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S1. TA kinetics and determination of the average number of absorbed photons per nanoplatelet  

 
Figure S1. Decay kinetics of TA traces normalized at maximum amplitude after excitation with a pump photon energy equal 
to 𝐸!! (first column, red), 𝐸"! (middle column, green) and 𝐸#$%& (right column, blue). The probe photon energy was taken at 
the maximum of the PA1 feature (top row), the HH bleach (middle row) and at the high-energy bleach feature around 𝐸"! =
	2.58 eV (bottom row). The probe photon energies varies during about 1 ps after the maximum TA amplitude has been reached, 
due to the change of the shape of the TA spectra on this timescale, as discussed in the main text. Traces are shown for different 
average numbers of absorbed pump photons per nanoplatelet, 𝑁'(, which were determined as described below.  
 

 

The average number of absorbed pump photons with energy 𝐸)*+) by a NPL is equal to  

 

 𝑁'((𝐸)*+)) = 𝐼,(𝐸)*+))	𝜇(𝐸)*+))	𝑉-." , (S1) 

 

with 𝐼,(𝐸)*+)) the laser fluence in a pump pulse, 𝜇(𝐸)*+)) the absorption coefficient of a NPL with volume 𝑉-.". The 

incident fluence was calculated according to 

  

 𝐼,(𝐸)*+)) =
𝑃)*+)

𝐸)*+)	𝑓)*+)	𝜋𝑟/
		, (S2) 

 

where 𝑃)*+) is the pump power measured using a pinhole with radius 𝑟 = 1 mm, and 𝑓)*+)	= 2500 Hz is the frequency of 

pump pulses arriving at the sample. The uncertainty of 𝑃)*+)	is about 0.1 mW, which stems from the laser instability during 

time and inaccuracy of the overlap between the pump and probe laser pulses in the sample. Values of 𝜇(𝐸)*+))	were obtained 

as described previously.1 For  photoexcitation to the HH exciton at 2.42 eV, the LH exciton at 2.58eV and into the continuum 

at 3.10 eV this gives, 	𝜇 = 3.25 × 100 cm12, 𝜇 = 2.36 × 100	cm12and 𝜇 = 1.80 × 100	cm12, respectively. The volume, 

𝑉-.", of the NPLs was calculated from their lateral sizes (𝐿3 = 25 ± 3	nm, 𝐿4 = 8 ± 1	nm) and their width of 4.5 monolayers 

(𝐿5 = 1.37	nm) yielding 𝑉-." = 𝐿3𝐿4𝐿5 = 280 ± 45	nm6.2 Figure S1 shows the measured HH bleach amplitude 2 ps after 
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photoexcitation to the HH, LH excitons and into the continuum at 3.10 eV, as a function of 𝑁'(. As expected, the HH bleach 

depends linearly on 𝑁'(. The uncertainty in the values of 𝑁'(  reflects that of 𝑃)*+) and 𝑉-." in Equations (S1) and (S2). 

  

 

 
Figure S2. HH bleach amplitude as a function of the average number of absorbed photons per NPL (𝑁'() at 2 ps after 

photoexcitation with 𝐸)*+) = 𝐸!! (red dots), 𝐸"! (green) and 𝐸#$%& (blue). The empty squares correspond to the values of 

𝑁'(	during the experiments to obtain the data shown in Figures 2, 4 and 5 of the main text (i.e. 𝑁'( = 3.8 ± 0.6, 𝑁'( = 3.3 ±

0.5 and 𝑁'( = 2.8 ± 0.5 for 𝐸!!, 𝐸"! and 𝐸#$%&, respectively). The grey line is a guide to the eye highlighting the linear 

dependence of the bleach on 𝑁'(. 

 
 
S2. Definition of transient optical absorbance 
Without the pump laser pulse the absorbance 𝐴$77(ℏ𝜔) at probe photon energy ℏ𝜔 due to NPLs with optical absorption cross 

section 𝜎(ℏ𝜔) and volume density	𝑛89: in a cuvette with optical path length 𝑑 is defined via the relation  

 

 𝐼$77(ℏ𝜔) = 𝐼,(ℏ𝜔)	101;!""(ℏ>) = 𝐼,(ℏ𝜔)	𝑒1@(ℏ>)%#$%A , (S3) 

 

with 𝐼,(ℏ𝜔) and 𝐼$77(ℏ𝜔) being the incident and transmitted probe pulse fluencies. After the pump pulse, the presence of 

excitons (X) and free electrons (e) and holes (h) causes the absorbance to change to 𝐴$%(ℏ𝜔) and the transmitted probe fluence 

becomes 

 

 𝐼$%(ℏ𝜔) = 𝐼,(ℏ𝜔)	101;!&(ℏ>) ≡ 𝐼,(ℏ𝜔)	𝑒1B!&(ℏ>), (S4) 

  

with the optical absorption signal after the pump pulse defined as 

 

 𝑆$%(ℏ𝜔) = 𝐴$%(ℏ𝜔)	𝑙𝑛(10).	 (S5) 

 

Our transient absorption setup provides the difference ∆𝐴(ℏ𝜔) = 𝐴$%(ℏ𝜔) − 𝐴$77(ℏ𝜔). We obtain 𝐴$%(ℏ𝜔) by separately 

measuring the steady-state optical absorbance 𝐴,(ℏ𝜔) of the NPL solution (which corresponds to 𝐴$77(ℏ𝜔) in the transient 

optical absorption measurements). Hence, we use 𝐴$%(ℏ𝜔) 	= ∆𝐴(ℏ𝜔) + 𝐴,(ℏ𝜔).  

