                                     |               | Antisense | 5'-AUAGAAGUGAGCAAGAAUG-3'    |
| Adar1 siRNA                                                                                         | NM_019655     | Sense     | 5'-AGACAGUGGUCAACCAGAA-3'    |
|                                                                                                     |               | Antisense | 5'-UUCUGGUUGACCACUGUCU-3'    |
| Msi2 siRNA                                                                                          | NM_054043     | Sense     | 5'-GUUAGAUUCCAAGACGAUU-3'    |
|                                                                                                     |               | Antisense | 5'-AAUCGUCUUGGAAUCUAAC-3'    |
| miR-3144-3p                                                                                         | NR_036098     | Sense     | 5'-AUAUACCUGUUCGGUCUCUUUA-3' |
| AS-miR-3144-3p                                                                                      |               | Antisense | 5'-UAAAGAGACCGAACAGGUAUAU-3' |
| ED_miR-3144(3_A <g)< td=""><td></td><td>Sense</td><td>5'-AUGUACCUGUUCGGUCUCUUUA-3'</td></g)<>       |               | Sense     | 5'-AUGUACCUGUUCGGUCUCUUUA-3' |
| AS-ED_miR3144(3_A <g)< td=""><td></td><td>Antisense</td><td>5'-UAAAGAGACCGAACAGGUACAU-3'</td></g)<> |               | Antisense | 5'-UAAAGAGACCGAACAGGUACAU-3' |

Supplementary Table 5. List of siRNA, miRNA mimics, and antisense miRNA sequences used in transfection.

| Gene         | Accession No. | Primer  | Nucleotide sequence                                         |
|--------------|---------------|---------|-------------------------------------------------------------|
| ADAR1        | NM_001025107  | Forward | 5'-TGGCAGCCTCCGGGTG-3'                                      |
|              |               | Reverse | 5'-TGTCTGTGCTCATAGCCTTG-3'                                  |
| gADAR1       | NM_001025107  | Forward | 5'-CTTTCCGTCAAGATTTAAATT-3'                                 |
|              |               | Reverse | 5'-GGGATGATTCTTCTGATTTTC-3'                                 |
| ADAR1-mutant | NM_001025107  | Forward | 5'-GAGAAACTGTCAATGACTGCTAT<br>GCAGCAATAATCTCCCGGAGAGGCTT-3' |
|              |               | Reverse | 5'-AAGCCTCTCCGGGAGATTATTGCTG<br>CATAGCAGTCATTGACAGTTTCTC-3' |
| MSI2         | NM_138962     | Forward | 5'-AAAGGAGCGCCAGGGTTAAA-3'                                  |
|              |               | Reverse | 5'-GTCTGCGAACGTGACGAAAC-3'                                  |
| STXBP4       | NM_178509     | Forward | 5'-CCGGAGCCAAGTTGAGGTTA-3'                                  |
|              |               | Reverse | 5'-GGAGTGGATGAGGTCTTTGGG-3'                                 |
| SUV39H2      | NM_001193424  | Forward | 5'-GAGGCGCGAGGAGCTTG-3'                                     |
|              |               | Reverse | 5'-GCAGTAACGGGCACTTCAGA-3'                                  |
| GHR          | NM_000153     | Forward | 5'-AGCGCAGACGCGAACC\-3'                                     |
|              |               | Reverse | 5'-AGGCTCCTTAGAAGAATTTGTCTTT-3'                             |
| GLYAT        | NM_005834     | Forward | 5'-CTGGCTGCATCAGGGAGAAA-3'                                  |
|              |               | Reverse | 5'-GTCATATCCTGCTCCTGAGGG-3'                                 |
| SLC38A4      | NM_018018     | Forward | 5'-TGCAGGAAACTGTGATTTGC-3'                                  |
|              |               | Reverse | 5'-TTCGAGCCCACCAACTTAAT-3'                                  |
| HMGCS2       | NM_005518     | Forward | 5'-CCACCTGGTGACACAAACAG-3'                                  |
|              |               | Reverse | 5'-TATGATTCACGGGGAGAAGC-3'                                  |
| INMT         | NM_006774     | Forward | 5'-GAAACAGCGGCCGATGGGA-3'                                   |
|              |               | Reverse | 5'-AGGCATCAAGGCTACAGCAG-3'                                  |
| HMGA2        | NM_003483     | Forward | 5'-TGGGAGGAGCGAAATCTAA-3'                                   |
|              |               | Reverse | 5'-GGTGAACTCAAGCCGAAG-3'                                    |
| MET          | NM_000245     | Forward | 5'-TGCAGCGCGTTGACTTATTCATGG-3'                              |
|              |               | Reverse | 5'-GAAACCACAACCTGCATGAAGCGA-3'                              |
| HOXA9        | NM_152839     | Forward | 5'-CCCCATCGATCCCAATAACCC-3'                                 |
|              |               | Reverse | 5'-GGTGAGGTTGAGCAGTCGAG-3'                                  |
| MKI67        | NM_002417     | Forward | 5'-TTGGTACTGGGGGAGGGAGA-3'                                  |
|              |               | Reverse | 5'-TGGGAGGCGAAAAAGTAAAA-3'                                  |
| mir-3144     | NR_036098     | Forward | 5'-TCATGCAAATGGAAACCAAA-3'                                  |
|              |               | Reverse | 5'-CGTTCATTGTTAAAGGTCACGA-3'                                |
| GAPDH        | NM_002046     | Forward | 5'-ACCAGGTGGTCTCCTCTGAC-3'                                  |
|              |               | Reverse | 5'-TGCTGTAGCCAAATTCGTTG-3'                                  |
| gGAPDH       | NM_002046     | Forward | 5'-ACCCAGAAGACTGTGGATGG-3'                                  |
|              |               | Reverse | 5'-TTCTAGACGGCAGGTCAGGT-3'                                  |

