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1 First order statistics (19 features)

Notations:
X is an image of N voxels included in the ROI
Pi is the first order histogram with Nl discrete intensity levels, in which Nl

is the number of non-zero bins
pi is the normalized first order histogram and equal to Pi∑

Pi
(This definition

is the same for the following sections)

• 10Percentile

The 10th percentile of X.

• 90Percentile

The 90th percentile of X.

• Energy

energy =

N∑
i=1

(X(i) + c)2

Here, c is optional value, defined by “voxelArrayShift“, which shifts the inten-
sities to prevent negative values in X. This ensures that voxels with the lowest
gray values contribute the least to Energy, instead of voxels with gray level
intensity closest to 0.

Energy is a measure of the magnitude of voxel values in an image. A larger
values implies a greater sum of the squares of these values.

Note:
This feature is volume-confounded, a larger value of c increases the effect of

volume-confounding.

• Entropy
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entropy = −
Nl∑
i=1

p(i) log2

(
p(i) + ε

)
Here, ε is an arbitrarily small positive number (≈ 2.2× 10−16).

Entropy specifies the uncertainty/randomness in the image values. It mea-
sures the average amount of information required to encode the image values.

• InterquartileRange

interquartile range = P75 −P25

Here P25 and P75 are the 25th and 75th percentile of the image array, respec-
tively.

• Kurtosis

kurtosis =
µ4

σ4
=

1
N

∑N
i=1 (X(i)− X̄)4(

1
N

∑N
i=1 (X(i)− X̄)2

)2
Where µ4 is the 4th central moment.

Kurtosis is a measure of the ’peakedness’ of the distribution of values in
the image ROI. A higher kurtosis implies that the mass of the distribution is
concentrated towards the tail(s) rather than towards the mean. A lower kurtosis
implies the reverse: that the mass of the distribution is concentrated towards a
spike near the Mean value.

Related links:
https://en.wikipedia.org/wiki/Kurtosis

• Maximum

maximum = max(X)

The maximum gray level intensity within the ROI.

• Mean

mean =
1

N

N∑
i=1

X(i)

The average gray level intensity within the ROI.

• MeanAbsoluteDeviation
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MAD =
1

N

N∑
i=1

|X(i)− X̄|

Mean Absolute Deviation is the mean distance of all intensity values from the
Mean Value of the image array.

• Median

The median gray level intensity within the ROI.

• Minimum

minimum = min(X)

• Range

range = max(X)−min(X)

The range of gray values in the ROI.

• RobustMeanAbsoluteDeviation

rMAD =
1

N10−90

N10−90∑
i=1

|X10−90(i)− X̄10−90|

Robust Mean Absolute Deviation is the mean distance of all intensity values
from the Mean Value calculated on the subset of image array with gray levels
in between, or equal to the 10th and 90thpercentile.

• RootMeanSquared

RMS =

√√√√ 1

N

N∑
i=1

(X(i) + c)2

Here, c is optional value, defined by “voxelArrayShift“, which shifts the in-
tensities to prevent negative values in X. This ensures that voxels with the
lowest gray values contribute the least to RMS, instead of voxels with gray level
intensity closest to 0.

RMS is the square-root of the mean of all the squared intensity values. It is
another measure of the magnitude of the image values. This feature is volume-
confounded, a larger value of c increases the effect of volume-confounding.

• Skewness
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skewness =
µ3

σ3
=

1
N

∑N
i=1 (X(i)− X̄)3(√

1
N

∑N
i=1 (X(i)− X̄)2

)3

Where µ3 is the 3rd central moment.
Skewness measures the asymmetry of the distribution of values about the

Mean value. Depending on where the tail is elongated and the mass of the
distribution is concentrated, this value can be positive or negative.

Related links:
https://en.wikipedia.org/wiki/Skewness

• StandardDeviation

standard deviation =

√√√√ 1

N

N∑
i=1

(X(i)− X̄)2

Standard Deviation measures the amount of variation or dispersion from the
Mean Value. By definition, standard deviation =

√
variance.