 

The optical absorption signal after the pump pulse is affected by the presence of excitons and charge carriers, which we 

describe according to 
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 𝑆$%(ℏ𝜔) = 	 N𝜎C(ℏ𝜔,𝑁OC)[1 − 𝑓C(ℏ𝜔,𝑁OC)] + 𝜎DEFG(ℏ𝜔,𝑁OH , 𝑁OI)[1 − 𝑓DEFG(ℏ𝜔,𝑁OH , 𝑁OI)]R	𝑛89:𝑑,	 (S6) 

 

with 𝑁OC, 𝑁OH and , 𝑁OI the average number of excitons, free electrons and holes in a NPL, respectively. The factors 𝑓C and 𝑓DEFG 

take into account the enhanced transmitted fluence of probe light due to (probe-pulse induced) photon emission from excitons 

and Pauli blocking by charge carriers, respectively. Note, that in Equation (S6) we make the approximation that the cross 

sections depend on the average number of excitons and charge carriers rather than their actual number. As discussed in Section 

S6, the occurrence of quenching of excitons by charge trapping causes the cross sections of excitons and remaining charge 

carriers to shift to higher energy. In the absence of photoexcitation of the sample by the pump pulse we have 𝑁C =	𝑁H =	𝑁I =

0, and 	𝑓C =	𝑓#$%& = 0, so that Equation (S4) reduces to the ground state absorption spectrum 𝑆$77(ℏ𝜔) =

𝐴$77(ℏ𝜔)	𝑙𝑛(10) = [𝜎C(ℏ𝜔) + 𝜎DEFG(ℏ𝜔)]𝑛89:𝑑. Note, that 𝜎C and 𝜎DEFG depend on the center-of-mass (COM) motion of 

excitons, which is determined by the lateral confinement in the NPLs, as discussed in Section S4 and in our previous work.2 

We also take into account that the measured optical absorption, 𝑆$%(ℏ𝜔), depends on the distribution of excitons and charge 

carriers over (thermal) energy (𝑘J𝑇), see Sections S3 - S5. 

 

 
S3. Transient absorption due to excitons 
According to the Fermi’s golden rule, the rate for an optical transition of an electron between initial (i) and final (f) states is 

given by3  

  

 ΓK→	7 =	
2𝜋
ℏ
|⟨𝑖|𝐻K%&|𝑓⟩|/	𝜌C(ℏ𝜔), (S7) 

 

where the perturbation 𝐻K%& describes the dipolar interaction between the electron and the electric field due to photons and 

𝜌C(ℏ𝜔) is the density of exciton states at photon energy ℏ𝜔 above the ground state. Photons are true bosons, while excitons 

can to a good approximation be treated as bosons provided their mutual distances are much longer than their Bohr radius.4-5 

Taking into account the bosonic nature of these species, the average rate of photon absorption over all NPLs with initial states 

\𝑁C, 𝑁N], of 𝑁C excitons and interacting with 𝑁N probe photons, to a final state |𝑁C + 1,𝑁N − 1⟩ is 

 

	

  

⟨	ΓN→	C		⟩ = 	 ΓC(ℏ𝜔) ^ \_𝑁C + 1,𝑁N − 1\ΨaCOac\𝑁C, 𝑁N]\
/𝑃-'(ℏ𝜔)𝑃-((ℏ𝜔) =

P

-'Q,,-(Q,

= ΓC(ℏ𝜔) ^ 𝑁N(𝑁C + 1)	𝑃-'(ℏ𝜔)𝑃-((ℏ𝜔)	.
P

-',Q,,-(Q,

 

(S8) 

 

 

 

In Equation (S8), ac is the photon annihilation operator, ΨaCO	is the exciton creation operator, 𝑃-'(ℏ𝜔) and 𝑃-((ℏ𝜔) are the 

probabilities of having a NPL with 𝑁C excitons interacting with 𝑁N photons of energy ℏ𝜔. The probability 𝑃-' is determined 

by the product of the number of pump photons absorbed in a NPL (Poisson distribution) and the quantum yield of excitons 

with energy ℏ𝜔. The factor ΓC(ℏ𝜔) brings into account the optical transition dipole moment and density of final states. We 

have taken this factor out of the summation, which implies that the optical absorption cross section 𝜎C(ℏ𝜔,𝑁OC) is assumed to 
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be determined by the average number (𝑁OC) of excitons in a NPL, rather than the actual number. Analogous to Equation (S6), 

the average rate for emission of a photon with an exciton recombining to the ground state is given by 

 

 

_	ΓC→N		] = ΓC(ℏ𝜔) ^ \_𝑁C − 1,𝑁N + 1\ΨaCacO\𝑁C, 𝑁N]\
/𝑃-'(ℏ𝜔)	𝑃-((ℏ𝜔) 	=

P

-'Q2,-(Q,

=ΓC(ℏ𝜔) ^ 𝑁C(𝑁N + 1)𝑃-'(ℏ𝜔)	𝑃-((ℏ𝜔)		
P

-'Q,,-(Q,

. 