## Supplementary Table 6. List of primer sequence used in PCR experiments.

gADAR1, primers for amplifying genomic ADAR1

ADAR1-mutant, primers for generation of deaminase inactivated pcDNA3.1\_ADAR1-p110

mir-3144, primers for sanger sequencing of mir-3144

### **Supplementary figures**



Supplementary Fig. 1. Comparison of ADAR1 and APOBEC3B expression in multi-stage liver cancer. ADAR1 and APOBEC3B expression in multi-stage liver cancer. Expression changes of ADAR1 and APOBEC3B in multi-stage liver disease patients of **a** Catholic\_mLIHC (n=108) and **b** GSE6764 (n=17). Statistically significant differences were determined using Welch's *t* test,  $P < 0.05^*$ ,  $P < 0.01^{**}$ ,  $P < 0.0001^{***}$ . The ROC curve analysis of the ADAR1 and APOBEC3B in liver cancer patients of **c** Catholic\_mLIHC and **d** TCGA\_LIHC. Statistically significant difference in AUC is compared with reference line (AUC=0.5). N, normal liver. CH, chronic hepatitis B virus infection. DN, dysplastic nodule.



Supplementary Fig. 2. ADAR1 expression in liver cancer cell lines. ADAR1 is overexpressed in liver cancer cell lines. Expression of ADAR1 in an immortalized normal hepatic cell line and twelve liver cancer cell lines using qRT-PCR **a** and Western blot analysis **b**. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001; unpaired *t*-test.



Supplementary Fig. 3. Identification of ADAR1 editing miRNAs in liver cancer. Identification of edited miRNA hotspots in liver cancer. **a** Flowchart for the bioinformatic pipeline for identification of edited miRNAs in liver cancer. **b** Editing position summary of the 4 edited miRNAs in liver cancer. **c** The A-to-I editing frequency of the 4 miRNAs was analyzed with the two liver cancer small-RNA sequencing datasets of Catholic\_mLIHC and TCGA\_LIHC. **d** Copy gain and amplification of *ADAR1* are associated with increased editing frequency (% samples) of miR-3144-3p compared to normal and diploid groups analyzed with liver cancer TCGA dataset (left panel). Genomic copy number gain (gain and amplification) is related to the increased editing level (%) of miR-3144-3p shown as a boxplot (right panel). **e** The editing frequency (% patient samples) of miR-3144-3p is increased in overt liver cancer (left panel). Differential editing level (%) of miR-3144-3p in multi-stage human liver cancer tissues analyzed with Catholic\_mLIHC (right panel).

