Supplementary Materials

Bifidobacterium bifidum DS0908 and *Bifidobacterium longum* DS0950 culture-supernatants ameliorate obesity-related characteristics in mesenchymal stem cells and mice with high-fat diet-induced obesity

MS Rahman^{1, 2, #}, Y Lee^{1, 2, #}, DS Park³, and YS Kim^{1, 2, *}

¹ Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea

² Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea

³ Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea

[#] These authors contributed equally

* Corresponding author:

Yong-Sik Kim, Ph.D.

Email: yongsikkim@sch.ac.kr

Figure S1. Effect of DS0908 and DS0950 administration on the expression of brown adipocyte-specific markers in mice with HFD-induced obesity. (A) Ucp1, Prdm16, $Ppar\gamma$, Cd137 and aP2 mRNA expression levels. (B and C) UCP1, AP2, PGC-1 α , PPAR γ , PRDM16 and mitochondrial oxidative phosphorylation protein expression levels in the visceral and epididymal fat of DS0908 and DS0950-administered mice with HFD-induced obesity. *Tbp* was used as an internal control gene and β - actin as a protein loading control. The data from three individual experiments are expressed as the average \pm standard error mean (SEM). *, **, *** and ns indicate p < 0.05, < 0.01, < 0.001 and non-significant, respectively, to express the statistically significant differences between the control (G2: HFD) and treatment groups. G1: Normal-fat diet (NFD); G2: High-fat diet (HFD); G3: BS DS0908 (DS0908); G4: BS DS0950

(DS0950); G5: BP DS0908 (DS0908; 10⁹ cells/kg); G6: BP DS0950 (DS0950; 10⁹ cells/kg); G7: Rosiglitazone (Rosi; 10 mg/kg); BS = bacterial supernatant; BP = bacterial pellets.

Figure S2. DS0908 and DS0950 supplementation reduces organ weight in mice with HFDinduced obesity. (A) Food intake changes in DS0908- and DS0950-administered mice with HFD-induced obesity. (B) Organ weight measurements (epididymal, visceral and subcutaneous fat, as well as liver). The data are expressed as the average \pm standard error mean (SEM). *, **, *** and ns indicate p < 0.05, < 0.01, < 0.001 and non-significant, respectively, to express the statistically significant differences between the control (G2: HFD) and treatment groups. G1: Normal-fat diet (NFD); G2: High-fat diet (HFD); G3: BS DS0908 (DS0908); G4: BS DS0950 (DS0950); G5: BP DS0908 (DS0908; 10⁹ cells/kg); G6: BP DS0950 (DS0950; 10⁹ cells/kg); G7: Rosiglitazone (Rosi; 10 mg/kg); BS = bacterial supernatant; BP = bacterial pellets.

Figure S3. DS0908 and DS0950 culture-supernatants activate thermogenesis via PKA-p38 MAPK signaling in C3H10T1/2 MSCs. (A) Phosphorylated protein expression levels of p-p38 MAPK, p-CREB and p-AMPK after incubation with DS0908 and DS0950 for 10, 30 and 60 min. (B) Microscopic images of lipid droplet in *Pkaa* and *p38 MAPKa*-knockdown cells, and treatment with DS0908 and DS0950 (siPkaa/sip38 MAPKa + DS0908 or DS0950 group) and control siRNA and treatment with DS0908 or DS0950 (siCont + DS0908 or DS0950 group). (C) Protein expression levels (UCP1, PGC1 α , PRDM16 and PPAR γ) were measured after silencing of *Pkaa* and *p38 MAPKa* and treatment with DS0908 or DS0950 (siPkaa/sip38 MAPKa +

DS0908 or DS0950 group) and control siRNA and treatment with DS0950 or DS0908 (siCont + DS0908 or DS0950 group). The gene knockdown experiments were designed as siCont vs. siCont + DS0908 or DS0950, siPka α vs. siPka α + DS0908 or DS0950 and sip38 MAPK α vs. sip38 MAPK α + DS0908 or DS0950. The protein expression band intensities were measured by with ImageJ. The data from three individual experiments are expressed as the average ± standard error mean (SEM). *, **, *** and ns indicate p < 0.05, < 0.01, < 0.001 and non-significant, respectively, to express the statistically significant differences between the control (MDI) and the treatment groups in the figures. Adipogenic differentiation medium, MDI: 0.5 mM IBMX, 1 μ M dexamethasone and 10 μ g/mL insulin; 1 μ M Rosiglitazone (Rosi); DS0908 = *B. bifidum* DS0908; DS0950 = *B. longum* DS0950.

Serial No.	Strains	Isolation No.	Strain No.	Origin	Source
1	B. bifidum	01S5		Infant	faeces
2	B. breve	01B6		Infant	faeces
3	B. breve	01B8		Infant	faeces
4	B. bifidum	02S3		Infant	faeces
5	B. bifidum	02S5		Infant	faeces
6	B. bifidum	02S8		Infant	faeces
7	B. bifidum	02S18		Infant	faeces
8	B. longum	05S61		Infant	faeces
9	B. breve	05S71		Infant	faeces
10	B. breve	05\$76		Infant	faeces
11	B. longum	05B23		Infant	faeces
12	B. longum	06\$63		Infant	faeces
13	B. bifidum	0784	DS0908 (HN002)	Infant	faeces
14	B. longum	07S5		Infant	faeces
15	B. bifidum	07S8		Infant	faeces
16	B. bifidum	07S13		Infant	faeces
17	B. longum	07S14		Infant	faeces
18	B. longum	07S15		Infant	faeces
19	B. bifidum	07S25		Infant	faeces
20	B. bifidum	07S26		Infant	faeces
21	B. bifidum	07S29		Infant	faeces
22	B. longum	07\$35		Infant	faeces
23	B. longum	07\$37		Infant	faeces
24	B. longum	07S38		Infant	faeces
25	B. longum	07S41		Infant	faeces
26	B. longum	08\$6		Infant	faeces
27	B. longum	08S18		Infant	faeces
28	B. longum	08S22	DS0950 (HN001)	Infant	faeces
29	B. longum	08S40		Infant	faeces
30	B. longum	08S41	DS0956	Infant	faeces
31	B. longum	08S45		Infant	faeces
32	B. longum	08S46		Infant	faeces
33	B. longum	08\$62		Infant	faeces
34	B. longum	08\$643		Infant	faeces
35	B. animalis	08S70		Infant	faeces
36	L. reuteri	MBF4116		Infant	faeces
37	L. reuteri	AN417		Infant	faeces
38	L. rhamnosus	B1		Infant	faeces
39	L. rhamnosus	OMM118		Infant	faeces

Supplementary Table 1. List of probiotic bacterial strains screened for anti-obesity effect.

40	L. rhamnosus	OMM228		Infant	faeces
41	L. rhamnosus	B1S1		Infant	faeces
42	L. rhamnosus	B2S1		Infant	faeces
43	L. gasseri	MBF402		Infant	faeces
44	L. gasseri	MF203		Infant	faeces
45	L. gasseri	NM518		Infant	faeces
46	L. gasseri	MM332		Infant	faeces
47	L. gasseri	SM353		Infant	faeces
48	L. acidophilus	C48		Infant	faeces
49	L. acidophilus	S42		Infant	faeces
50	L. rhamnosus	B15		Infant	faeces
51	L. rhamnosus	OMM135	DS0508	Infant	faeces
52	L. delbrueckii	AN315		Infant	faeces
53	L. delbrueckii	AN617		Infant	faeces
54	L. fermentum	C62		Infant	faeces
55	L. fermentum	SBF308		Infant	faeces