(S9) 

 

The net rate resulting from both photon absorption and emission is then 

 

_	ΓN↔C		] = _	ΓN→	C		] − _	ΓC→N		]

= ΓC(ℏ𝜔) ^ [𝑁N(𝑁C + 1) − 𝑁C(𝑁N + 1)]	𝑃-'(ℏ𝜔)𝑃-((ℏ𝜔) =
P

-',-(Q,

= ΓC(ℏ𝜔) ^ [𝑁N −𝑁C]	𝑃-'(ℏ𝜔)𝑃-((ℏ𝜔) = ΓC(ℏ𝜔)
P

-',-(Q,

N	𝑁ON(ℏ𝜔) − 𝑁OC(ℏ𝜔)R, 

 

(S10) 

 

where we have used 

 
^ 𝑃-)

P

-)Q,

(ℏ𝜔) 		= 	1			and			 ^ 𝑁K𝑃-)(ℏ𝜔)
P

-)Q,

	= 	𝑁OK(ℏ𝜔)			. 

 

 

(S11) 

 

 

In Equation (S11) and below we explicitly specify the average number of excitons and photons at a particular probe photon 

energy ℏ𝜔 by using the notation 𝑁OK(ℏ𝜔). In Equation (S10), the last term is due to spontaneous emission only. The stimulated 

emission is cancelled by the Bose enhancement of the absorption.  

The decay of the average number of probe photons 𝑁ON(ℏ𝜔, 𝑥) per unit path length at position 𝑥 in the sample is  

 

 𝑑𝑁ON(ℏ𝜔, 𝑥)
𝑑𝑥 	= 	−

1
𝑐 _	ΓN↔C		]𝑉	𝑛89:, 

 

(S12) 

 

 

with c the velocity of light in the sample and 𝑉 is the volume encountered by the probe pulse. Since 𝑁ON(ℏ𝜔, 𝑥) is directly 

proportional to the laser probe fluence 𝐼(ℏ𝜔, 𝑥), we can use Equations (S10) and (S12) to get 
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1
𝑁ON(ℏ𝜔, 𝑥)

	
𝑑𝑁ON(ℏ𝜔, 𝑥)

𝑑𝑥 = 	
1

𝐼(ℏ𝜔, 𝑥)	
𝑑𝐼(ℏ𝜔, 𝑥)

𝑑𝑥 = −
1

𝑁ON(ℏ𝜔, 𝑥)
	
_	ΓN↔C		]

𝑐 𝑉	𝑛89: 	

= 	−𝜎C(ℏ𝜔,𝑁OC)	𝑛89: g	
𝑁ON(ℏ𝜔, 𝑥) − 𝑁OC(ℏ𝜔, 𝑥)

𝑁ON(ℏ𝜔, 𝑥)
h

= 	−𝜎C(ℏ𝜔,𝑁OC)	𝑛89: g	1 −
𝑁OC(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)

h, 

 

 

(S13) 

 

with 𝜎C(ℏ𝜔,𝑁OC) = ΓC(ℏ𝜔)𝑉/𝑐 the optical absorption cross section. Note that the average number of excitons, 

𝑁OC(ℏ𝜔, 𝑥),	depends on the position 𝑥 due to absorption of the pump laser pulse along its path through the sample. Integrating 

Equation (S13) over the optical path length yields 

 j
1

𝐼(ℏ𝜔, 𝑥)	

T(ℏ>,A)

T(ℏ>,,)

𝑑𝐼(ℏ𝜔, 𝑥) = lnl
𝐼(ℏ𝜔, 𝑑)
𝐼(ℏ𝜔, 0)m 		= 	−𝜎C

(ℏ𝜔,𝑁OC)	𝑛89: n𝑑 − j g
𝑁OC(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)

h
A

,

𝑑𝑥o 

 

(S14) 

 

 

and the first term in Equation (S6) due to excitons is then found to be 

 

 𝑆C(ℏ𝜔) = 𝜎C(ℏ𝜔,𝑁OC)		[1 − 𝑓C(ℏ𝜔)]	𝑛89:	𝑑 = 𝜎C(ℏ𝜔,𝑁OC)	𝑛89:𝑑 n1 −
1
𝑑j g

𝑁OC(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)

h
A

,

𝑑𝑥o, 

 

(S15) 

 

 

so that  

 	𝑓C(ℏ𝜔) = 	
1
𝑑j g

𝑁OC(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)

h
A

,

𝑑𝑥. 

 

(S16) 

 

 

The factor 𝑓C(ℏ𝜔)	is determined by the bosonic nature of photons and excitons (i.e. the terms '+1' in Equation (S10)).  

The initially photogenerated excitons or free electrons and holes will relax thermally.  We assume this leads to formation 

of HH excitons and charge carriers. We only consider HH excitons, since the population of excitons with higher energy is 

negligible, as discussed before.6 For a Bose-Einstein distribution of HH excitons over COM states their chemical potential, 𝜇C, 

is an independent fitting parameter. Fortunately, for the size of our NPLs with each containing at most 4 excitons a Maxwell-

Botlzmann distribution is a good approximation, see Figs. 1 and 7 in our previous work.6 For a Maxwell-Boltzmann distribution 

𝑁OC(ℏ𝜔, 𝑥) is proportional to a thermal energy distribution factor 	𝑒1U(ℏ>1V'), where 𝛽 = 1/𝑘J𝑇 . Now the factor 	𝑒1UV' can 

be included in the fitted amplitude of 𝑓C(ℏ𝜔), see eq. S17. During time, excitons decay back to the ground state and 

consequently 𝑁OC(ℏ𝜔, 𝑥)	decreases with the time delay 𝑡	between the pump and probe laser pulses. These two effects are taken 

into account by expressing Equation (S16) as the product of the thermal distribution factor and another factor describing the 

decay of the total exciton population by photon emission (EM) according to 

 

 𝑓C(ℏ𝜔) = 	𝑒1Uℏ>𝑓C,WX(𝑡). (S17) 
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Comparing Equations (S16) and (S17) shows that 𝑓C,WX(𝑡) is inversely proportional to the photon fluence, 𝑁ON(ℏ𝜔, 𝑥), of the 

probe laser pulse. The latter is due to the bosonic nature of the photons and excitons. To the best of our knowledge, the 

dependence of the transient optical absorption on the probe fluence has not been explicitly taken into consideration before. 