а





■ DSRM : Double stranded RNA binding motif

**Supplementary Fig. 4. Visualization of miR-3144-3p editing** *in silico*. Validation of miR-3144-3p editing *in silico* and *in vitro*. **a** The A-to-I editing sites of miR-3144-3p seed region are observed in overt liver cancer patient samples visualized by Integrative genomics viewer (IGV). **b** Schematic protein structure diagram of wildtype and adenosine deaminase mutant for ADAR1-p110.



Supplementary Fig. 5. Strategies to identify targets of canonical miR-3144-3p and Edited miR-3144(3\_A<G) in liver cancer. Strategy to identify miR-3144-3p and ED\_miR-3144(3\_A<G) target in liver cancer. **a** miR-3144-3p targets are identified with TargetScan v7.0 algorithm and their expressions were analyzed with 3 liver cancer transcriptome sequencing datasets, TCGA\_LIHC, Catholic\_mLIHC, and ICGC\_LIRI. **b** The target candidate expression changes of miR-3144-3p in overt liver cancer, Catholic\_mLIHC. **c** ED\_miR-3144(3\_A<G) targets are identified with TargetScan v7.0 algorithm and their expression changes of the target candidate expressions were analyzed with 3 liver cancer, Catholic\_mLIHC. **c** ED\_miR-3144(3\_A<G) targets are identified with TargetScan v7.0 algorithm and their expressions were analyzed with 3 liver cancer transcriptome sequencing datasets, TCGA\_LIHC, Catholic\_mLIHC. **c** ED\_miR-3144(3\_A<G) targets are identified with TargetScan v7.0 algorithm and their expressions were analyzed with 3 liver cancer transcriptome sequencing datasets, TCGA\_LIHC, Catholic\_mLIHC, and ICGC\_LIRI. **d** The target candidate expression changes of ED\_miR-3144(3\_A<G) in overt liver cancer, Catholic\_mLIHC.



Supplementary Fig. 6. Target validation of canonical miR-3144-3p and ED\_miR-3144(3\_A<G). Target validation of miR-3144-3p and ED\_miR-3144(3\_A<G) with qRT-PCR. **a** Hep3B and **b** Huh7 were transfected with negative control (N.C) or miR-3144-3p mimics and the expression of the three target candidates was measured by qRT-PCR. The expression of the five target candidates were analyzed after transfection of ED\_miR-3144(3\_A<G) or pcDNA3.1\_ADAR1-p110 in the background of transfected primary mir-3144 (Pri-mir-3144) in **c** MIHA and **d** SNU-449 cells with qRT-PCR. All data are shown as the mean  $\pm$  SEM. \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001 by unpaired student's *t* test.



Supplementary Fig. 7. Selective regulation of MET by MSI2 in liver cancer. Expression validation of MSI2 target candidates by qRT-PCR. **a** Negative control siRNA (N.C) or siMSI2 was transfected to two liver cancer cells (HepG2 and SNU-354), and the expression was validated by qRT-PCR. **b** MIHA and PLC/PRF/5 cells were transfected with pcDNA3.1\_Mock or pcDNA3.1\_MSI2 and the expression of the candidate genes were measured with qRT-PCR. All data are shown as the mean  $\pm$  SEM. \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001 by unpaired student's *t* test.





Supplementary Fig. 8. Correlation analysis of the *ADAR1* with *MSI2* and *SLC38A4* in liver cancer. a Correlation analysis of *ADAR1* mRNA level with *MSI2* and *SLC38A4* mRNA level in the transcriptomic liver cancer patient's datasets of **b** TCGA\_LIHC, **c** ICGC\_LIRI, **d** GSE77314, **e** Catholic\_mLIHC datasets. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 by Pearson's coefficient tests.