• TotalEnergy

total energy = Vvoxel

N∑
i=1

(X(i) + c)2

Here, c is optional value, defined by “voxelArrayShift“, which shifts the inten-
sities to prevent negative values in X. This ensures that voxels with the lowest
gray values contribute the least to Energy, instead of voxels with gray level
intensity closest to 0.

Total Energy is the value of Energy feature scaled by the volume of the voxel
in cubic mm.

Note
This feature is volume-confounded, a larger value of c increases the effect of

volume-confounding.

• Uniformity

uniformity =

Nl∑
i=1

p(i)2

Uniformity is a measure of the sum of the squares of each intensity value. This
is a measure of the heterogeneity of the image array, where a greater uniformity
implies a greater heterogeneity or a greater range of discrete intensity values.

• Variance
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variance =
1

N

N∑
i=1

(X(i)− X̄)2

Variance is the the mean of the squared distances of each intensity value from
the Mean value. This is a measure of the spread of the distribution about the
mean. By definition, variance = σ2.

2 Shape features 13 features

• Compactness1

compactness 1 =
V√
πA3

Similar to Sphericity, Compactness 1 is a measure of how compact the shape of
the tumor is relative to a sphere (most compact). It is therefore correlated to
Sphericity and redundant. It is provided here for completeness. The value range
is 0 < compactness 1 ≤ 1

6π , where a value of 1
6π indicates a perfect sphere.

By definition, compactness 1 = 1
6π

√
compactness 2 = 1

6π

√
sphericity3.

Note: This feature is correlated to Compactness 2, Sphericity and Spherical
Disproportion. In the default parameter file provided in the “pyradiomics\bin“
folder, Compactness 1 and Compactness 2 are therefore disabled.

• Compactness2

compactness 2 = 36π
V 2

A3

Similar to Sphericity and Compactness 1, Compactness 2 is a measure of how
compact the shape of the tumor is relative to a sphere (most compact). It is a
dimensionless measure, independent of scale and orientation. The value range
is 0 < compactness 2 ≤ 1, where a value of 1 indicates a perfect sphere.

By definition, compactness 2 = (sphericity)3.
Note:
This feature is correlated to Compactness 1, Sphericity and Spherical Dis-

proportion. In the default parameter file provided in the “pyradiomics\bin“
folder, Compactness 1 and Compactness 2 are therefore disabled.

• Elongation

Elongation is calculated using its implementation in SimpleITK, and is de-
fined as:

elongation =

√
λminor

λmajor
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Here, λmajor and λminor are the lengths of the largest and second largest principal
component axes. The values range between 1 (where the cross section through
the first and second largest principal moments is circle-like (non-elongated)) and
0 (where the object is a single point or 1 dimensional line).

• Flatness

Flatness is calculated using its implementation in SimpleITK, and is defined
as:

flatness =

√
λleast
λmajor

Here, λmajor and λleast are the lengths of the largest and smallest principal
component axes. The values range between 1 (non-flat, sphere-like) and 0 (a
flat object).

• Maximum2DDiameterColumn

Maximum 2D diameter (Column) is defined as the largest pairwise Euclidean
distance between tumor surface voxels in the row-slice (usually the coronal)
plane.

• Maximum2DDiameterRow

Maximum 2D diameter (Row) is defined as the largest pairwise Euclidean
distance between tumor surface voxels in the column-slice (usually the sagittal)
plane.

• Maximum2DDiameterSlice

Maximum 2D diameter (Slice) is defined as the largest pairwise Euclidean
distance between tumor surface voxels in the row-column (generally the axial)
plane.

• Maximum3DDiameter

Maximum 3D diameter is defined as the largest pairwise Euclidean distance
between surface voxels in the ROI.

Also known as Feret Diameter.