Note that Equation (S15) depends on the ratio of the number excitons in a NPL and the number of probe photons arriving in a 

NPL. For 𝑁OC ≫ 𝑁ON photon emission dominates the transient absorption spectrum 𝑆C(ℏ𝜔), while for 𝑁OC ≪ 𝑁ON the emission 

becomes negligible. Finally, the contribution of excitons to 𝑆$% [first term in Equation (S6)] is found to be 

 

 𝑆C(ℏ𝜔) = t𝜎C(ℏ𝜔,𝑁OC)N1 − 	𝑒1Uℏ>𝑓C,WX(𝑡)Ru 	𝑛89:𝑑.	 (S18) 

 

As mentioned at the end of Section S2, for comparison with experiments we must average Equation (S18) over the occupation 

of excitons in states with different COM translational energy and bring into account the lateral size distribution of the NPLs, 

as well as effects of (in)homogenous broadening. This is described next in Section S4. 

 

 

S4. Effects of exciton COM energy, NPL size distribution and disorder on transient absorption due to 

excitons 

Similar to our previous work, we write the wave function of an exciton as2  

 	ΨY(zZ, z[, 𝐫, 𝐑) = 		 uF*
Z (zZ)	uF*

[ (z[)ψ\Z](𝐫)ψF+,F,
^_X (𝐑). 

(S19) 

 

Here, ze,h is the coordinate of an electron (e) or hole (h) perpendicular to the plane of the NPL, r = re−rh and R = (mere+ 

mhrh)/(me +mh) are the relative and COM coordinates in the plane of the NPL, respectively, with me (mh) the electron (hole) 

effective mass, and me + mh = M the total exciton mass. The COM motion of excitons in a NPL with lateral sizes  𝑳 = (𝐿3 , 𝐿4) 

is described by the particle-in-a-box model with quantum numbers 𝒏 = (𝑛3 , 𝑛4), yielding energies 

 𝐸𝒏
a (𝑳) = 𝐸a +	

𝜋/ℏ/

2𝑀a ~�
𝑛4
𝐿3
�
/
+ l

𝑛4
𝐿4
m
/

�.		 (S20) 

Here, J = HH, LH indicates the heavy and light hole excitons and 𝐸a is the energy of excitons without COM energy.  The 

optical absorption cross section 𝜎b for excitation from the ground state is proportional to a factor 𝑎b taking into account the 

relative motion of the electron and hole in an exciton, and also a factor,	𝑓%$c#(𝑳), in the optical oscillator strength arising from 

the translational COM motion of the exciton in a NPL, i.e. 𝜎b = 𝑎b	𝑓𝒏(𝑳), with2 

 𝑓%$c#(𝑳) = 	j j 𝑑𝑥	𝑑𝑦

"-

,

".

,

|ψF+,F,
^_X (𝐑)	|/ =

16𝐿3𝐿4(1 − (−1)%.)(1 − (−1)%-)
𝑛3/𝑛4/

. (S21) 

 

Note that  𝑓%$c#(𝑳) is non-zero only if both 𝑛3 and 𝑛4 are odd. According to Equation (S21) 𝜎C	in Equation (S18) depends on 

𝒏 and 𝑳. For comparison with experiments, we need to average 𝑆C(ℏ𝜔) over the occupation of states with different 𝒏 and the 

lateral size distribution 𝐷(𝑳) of the NPLs. In addition, we take into account the homogeneous broadening due to exciton-
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phonon interaction by a Lorentzian profile with full-width at half maximum (FWHM) equal to Γa(ℏ𝜔). The inhomogeneous 

broadening due to disorder is described by a Gaussian with standard deviation given by 	𝛿a. These two contributions to the 

broadening are described by a Voigt-profile, 𝒱, centered at the energy of the n-th COM exciton state. This implies that the 

optical absorption in Equation (S18) needs to be averaged by weighting with2  

 

 
𝑤C(ℏ𝜔, 𝒏, 𝑳) 	= 	 ^ 𝑎b𝒱(ℏ𝜔	 − 𝐸a − 𝐸𝒏

a (𝑳); Γa(ℏ𝜔), 	𝛿a)
bQ!!,"!

. 

 

(S22) 

Analogous to our earlier work, the transient optical absorption spectrum due to excitons is described by combining Equations 

(S18) - (S22), leading to2  

 𝑆C(ℏ𝜔) =^j𝑑𝑳𝐷(𝑳) 𝑓𝒏(𝑳)
%

𝑤C(ℏ𝜔, 𝒏, 𝑳)N1 − 𝑓C,WX(𝑡)	𝑒1Uℏ>R	𝑛89:𝑑. (S23) 

 

Comparison of Equations (S23) and (S18) shows that 𝜎C(ℏ𝜔,𝑁OC = 0) = ∑ ∫𝑑𝑳𝐷(𝑳)𝑓𝒏(𝑳)% 𝑤C(ℏ𝜔, 𝒏, 𝑳).2 Note, that 

contributions of internally excited excitons can be neglected, since the oscillator strength is much smaller than for ground state 

excitons and their population is negligible.2, 6 The values of the parameters 𝑎b, Γa(ℏ𝜔) and 	𝛿a	were taken from our previous 

fits to steady-state abosprton and photoluminescence spectra of the same NPLs as studied here.2 

 

 

S5. Transient absorption due to charge carriers  
We now consider the transient absorption due to holes in the heavy hole valence band (VB) and electrons in the conduction 

band (CB) with wave vector 𝑘, and angular momentum projection 𝑚d/ = ±3/2 for holes and 𝑚d0 = ±1/2 for electrons. 

