## Supplementary Material

## Extending the 'One-point method' for estimations of leaf photosynthetic capacity to a broader temperature range

Tony César de Sousa Oliveira<sup>1,2\*</sup>, Maquelle Neves Garcia<sup>3</sup>, Elmar Veenendaal<sup>2</sup>, Tomas Ferreira Domingues<sup>1</sup>

<sup>1</sup> FFCLRP, Department of Biology, University of São Paulo (USP), Ribeirão Preto, Brazil

<sup>2</sup> Plant Ecology and Nature Conservation, Wageningen University and Research (WUR), Wageningen, The Netherlands

<sup>3</sup> National Institute for Amazonian Research (INPA), Manaus, Brazil. E-mail

\*Correspondence: tonycsoliveira@usp.br

**Supplementary Table S1:** Data set of primary parameters and their temperature dependency used to estimate  $V'_{cmax}$  and  $R_{day}$  temperature response in of Eqns 3 and 4. Where R is the universal gas constant; Eav,  $\Delta S_V$ , and  $H_{dV}$  are respectively the activation energy, as entropy and deactivation energy of  $V'_{cmax}$ , and Ea<sub>R</sub> is the activation energy of  $R_{day}$ 

| Parameter       | Units                               | Values used here    |
|-----------------|-------------------------------------|---------------------|
| R               | $J \text{ mol}^{-1} \text{ K}^{-1}$ | 8.314 1             |
| Ea <sub>R</sub> | $kJ mol^{-1}$                       | 20700 <sup>2</sup>  |
| Eav             | $kJ mol^{-1}$                       | 58550 <sup>1</sup>  |
| $\Delta SV$     | $\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$ | 629.26 <sup>1</sup> |
| Hdv             | $kJ mol^{-1}$                       | 20000 <sup>1</sup>  |

<sup>1</sup>Kumarathunge, Medlyn and Duursma (2018)

<sup>2</sup> Kumarathunge et al (2018)

**Supplementary Table S2:** Species studied accordingly with the biome, their family, number of individuals (N curves) and curves), and temperature range curves.

| Biome   | Species                                   | Family       | N<br>individuals | N curves | Leaf Temperature range |
|---------|-------------------------------------------|--------------|------------------|----------|------------------------|
| Savanna |                                           |              |                  |          |                        |
|         | Xylopia aromatica (Lam.) Mart. LC         | Annonaceae   | 3                | 9        | 35°-43°C               |
|         | Vochysia tucanorum Mart                   | Vochysiaceae | 3                | 9        | 35°-43°C               |
|         | Stryphnodendron adstringens (Mart.)       | Fabaceae     | 3                | 9        | 35°-43°C               |
|         | Qualea grandiflora Mart.                  | Vochysiaceae | 6                | 18       | 35°-43°C               |
|         | Qualea parviflora Mart.                   | Vochysiaceae | 3                | 9        | 35°-43°C               |
|         | Ormosia arborea (Vell.) Harms Coronheira  | Fabaceae     | 3                | 9        | 35°-43°C               |
|         | Hymenaea stigonocarpa Mart. ex Hayne      | Fabaceae     | 6                | 18       | 35°-43°C               |
|         | Annona coriacea Mart.                     | Annonaceae   | 6                | 18       | 35°-43°C               |
|         | Vatairea macrocarpa (Benth.) Ducke        | Fabaceae     | 3                | 9        | 35°-43°C               |
|         | Stryphnodendron coreacium (Mart.)         | Fabaceae     | 3                | 9        | 35°-43°C               |
|         | Psidium myrsinoides. O.Berg.              | Myrtaceae    | 3                | 9        | 35°-43°C               |
|         | Oxandra sessiliflora R.E.Fr.              | Annonaceae   | 3                | 9        | 35°-43°C               |
|         | Himatanthus obovatus (Muell.Arg.) Woodson | Apocynaceae  | 3                | 9        | 35°-43°C               |