• SphericalDisproportion

spherical disproportion =
A

4πR2
=

A
3
√

36πV 2

Where R is the radius of a sphere with the same volume as the tumor, and equal

to 3

√
3V
4π .
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Spherical Disproportion is the ratio of the surface area of the tumor re-
gion to the surface area of a sphere with the same volume as the tumor re-
gion, and by definition, the inverse of Sphericity. Therefore, the value range is
spherical disproportion ≥ 1, with a value of 1 indicating a perfect sphere.

Note: This feature is correlated to Compactness 1, Sphericity and Spherical
Disproportion. In the default parameter file provided in the “pyradiomics\bin“
folder, Compactness 1 and Compactness 2 are therefore disabled.

• Sphericity

sphericity =
3
√

36πV 2

A
Sphericity is a measure of the roundness of the shape of the tumor region relative
to a sphere. It is a dimensionless measure, independent of scale and orientation.
The value range is 0 < sphericity ≤ 1, where a value of 1 indicates a per-
fect sphere (a sphere has the smallest possible surface area for a given volume,
compared to other solids).

Note: This feature is correlated to Compactness 1, Compactness 2 and
Spherical Disproportion. In the default parameter file provided in the “pyradiomics\bin“
folder, Compactness 1 and Compactness 2 are therefore disabled.

• SurfaceArea

A =

N∑
i=1

1

2
|aibi × aici|

Where:
N is the number of triangles forming the surface mesh of the volume (ROI)
aibi and aici are the edges of the ith triangle formed by points ai, bi and ci
Surface Area is an approximation of the surface of the ROI in mm2, calcu-

lated using a marching cubes algorithm.
References:
- Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH Comput Graph http://portal.

acm.org/citation.cfm?doid=37402.37422.1987; 21 : 163− 9.

• SurfaceVolumeRatio

surface to volume ratio =
A

V
Here, a lower value indicates a more compact (sphere-like) shape. This feature
is not dimensionless, and is therefore (partly) dependent on the volume of the
ROI.

• Volume

The volume of the ROI is approximated by multiplying the number of voxels
in the ROI by the volume of a single voxel.
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3 GLCM features 28 features

Notations:
P(i, j) is the co-occurence matrix for δ (distance) and α (angle)
p(i, j) is the normalized co-occurence matrix
Ng is the number of discrete intensity levels in the image

px(i) =
∑Ng

j=1 P (i, j) is the marginal row probabilities

py(j) =
∑Ng

i=1 P (i, j) is the marginal column probabilities

µx =
∑Ng

i=1

∑Ng

j=1 P (i, j)i is the mean gray level intensity of px

µy =
∑Ng

i=1

∑Ng

j=1 P (i, j)j is the mean gray level intensity of py
σx is the standard deviation of px
σy is the standard deviation of py

px+y(k) =
∑Ng

i=1

∑Ng

j=1 P (i, j), where i+ j = k

px−y(k) =
∑Ng

i=1

∑Ng

j=1 P (i, j), where | i− j |= k

HX = −
∑Ng

i=1 px(i) log2(px(i) + ε) is the entropy of px
HY = −

∑Ng

j=1 py(j) log2(py(j) + ε) is the entropy of py

HXY = −
∑Ng

i=1

∑Ng

j=1 p(i, j) log2(p(i, j) + ε) is the entropy of p(i, j)

HXY 1 = −
∑Ng

i=1

∑Ng

j=1 p(i, j) log2(px(i)py(j) + ε)

HXY 2 = −
∑Ng

i=1

∑Ng

j=1 px(i)py(j) log2(px(i)py(j) + ε)

• Autocorrelation

autocorrelation =

Ng∑
i=1

Ng∑
j=1

p(i, j)ij

Autocorrelation is a measure of the magnitude of the fineness and coarseness of
texture.

• AverageIntensity

µx =

Ng∑
i=1

Ng∑
j=1

p(i, j)i

Returns the mean gray level intensity of the i distribution.
Warning:
As this formula represents the average of the distribution of i, it is indepen-

dent from the distribution of j. Therefore, only use this formula if the GLCM
is symmetrical, where px(i) = py(j), where i = j.