Transitions from the light hole VB are not taken into account, since these occur at energies above 2.8 eV [see Figure 1(a) of 

the main text], which is larger than the maximum probe photon energy used in the transient absorption experiments, see Figure 

1(b) of the main paper. Below we denote the probability averaged over all NPLs that an electron occupies a state in the VB as 

𝑓e(𝑘,𝑚d/) and for an electron in the CB as 𝑓#(𝑘,𝑚d0). The net rate of photon absorption and emission in the presence of charge 

carriers, analogous to Equation (S10) for excitons, is 

 

 
!	Γ!↔	$,&$ = !	Γ!→	$,&$ − !	Γ$,&→!$ 

 
 

= Γ()*+(ℏ𝜔)+′		 + + 𝛿,-!".-!#,,/
.𝑁!𝑓01𝑘,𝑚1"5 61 − 𝑓(1𝑘,𝑚1#58 − 𝑓(1𝑘,𝑚1#5 61 − 𝑓01𝑘,𝑚1"58 1𝑁! + 15:	𝑃2$	(ℏ𝜔)

3

2$45-!# ,-!"6

. 

                                (S24)

        

After optical excitation by the laser pump pulse, the factor 𝑁N𝑓e(𝑘)(1 − 𝑓#(𝑘)) describes reduced optical absorption due to 

removal of an electron from the VB and/or population of an electron state in the CB (Pauli blocking), 

while	𝑓#(𝑘)(1 − 𝑓e(𝑘))(𝑁N + 1) is due to emission of a photon via recombination of an electron and a hole.  The prime (′) in 

the summation over 𝑘 indicates that only electrons with a wave vector such that the energy difference between the CB and VB 
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states equals the probe photon energy ℏ𝜔 contribute to the Equation (S24). Note that in Equation (S24) Γ#$%&(ℏ𝜔) takes into 

account the optical oscillator strength. By defining the hole probability 𝑓I(𝑘) = 1 − 𝑓e(−𝑘) we can rewrite Equation (S24) as  

 

   

 

              

!	Γ!↔	$,&$ = Γ()*+(ℏ𝜔)+′ + + 𝛿,-!".-!#,,/
.𝑁! 61 − 𝑓&1−𝑘,𝑚1"5 − 𝑓(1𝑘,𝑚1#58 − 𝑓(1𝑘,𝑚1#5𝑓&1−𝑘,𝑚1"5:	𝑃2$	(ℏ𝜔)

3

2$45-!# ,-!"6

. 

                               (S25) 
 

To connect with the notation in Equations (S12-S15) we recall that the average number of probe photons interacting with a 

NPL [see Equation (S11)] is 

 

 
𝑁ON(ℏ𝜔) = 	∑ 	𝑁N𝑃-N

P
-(Q, (ℏ𝜔), 

 

(S26) 

 

while the number of allowed optical transitions in a NPL at probe photon energy ℏ𝜔 is 

 

 

 𝑁&fg%c(ℏ𝜔) =^′ ^ 𝛿h+1/1+10h,2
+10 ,+1/i

, (S27) 

 

 

 

and the average number of electrons and holes Pauli blocking the optical transitions in a NPL are 

 

 𝑁OH(ℏ𝜔, 𝑥) =^′ ^ 𝛿h+1/1+10h,2
	𝑓#(𝑘,𝑚d0)

+10 ,+1/i

 (S28) 

 

 

 𝑁OI(ℏ𝜔, 𝑥) =^′ ^ 𝛿h+1/1+10h,2
	𝑓I(−𝑘,𝑚d/)

+10 ,+1/

,
i

 (S29) 

 

   

and finally the average number of photons emitted from a NPL due to the recombination of an electron-hole pair is 

 

 𝑁OH,I(ℏ𝜔, 𝑥) =^′ ^ 𝛿h+1/1+10h,2
	𝑓#(𝑘,𝑚d0)𝑓I(−𝑘,𝑚d/)

+10 ,+1/

.
i

 (S30) 

 

 

Note that the quantities above depend on the position 𝑥 due to the reduction of the absorbed pump photons (and thus of excitons, 

electrons and holes) along the path in the sample.  By using the definitions above, we now get [analogous to Equation (S13)] 
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1
𝐼(ℏ𝜔, 𝑥)	

𝑑𝐼(ℏ𝜔, 𝑥)
𝑑𝑥 = −

1
𝑁ON(ℏ𝜔, 𝑥)

	
_	ΓN↔	H,I		]

𝑐 𝑉	𝑛89: =	

= 	−𝜎#$%&(ℏ𝜔,𝑁OH , 𝑁OI)	𝑛89: g	l1 −
𝑁OH(ℏ𝜔, 𝑥) + 𝑁OI(ℏ𝜔, 𝑥)

𝑁&fg%c(ℏ𝜔)
m

−
𝑁OH,I(ℏ𝜔, 𝑥)

𝑁ON(ℏ𝜔, 𝑥)𝑁&fg%c(ℏ𝜔)
h, 

(S31) 

 