|          | Caryocar coriaceum Wittm. LC             | Caryocaraceae    | 3 | 9 | 35°-43°C |
|----------|------------------------------------------|------------------|---|---|----------|
| Amazonia |                                          |                  |   |   |          |
|          | Pterandra arborea Ducke                  | Malpighiaceae    | 1 | 5 | 25°-45°C |
|          | Licania coriacea Benth                   | Chrysobalanaceae | 1 | 5 | 25°-45°C |
|          | Vantanea parviflora Lam                  | Humiriaceae      | 1 | 8 | 25°-45°C |
|          | Pouteria erythrochrysa T.D.Penn          | Sapotaceae       | 1 | 5 | 25°-45°C |
|          | Diploon cuspidatum (Hoehne) Cronquist    | Sapotaceae       | 1 | 5 | 25°-45°C |
|          | Matayba purgans Radlk.                   | Sapindaceae      | 1 | 5 | 25°-45°C |
|          | Pourouma tomentosa C.Mart. ex Miq        | Urticaceae       | 1 | 5 | 30°-45°C |
|          | Pouteria minima T.D.Penn                 | Sapotaceae       | 1 | 6 | 25°-45°C |
|          | Ocotea cernua (Nees) Mez                 | Lauraceae        | 1 | 5 | 25°-45°C |
|          | Protium ferrugineum (Engl.) Engl         | Burseraceae      | 1 | 5 | 25°-45°C |
|          | Eschweilera coriacea (DC.) S. A          | Lecythidaceae    | 1 | 4 | 30°-45°C |
|          | Pouteria caimito (Ruiz et Pavon) Radlk.  | Sapotaceae       | 1 | 5 | 25°-45°C |
|          | Sloanea fragrans Rusby                   | Elaeocarpaceae   | 1 | 6 | 25°-45°C |
|          | Mabea angularis Hollander                | Euphorbiaceae    | 1 | 5 | 25°-45°C |
|          | Eschweilera grandiflora (Aubl.) Sandwith | Lecythidaceae    | 1 | 5 | 25°-45°C |
|          |                                          |                  |   |   |          |

| Pouteria platyphylla (A.C.Sm.) Baehni                  | Sapotaceae  | 1 | 5 | 25°-45°C |
|--------------------------------------------------------|-------------|---|---|----------|
| Duguetia stelechantha (Diels) REFr.                    | Annonaceae  | 1 | 5 | 25°-45°C |
| Protium hebetatum Daly                                 | Burseraceae | 1 | 5 | 25°-45°C |
| Cordiera myrciifolia (K.Schum.) C.H.Perss. & Delprete. | Rubiaceae   | 1 | 5 | 25°-45°C |



**Supplementary Figure S1:** Comparison of linear regression models between  $V_{\text{cmax}}$  estimated from full *A*-*C*<sub>i</sub> curves against apparent photosynthetic capacity estimated by the "One-point method" ( $V'_{cmax}$  - Eqn 2), using the temperature-dependent Q10 using the equation:  $R_{day}{}^{T}/R_{day}{}^{R} = R_{25} * Q_{10} {(\frac{T-25}{10})}$  as the numerator in Eqn 5, where  $R_{25}$  represents the respiratory rates at 25 °C, T is the leaf temperature and  $Q_{10}$  represents the factor by which the respiratory rate changes with a 10 °C increase in temperature (Atkin et al 2015). The light-gray line is the 1:1 relationship.



**Supplementary Figure S2:** Normalized partitioning of the variation of the influence of individual coefficients over model output at a broad leaf temperature range (sensitivity analysis). Extreme, inter-quartile, and median values are depicted by the dotted line, gray area, and bold line in the upper panel. Where, Ea<sub>V</sub>,  $\Delta$ S<sub>V</sub>, and H<sub>dV</sub> are respectively the activation energy, as entropy and deactivation energy of  $V'_{cmax}$ , and Ea<sub>R</sub> is the activation energy of  $R_{day}$ 



**Supplementary Figure S3:** Estimated  $R_{day}$  ( $R_{day}$ :  $V_{cmax}$  ratio) as a function of leaf temperature using the De Kauwe er al. (2015) model. We derived  $R_{day}$ :  $V_{cmax}$  ratio by fitting a nonlinear regression model using the 'nlsLM' function from the 'minpack.lm' package. The light-gray line is the fixed estimated  $R_{day}$ :  $V_{cmax}$  value (0.015).

## References

- Atkin OK, Bloomfield KJ, Reich PB, et al. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206, 614– 636.
- **De Kauwe, MG, Lin YS, Wright IJ**, *et al.* 2016. A test of the "one-point method" for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytologist, **210**, 1130–1144.
- Kumarathunge DP, Medlyn BE, Drake JE, et al. 2019. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 22, 768–784.
- **Kumarathunge DP, Medlyn BE, Duursma R.** 2018. New temperature responses of V<sub>cmax</sub> and J<sub>max</sub>. https://remkoduursma.github.io/plantecophys/articles/new\_T\_responses.html. Accessed July 2022.