• ClusterProminence
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cluster prominence =

Ng∑
i=1

Ng∑
j=1

(
i+ j − µx(i)− µy(j)

)4
p(i, j)

Cluster Prominence is a measure of the skewness and asymmetry of the GLCM.
A higher values implies more asymmetry about the mean while a lower value
indicates a peak near the mean value and less variation about the mean.

• ClusterShade

cluster shade =

Ng∑
i=1

Ng∑
j=1

(
i+ j − µx(i)− µy(j)

)3
p(i, j)

Cluster Shade is a measure of the skewness and uniformity of the GLCM. A
higher cluster shade implies greater asymmetry about the mean.

• ClusterTendency

cluster tendency =

Ng∑
i=1

Ng∑
j=1

(
i+ j − µx(i)− µy(j)

)2
p(i, j)

Cluster Tendency is a measure of groupings of voxels with similar gray-level
values.

• Contrast

contrast =

Ng∑
i=1

Ng∑
j=1

(i− j)2p(i, j)

Contrast is a measure of the local intensity variation, favoring values away from
the diagonal (i = j). A larger value correlates with a greater disparity in
intensity values among neighboring voxels.

• Correlation

correlation =

∑Ng

i=1

∑Ng

j=1 p(i, j)ij − µx(i)µy(j)

σx(i)σy(j)

Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated)
showing the linear dependency of gray level values to their respective voxels in
the GLCM.

Note:
When there is only 1 discreet gray value in the ROI (flat region), σx and σy

will be 0. In this case, the value of correlation will be a NaN.
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• DifferenceAverage

difference average =

Ng−1∑
k=0

kpx−y(k)

Difference Average measures the relationship between occurrences of pairs with
similar intensity values and occurrences of pairs with differing intensity values.

• DifferenceEntropy

difference entropy =

Ng−1∑
k=0

px−y(k) log2

(
px−y(k) + ε

)
Difference Entropy is a measure of the randomness/variability in neighborhood
intensity value differences.

• DifferenceVariance

difference variance =

Ng−1∑
k=0

(1−DA)2px−y(k)

Difference Variance is a measure of heterogeneity that places higher weights on
differing intensity level pairs that deviate more from the mean.

• Dissimilarity

dissimilarity =

Ng∑
i=1

Ng∑
j=1

|i− j|p(i, j)

Dissimilarity is a measure of local intensity variation defined as the mean abso-
lute difference between the neighbouring pairs. A larger value correlates with a
greater disparity in intensity values among neighboring voxels.

• Energy

energy =

Ng∑
i=1

Ng∑
j=1

(
p(i, j)

)2
Energy (or Angular Second Moment)is a measure of homogeneous patterns in
the image. A greater Energy implies that there are more instances of intensity
value pairs in the image that neighbor each other at higher frequencies.

• Entropy
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entropy = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log2

(
p(i, j) + ε

)
Entropy is a measure of the randomness/variability in neighborhood intensity
values.

• Homogeneity1

homogeneity 1 =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j|

Homogeneity 1 is a measure of the similarity in intensity values for neighboring
voxels. It is a measure of local homogeneity that increases with less contrast in
the window.

• Homogeneity2

homogeneity 2 =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j|2

Homogeneity 2 is a measure of the similarity in intensity values for neighboring
voxels.

• Id

ID =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j|

ID (inverse difference) is another measure of the local homogeneity of an image.
With more uniform gray levels, the denominator will remain low, resulting in a
higher overall value.

• Idm

IDM =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j|2

IDM (inverse difference moment) is a measure of the local homogeneity of an
image. IDM weights are the inverse of the Contrast weights (decreasing expo-
nentially from the diagonal i = j in the GLCM).

• Idmn
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IDMN =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 +
(
|i−j|2
N2

g

)
IDMN (inverse difference moment normalized) is a measure of the local homo-
geneity of an image. IDMN weights are the inverse of the Contrast weights
(decreasing exponentially from the diagonal i = j in the GLCM). Unlike Ho-
mogeneity2, IDMN normalizes the square of the difference between neighboring
intensity values by dividing over the square of the total number of discrete
intensity values.