 

where 𝜎#$%&(ℏ𝜔,𝑁OH , 𝑁OI) = 𝑁&fg%c(ℏ𝜔)Γ#$%&(ℏ𝜔)𝑉/𝑐 is the absorption cross section of the probe photons. By integrating 

Equation (S31) over the optical path length, 𝑑, we obtain 

 

 

		ln l
𝐼(ℏ𝜔, 𝑑)
𝐼(ℏ𝜔, 0)m = 		−𝜎#$%&

(ℏ𝜔,𝑁OH , 𝑁OI)	𝑛89:𝑑 n1 −
1
𝑑j g

𝑁OH(ℏ𝜔, 𝑥) + 𝑁OI(ℏ𝜔, 𝑥)
𝑁&fg%c(ℏ𝜔)

h
A

,

𝑑𝑥

−
1
𝑑j g

𝑁OH,I(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)𝑁&fg%c(ℏ𝜔)

h
A

,

𝑑𝑥o. 

 

(S32) 

 

Hence, the second term in Equation (S6), describing the effect of free electrons and holes on the transient optical absorption 

after the pump pulse, is found to be 

 

𝑆#$%&(ℏ𝜔) = 𝜎#$%&(ℏ𝜔,𝑁OH , 𝑁OI)	𝑛89:	𝑑 n1 −
1
𝑑j g

𝑁OH(ℏ𝜔, 𝑥) + 𝑁OI(ℏ𝜔, 𝑥)
𝑁&fg%c(ℏ𝜔)

h
A

,

𝑑𝑥

−
1
𝑑j g

𝑁OH,I(ℏ𝜔, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)𝑁&fg%c(ℏ𝜔)

h
A

,

𝑑𝑥o. 

 

(S33) 

 

Analogous to our treatment of excitons, we assume a Maxwell-Boltzmann distribution of the charge carriers over energy and 

take into account their decay during time by a factor 𝑓j(𝑡, 𝑥), so that we can write  

 

 

𝑁OH(ℏ𝜔, 𝑥) = 𝑓j(𝑡, 𝑥)	𝑒
1	Uk2/

3 	ℏ>1V0l			

𝑁OI(ℏ𝜔, 𝑥) = 𝑓j(𝑡, 𝑥)	𝑒
1	Uk20

3 	ℏ>1V/l	,	

	

 

(S34) 

 

 

with 𝜇H	and 𝜇I the chemical potential of electrons and holes, respectively. Scattering of electrons and holes between different 

𝑘 values occurs on a timescale comparable to or less than the oscillation period of optical phonons (~150 fs). This timescale is 

within the time resolution of our experiments, which is roughly the sum of the pump and probe pulse durations (~400 fs). 

Therefore, we assume that the initial correlation of the k vectors of an electron and a hole produced by absorption of a photon 

is lost and we can make the approximation 

 
𝑁OH,I(ℏ𝜔, 𝑥) = 𝑁OH(ℏ𝜔, 𝑥)	𝑁OI(ℏ𝜔, 𝑥).	

	

 

(S35) 

 

 

By combining Equations (S34) and (S35) we get 



 S11 

 

 

𝑆#$%&(ℏ𝜔) = 𝜎#$%&(ℏ𝜔,𝑁OH , 𝑁OI)	𝑛89:𝑑 n1 − t𝑒
1	Uk+/

m 	ℏ>1V0l + 𝑒1	Uk
+0
m 	ℏ>1V/lu

1
𝑑j

𝑓j(𝑡, 𝑥)
𝑁&fg%c(ℏ𝜔)

A

,

𝑑𝑥

− 𝑒1	U(ℏ>1V01V/)
1
𝑑j

𝑓j/(𝑡, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)𝑁&fg%c(ℏ𝜔)

A

,

𝑑𝑥o. 

 

(S36) 

For equal densities of electrons and holes, their chemical potentials are related by7  

 

 𝜇I(𝜇H) = 𝛽12 ln t(1 + 𝑒UV0)+0/+/ − 1	u . 

 

(S37) 

 

 

Note that we ignore the discreteness of  electron and hole states due to the finite lateral deimensions of the NPLs. This is a 

good approximation, since according to recent theoretical modeling the energetic spacing between the electronic states in CdSE 

NPLS is a few meV,8 which is comparible to energetic broading resulting from dephasing by e.g. electron-phonon scattering.9 

In the classical regime the term  𝛽𝜇H is very negative, so that (S37) leads to   

 Δ𝜇 = 𝜇I − 𝜇H ≃ ln �
𝑚H

𝑚I
�𝛽12	. 

 

(S38) 

 

 

By defining factors that take into account the decay of charge carriers during time as 

 

 

𝑓𝑪𝟏(𝑡) = 	
𝑒UV0

𝑁&fg%c(ℏ𝜔)	𝑑
j𝑓j(𝑡, 𝑥)
A

,

𝑑𝑥 

𝑓𝑪𝟐(𝑡) = 	
𝑒 	U(V0OV/)

	𝑁&fg%c(ℏ𝜔)	𝑑
j

𝑓j/(𝑡, 𝑥)
𝑁ON(ℏ𝜔, 𝑥)

A

,

𝑑𝑥	. 