• Idn

IDN =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 +
(
|i−j|
Ng

)
IDN (inverse difference normalized) is another measure of the local homogeneity
of an image. Unlike Homogeneity1, IDN normalizes the difference between
the neighboring intensity values by dividing over the total number of discrete
intensity values.

• Imc1

IMC 1 =
HXY −HXY 1

max{HX,HY }

• Imc2

IMC 2 =
√

1− e−2(HXY 2−HXY )

• InverseVariance

inverse variance =

Ng∑
i=1

Ng∑
j=1

p(i, j)

|i− j|2
, i 6= j

• MaximumProbability

maximum probability = max
(
p(i, j)

)
Maximum Probability is occurrences of the most predominant pair of neighbor-
ing intensity values.

• SumAverage

12



sum average =

2Ng∑
k=2

px+y(k)k

Sum Average measures the relationship between occurrences of pairs with lower
intensity values and occurrences of pairs with higher intensity values.

• SumEntropy

sum entropy =

2Ng∑
k=2

px+y(k) log2

(
px+y(k) + ε

)
Sum Entropy is a sum of neighborhood intensity value differences.

• SumSquares

sum squares =

Ng∑
i=1

Ng∑
j=1

(i− µx)2p(i, j)

Sum of Squares or Variance is a measure in the distribution of neigboring in-
tensity level pairs about the mean intensity level in the GLCM.

Warning:
This formula represents the variance of the distribution of i and is indepen-

dent from the distribution of j. Therefore, only use this formula if the GLCM
is symmetrical, where px(i) = py(j), where i = j.

• SumVariance

sum variance =

2Ng∑
k=2

(k − SA)2px+y(k)

Sum Variance is a measure of heterogeneity that places higher weights on neigh-
boring intensity level pairs that deviate more from the mean.

• SumVariance2

Using coefficients px+y and SumAvarage (SA) calculate and return the mean
Sum Variance 2.

sum variance 2 =

2Ng∑
k=2

(k − SA)2px+y(k)

Sum Variance 2 is a measure of heterogeneity that places higher weights on
neighboring intensity level pairs that deviate more from the mean.

This formula differs from SumVariance in that instead of subtracting the
SumEntropy from the intensity, it subtracts the SumAvarage, which is the mean
of intensities and not its entropy.
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4 GLRLM features 16 features

Notations:
P(i, j | θ) is the run length matrix of direction θ
p(i, j | θ) is the normalized run length matrix
Ng is the number of discrete intensity values in the image
Nr is the number of discrete run lengths in the image
Np is the number of voxels in the image

• GrayLevelNonUniformity

GLN =

∑Ng

i=1

(∑Nr

j=1 P(i, j|θ)
)2

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

GLN measures the similarity of gray-level intensity values in the image, where
a lower GLN value correlates with a greater similarity in intensity values.

• GrayLevelNonUniformityNormalized

GLNN =

∑Ng

i=1

(∑Nr

j=1 P(i, j|θ)
)2

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)2

GLNN measures the similarity of gray-level intensity values in the image, where
a lower GLNN value correlates with a greater similarity in intensity values. This
is the normalized version of the GLN formula.

• GrayLevelVariance

GLV =

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)(i− µ)2

Here, µ =

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)i

GLV measures the variance in gray level intensity for the runs.

• HighGrayLevelRunEmphasis

HGLRE =

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)i2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

HGLRE measures the distribution of the higher gray-level values, with a higher
value indicating a greater concentration of high gray-level values in the image.
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• LongRunEmphasis

LRE =

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)j2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

LRE is a measure of the distribution of long run lengths, with a greater value
indicative of longer run lengths and more coarse structural textures.

• LongRunHighGrayLevelEmphasis

LRHGLRE =

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)i2j2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

LRHGLRE measures the joint distribution of long run lengths with higher gray-
level values.

• LongRunLowGrayLevelEmphasis

LRLGLRE =

∑Ng

i=1

∑Nr

j=1
P(i,j|θ)j2

i2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

LRLGLRE measures the joint distribution of long run lengths with lower gray-
level values.

• LowGrayLevelRunEmphasis

LGLRE =

∑Ng

i=1

∑Nr

j=1
P(i,j|θ)
i2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

LGLRE measures the distribution of low gray-level values, with a higher value
indicating a greater concentration of low gray-level values in the image.

• RunEntropy

RE = −
Ng∑
i=1

Nr∑
j=1

p(i, j|θ) log2(p(i, j|θ) + ε)

Here, ε is an arbitrarily small positive number (≈ 2.2× 10−16).
RE measures the uncertainty/randomness in the distribution of run lengths

and gray levels. A higher value indicates more heterogeneity in the texture
patterns.

• RunLengthNonUniformity
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RLN =

∑Nr

j=1

(∑Ng

i=1 P(i, j|θ)
)2

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

RLN measures the similarity of run lengths throughout the image, with a lower
value indicating more homogeneity among run lengths in the image.

• RunLengthNonUniformityNormalized

RLNN =

∑Nr

j=1

(∑Ng

i=1 P(i, j|θ)
)2

∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

RLNN measures the similarity of run lengths throughout the image, with a
lower value indicating more homogeneity among run lengths in the image. This
is the normalized version of the RLN formula.

• RunPercentage

RP =

Ng∑
i=1

Nr∑
j=1

P(i, j|θ)
Np

RP measures the coarseness of the texture by taking the ratio of number of runs
and number of voxels in the ROI.

Values are in range 1
Np
≤ RP ≤ 1, with higher values indicating a larger

portion of the ROI consists of short runs (indicates a more fine texture).

• RunVariance

RV =

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)(j − µ)2

Here, µ =

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)j

RV is a measure of the variance in runs for the run lengths.

• ShortRunEmphasis

SRE =

∑Ng

i=1

∑Nr

j=1
P(i,j|θ)
i2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

SRE is a measure of the distribution of short run lengths, with a greater value
indicative of shorter run lengths and more fine textural textures.
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• ShortRunHighGrayLevelEmphasis

SRHGLE =

∑Ng

i=1

∑Nr

j=1
P(i,j|θ)i2

j2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

SRHGLE measures the joint distribution of shorter run lengths with higher
gray-level values.

• ShortRunLowGrayLevelEmphasis

SRLGLE =

∑Ng

i=1

∑Nr

j=1
P(i,j|θ)
i2j2∑Ng

i=1

∑Nr

j=1 P(i, j|θ)

SRLGLE measures the joint distribution of shorter run lengths with lower gray-
level values.

5 GLSZM features 16 features

Several notations:
P(i, j) is the size zone matrix
p(i, j) is the normalized size zone matrix
Ng is the number of discrete intensity values in the image
Ns is the number of discrete zone sizes in the image
Np is the number of voxels in the image

• GrayLevelNonUniformity

GLN =

∑Ng

i=1

(∑Ns

j=1 P(i, j)
)2

∑Ng

i=1

∑Ns

j=1 P(i, j)

GLN measures the variability of gray-level intensity values in the image, with a
lower value indicating more homogeneity in intensity values.

• GrayLevelNonUniformityNormalized

GLNN =

∑Ng

i=1

(∑Ns

j=1 P(i, j)
)2

∑Ng

i=1

∑Nd

j=1 P(i, j)
2

GLNN measures the variability of gray-level intensity values in the image, with
a lower value indicating a greater similarity in intensity values. This is the
normalized version of the GLN formula.
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• GrayLevelVariance

GLV =

Ng∑
i=1

Ns∑
j=1

p(i, j)(i− µ)2

Here, µ =

Ng∑
i=1

Ns∑
j=1

p(i, j)i.

GLV measures the variance in gray level intensities for the zones.

• HighGrayLevelZoneEmphasis

HGLZE =

∑Ng

i=1

∑Ns

j=1 P(i, j)i2∑Ng

i=1

∑Ns

j=1 P(i, j)

HGLZE measures the distribution of the higher gray-level values, with a higher
value indicating a greater proportion of higher gray-level values and size zones
in the image.