 

  (S39) 

 

 

we get from Equation (S36)  

 

 𝑆#$%&(ℏ𝜔) = 	𝜎#$%&(ℏ𝜔,𝑁OH , 𝑁OI)	𝑛89:𝑑 t1 − 𝑓p6(𝑡) t𝑒
1	Uk+/

m 	ℏ>l + 𝑒1	Uk
+0
m 	ℏ>1qVlu 	−	𝑓p7(𝑡)𝑒

1	Uℏ>u,	 (S40) 

  

where Δ𝜇 is calculated according to the approximation in Equation (S38). Comparing Equation (S40) with (S6) yields   

 

 𝑓#$%&(ℏ𝜔,𝑁OH , 𝑁OI) = 	𝑓p6(𝑡) t𝑒
1	Uk+/

m 	ℏ>l + 𝑒1	Uk
+0
m 	ℏ>1qVlu +	𝑓p7(𝑡)𝑒

1	Uℏ>	. (S41) 

 

In Equations (S40) and (S41) the term with the factor 𝑓𝑪𝟏(𝑡) results from effects of Pauli blocking by charge carriers in the 

valence and conduction bands, as well as electron-hole recombination by stimulated emission. The factor 𝑓𝑪𝟐(𝑡) is due to 

spontaneous radiative electron-hole recombination.  

 



 S12 

For fitting to the experimental data, Equation (S40) must be averaged over the NPL size distribution and broadened by 

inclusion of a Voigt profile (analogous to Equation (S22) for excitons in Section S4). For the combined electron and hole 

continua we get 

 

 𝑤#$%&(ℏ𝜔, 𝒏, 𝑳) 	= j 𝑑𝜖,𝒱(ℏ𝜔 − 𝜖,; Γprr(ℏ𝜔), 	𝛿prr)	
OP

1P

𝛩[𝜖, − 𝐸C!! − 𝐸!! − 𝐸𝒏!!(𝑳)], (S42) 

 

where Γprr(ℏ𝜔) and 	𝛿prr represent the homogeneous and inhomogeneous broadening of transitions to the continuum, 

respectively, 𝛩(𝑥) is the Heaviside step-function and 𝐸C!! is the HH exciton binding energy (here defined positive).  Averaging 

Equation (S34) using the relative weights of Equation (S35) yields  

 

 
𝑆#$%&(ℏ𝜔) = 𝑏#$%& 	^j𝑑𝑳

𝒏

𝐷(𝑳)	𝑤#$%&(ℏ𝜔, 𝒏, 𝑳)[1 − 𝑓#$%&(ℏ𝜔,𝑁OH , 𝑁OI)], 

 

(S43) 

 

where 𝑏#$%& is a constant analogous to 𝑎b in Equation (S23). 

 

 

S6. Transient absorption features 𝑷𝑨𝟏 and 𝑷𝑨𝟐 due to biexcitons and trions 
The absorbance features (𝑃𝐴2 and 𝑃𝐴/) in the Δ𝐴 spectra in Figures 2 and 4 of the main text could be described by Gaussians 

centered energy 𝐸u) with standard deviation 𝛿𝐺𝑖 (i=1,2).  We attribute these features to formation of biexcitons and trions by 

absorption of a probe photon near a HH exciton or a charge carrier produced by the pump pulse, as further discussed below 

and in the main text. We found from our fits that  𝐸u) and 𝛿𝐺𝑖 depend on time. We attribute this to the time-dependence of the 

number of excitons and charge carriers.  

 

 

S7. Total transient absorbance 
Taking into account the effects of excitons, charge carriers and biexcitons/trions we find that the total transient absorption 

signal is given by 

 

 𝑆(ℏ𝜔) = 𝑆C(ℏ𝜔) +	𝑆#$%&(ℏ𝜔) 	+ 𝑆.;6(ℏ𝜔) +	𝑆.;7(ℏ𝜔). (S44) 

 
 

In what follows we define the probe photon energy by 𝐸) = ℏ𝜔. Combining Equations (S5), (S23), (S36) and adding the 

contribution of biexcitons/trions (Section S6) the absorbance after the pump laser pulse is found to be 

 

 

𝐴$%(𝐸), 𝑡) = 𝐴C(𝐸)) +	𝐶$77(𝐸))	−𝐴C �𝐸) + Δ𝐸(𝑡)� 𝑒
1Uwx8Oqx(&)y	 	𝑓C,WX(𝑡) 

−	𝐶2 �𝐸) + Δ𝐸(𝑡)� 𝑓p6(𝑡) − 𝐶/ �𝐸) + Δ𝐸(𝑡)� 𝑓p7(𝑡) 

+𝐺2 �𝐸), 𝐸u6(𝑡), 𝛿𝐺1(𝑡)�𝑓u6(𝑡) +	𝐺/ �𝐸), 𝐸u7(𝑡), 𝛿𝐺2(𝑡)� 𝑓u7(𝑡). 

(S45) 
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Note that a time-dependent energy shift, Δ𝐸(𝑡), was needed to describe the presence of a double absorbance feature in 𝐴$% at 

early times after HH excitation, and a high-energy shoulder of the HH peak after LH and continuum excitation (see Figure S3). 

We attribute this shift due to Coulomb screening by free charge carriers or filling of charge traps (via free charges or exciton 

quenching).  In Equation (S45), the first two terms represent the ground state absorbance, which is equal to 𝐴,(𝐸)) = 𝐴C(𝐸)) +

	𝐶$77(𝐸)). The third term containing the factor −𝐴C �𝐸) + Δ𝐸(𝑡)�  describes bleach due to (spontaneous) photon emission 

from excitons. The fourth and fifth terms with factors −	𝐶2 �𝐸) + Δ𝐸(𝑡)� and −𝐶/ �𝐸) + Δ𝐸(𝑡)�  take into account bleach 

due to Pauli blocking by holes in the valence band and electrons in the conduction band, as well as their radiative recombination. 