• LargeAreaEmphasis

LAE =

∑Ng

i=1

∑Ns

j=1 P(i, j)j2∑Ng

i=1

∑Ns

j=1 P(i, j)

LAE is a measure of the distribution of large area size zones, with a greater
value indicative of more larger size zones and more coarse textures.

• LargeAreaHighGrayLevelEmphasis

LAHGLE =

∑Ng

i=1

∑Ns

j=1 P(i, j)i2j2∑Ng

i=1

∑Ns

j=1 P(i, j)

LAHGLE measures the proportion in the image of the joint distribution of larger
size zones with higher gray-level values.

• LargeAreaLowGrayLevelEmphasis

LALGLE =

∑Ng

i=1

∑Ns

j=1
P(i,j)j2

i2∑Ng

i=1

∑Ns

j=1 P(i, j)

LALGLE measures the proportion in the image of the joint distribution of larger
size zones with lower gray-level values.
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• LowGrayLevelZoneEmphasis

LGLZE =

∑Ng

i=1

∑Ns

j=1
P(i,j)
i2∑Ng

i=1

∑Ns

j=1 P(i, j)

LGLZE measures the distribution of lower gray-level size zones, with a higher
value indicating a greater proportion of lower gray-level values and size zones
in the image.

• SizeZoneNonUniformity

SZN =

∑Ns

j=1

(∑Ng

i=1 P(i, j)
)2

∑Ng

i=1

∑Ns

j=1 P(i, j)

SZN measures the variability of size zone volumes in the image, with a lower
value indicating more homogeneity in size zone volumes.

• SizeZoneNonUniformityNormalized

SZNN =

∑Ns

j=1

(∑Ng

i=1 P(i, j)
)2

∑Ng

i=1

∑Nd

j=1 P(i, j)
2

SZNN measures the variability of size zone volumes throughout the image, with
a lower value indicating more homogeneity among zone size volumes in the
image. This is the normalized version of the SZN formula.

• SmallAreaEmphasis

SAE =

∑Ng

i=1

∑Ns

j=1
P(i,j)
j2∑Ng

i=1

∑Ns

j=1 P(i, j)

SAE is a measure of the distribution of small size zones, with a greater value
indicative of more smaller size zones and more fine textures.

• SmallAreaHighGrayLevelEmphasis

SAHGLE =

∑Ng

i=1

∑Ns

j=1
P(i,j)i2

j2∑Ng

i=1

∑Ns

j=1 P(i, j)

SAHGLE measures the proportion in the image of the joint distribution of
smaller size zones with higher gray-level values.

• SmallAreaLowGrayLevelEmphasis
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SALGLE =

∑Ng

i=1

∑Ns

j=1
P(i,j)
i2j2∑Ng

i=1

∑Ns

j=1 P(i, j)

SALGLE measures the proportion in the image of the joint distribution of
smaller size zones with lower gray-level values.

• ZoneEntropy

ZE = −
Ng∑
i=1

Ns∑
j=1

p(i, j) log2(p(i, j) + ε)

Here, ε is an arbitrarily small positive number (≈ 2.2× 10−16).
ZE measures the uncertainty/randomness in the distribution of zone sizes

and gray levels. A higher value indicates more heterogeneneity in the texture
patterns.

• ZonePercentage

ZP =

Ng∑
i=1

Ns∑
j=1

P(i, j)

Np

ZP measures the coarseness of the texture by taking the ratio of number of zones
and number of voxels in the ROI.

Values are in range 1
Np
≤ ZP ≤ 1, with higher values indicating a larger

portion of the ROI consists of small zones (indicates a more fine texture).

• ZoneVariance

ZV =

Ng∑
i=1

Ns∑
j=1

p(i, j)(j − µ)2

Here, µ =

Ng∑
i=1

Ns∑
j=1

p(i, j)j

ZV measures the variance in zone size volumes for the zones.
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