We attribute the sixth term with the Gaussian function 𝐺2 �𝐸), 𝐸u6(𝑡), 𝛿𝐺1(𝑡)� to the probe pulse producing a HH exciton near 

a HH exciton or a charge carrier produced by the pump pulse. The probe pulse then forms a HH-HH biexciton or a trion 

consisting of a HH exciton and an electron or a hole. The last term with the Gaussian function 𝐺/ �𝐸), 𝐸u7(𝑡), 𝛿𝐺2(𝑡)� is 

attributed to contributions from the high-energy absorbance tail due to formation of a HH-HH biexciton by the probe pulse, or 

formation of a LH-HH biexciton.  

 

Comparing Equation (S45) with Equations (S23), (S41) and (S43) it can be seen that 

 

 

𝐴C(𝐸)) = 𝑎�C^j𝑑𝑳𝐷(𝑳)𝑓𝒏(𝑳)
%

	𝑤C(𝐸), 𝒏, 𝑳), 
 

(S46)  

 

 

𝐶$77(𝐸)) = 𝑏�#$%&^j𝑑𝑳
%

𝐷(𝑳)	𝑤#$%&(𝐸), 𝒏, 𝑳) 
 

(S47)  

 

 
𝐴C �𝐸) + Δ𝐸(𝑡)� = 𝑎�C^j𝑑𝑳𝐷(𝑳)𝑓𝒏(𝑳)

%

	𝑤C(𝐸) + Δ𝐸(𝑡), 𝒏, 𝑳), 

 

 

(S48)  

 

 

𝐶2 �𝐸) + Δ𝐸(𝑡)� =

= 𝑏�#$%& 	^j𝑑𝑳𝐷(𝑳)	
%

𝑤#$%&(𝐸) + Δ𝐸(𝑡), 𝒏, 𝑳) g𝑒
1	U|+/

m 	kx8Oqx(&)l}

+ 𝑒1	Uk
+0
m 	kx8Oqx(&)l1qVlh	, 

 

(S49)  

 

 𝐶/ �𝐸) + Δ𝐸(𝑡)� = 𝑏�#$%& 	^j𝑑𝑳
%

𝐷(𝑳)	𝑤#$%&(𝐸) + Δ𝐸(𝑡), 𝒏, 𝑳)	𝑒
1	U|kx8Oqx(&)l}, 

 

(S50)  

 

where 𝑎�C = 𝑎C /ln(10) and 𝑏�#$%& = 𝑏#$%& /ln(10) , see Equation (S5). 

 

In conclusion, transient absorbance spectra are modeled using Equation (S45). Analogous to our previous work,2 the 

spectral shapes of 𝐴C, 𝐶, 𝐶2 and 𝐶/ take into account the COM motion of excitons, the lateral size distribution of NPLs and 
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(in)homogenous broadening via 𝑤C(ℏ𝜔, 𝒏, 𝑳) and 𝑤#$%&(ℏ𝜔, 𝒏, 𝑳)	in Equations and (S22) and (S43), respectively. The values 

of the broadening parameters Γa(ℏ𝜔), 	𝛿a and Γp
a(ℏ𝜔) and 	𝛿p

a  are taken from our previous study.2 Note that the spectral shape 

of 𝑤K(𝐸), 𝒏, 𝑳) is identical to that of 𝑤K(𝐸) + Δ𝐸(𝑡), 𝒏, 𝑳)	with the latter only being shifted by Δ𝐸(𝑡).  Finally, in the fit of 

Equation ( S45 to the experimental data the factors in Equations (S48)-(S50) and the Gaussian functions in Equation (S45) the 

factors in Equation (S45) are normalized to their maximum and then multiplied by the functions 𝑓K(𝑡), where i = EM, 𝐶2, 𝐶/, 

𝐺2, 𝐺/. The functions 𝑓K(𝑡) take into account the decay of excitons and charge carriers by photon emission and non-radiative 

processes (Auger recombination, trapping) in a phenomenological way. 

 

 

 

Δ𝐸(𝑡) 
Energy shift due to Coulomb screening and filling of 

charge traps 

𝑓C,WX(𝑡) Decay of excitons 

𝑓p6(𝑡), 𝑓p7(𝑡) Decay of charge carriers 

𝑓u6(𝑡), 𝑓u7(𝑡) Decay of TA due to biexcitons/trions 

𝐸u6(𝑡), 𝐸u7(𝑡) Peak energies of the biexciton/trion features 

𝛿𝐺1(𝑡), 𝛿𝐺2(𝑡) Spectral width of the biexciton/trion features 

 
Table S1. Fitting parameters in Equation (S45). The time-dependence of the parameters obtained from fitting to experimental 
data is shown in Figure S4.  
 
  



 S15 

 

 
 
Figure S3. Time evolution of 𝐴$% spectra after excitation at 𝐸!! (left column, red), 𝐸"! (middle column, blue) and 𝐸#$%& (right 
column, green).  Spectra were obtained for similar 𝑁'(~3 [squares in Figure S1]. After 𝐸!! excitation, we resolve a double 
peak at early time. This, as well as the portion of the spectrum between the HH  and LH peak at higher excitation energies, can 
be modeled by taking into account a time-dependent energy shift ΔE due to Coulomb screening and trap filling [see Equation 
(S45) in Section S6]. The results obtained from fits of Equation (S45) are shown as dashed black curves. The grey curve at the 
bottom of each column is  the ground state absorbance spectrum (𝐴,).  
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Figure S4. Time-dependence of the fitting parameters (solid lines) in Equation (S45) with the uncertainty represented by the 
shaded curves.  
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