Cell Reports, Volume 40

Supplemental information

Wound healing in aged skin exhibits systems-level

alterations in cellular composition

and cell-cell communication

Remy Vu, Suoqin Jin, Peng Sun, Daniel Haensel, Quy Hoa Nguyen, Morgan Dragan, Kai Kessenbrock, Qing Nie, and Xing Dai

SUPPLEMENTARY FIGURES

HEIP

Figure S1. Identification of major cell populations in UW, 4dpw and 7dpw wound samples using young+aged combined datasets. Related to Figures 1, 2, and 3.

- A. Quality control metrices to eliminate dead and low-quality cells. Cells with nFeatures>5000 or <200 or percent mitochondrial genes >15% were eliminated from analysis.
- B. Data analysis flowchart (left) and table showing the number of young and aged animals used for each wound timepoint and 10X kit chemistry (right).
- C. UMAP and proportion of major cell populations present in the young+aged combined datasets and used for subsequent subclustered analysis.
- D. Expression of marker genes identifying major cell populations in the young+aged combined datasets in C.
- E. Gene scoring analysis of all cell types in aged UW, 4dpw and 7dpw samples for top 100 marker genes of homeostasis-associated and wound-induced fibroblast clusters in aggregated young samples.

Data presented in this figure include both v2 and v3 samples.

Figure S2. Heterogeneity of epidermal cells and fibroblasts in young and aged skin during homeostasis, and at 4dpw and 7dpw. Related to Figures 1, 6 and 7.

(A-C) v3-only young and aged samples. (D-O) v2+v3 young and aged samples.

- A. Heatmap showing expression of top 10 marker genes found using v2+v3 data in each epithelial, fibroblast, and immune cell subpopulation in v3-only aggregated young+aged UW samples.
- B. v3-only data corresponding to v2+v3 data in Figure 1D-E (epithelial cells), 1G-H (fibroblast), and 1L-M (immune cells).
- C. v3-only data corresponding to v2+v3 data in Figure 1I.
- D. UMAP of epithelial cells present in the aggregated young+aged combined datasets at 4dpw.
- E. Heatmap of top 10 marker genes for each epithelial subpopulation in D.
- F. Proportion of each epithelial subpopulation out of the total epithelial population in D.
- G. UMAP of fibroblasts present in the aggregated young+aged combined datasets at 4dpw.
- H. Heatmap of top 10 marker genes for each fibroblast subpopulation in G.
- I. Proportion of each fibroblast subpopulation out of the total fibroblast population in G.
- J. UMAP of epithelial cells present in the aggregated young+aged combined datasets at 7dpw.
- K. Heatmap of top 10 marker genes for each epithelial subpopulation in J.
- L. Proportion of each epithelial subpopulation out of the total epithelial population in J.
- M. UMAP of fibroblasts present in the aggregated young+aged combined datasets at 7dpw.
- N. Heatmap of top 10 marker genes for each fibroblast subpopulation in M.
- O. Proportion of each fibroblast subpopulation out of the total fibroblast population in M.

P. Violin plots showing expression of the indicated genes in fibroblasts of young vs. aged skin.

p-values were calculated using the prop.test function in R (B, F, L, I, O) or Wilcoxon rank sum test (C, P). ***p<0.001, ** p<0.01.

Figure S3. Differential immune cell heterogeneity in young vs. aged skin wounds at 7dpw. Related to Figure 3.

- A. v3-only data corresponding to v2+v3 data in Figure 3B.
- B. v3-only data corresponding to v2+v3 data in Figure 3D. Full list of differentially expressed genes is included in Table S4.
- C. UMAP of immune cell populations present in aggregated young+aged skin wound samples at 7dpw (v2+v3).
- D. Marker genes used for identification of immune cell populations at 7dpw in C.
- E. Population proportion of each immune cell type in C. Both v2+v3 (top) and v3-only (bottom) results are shown.
- F. Expression of the indicated genes in neutrophils from young vs. aged 7dpw skin. Full list of differentially expressed genes is included in Table S4.

p-values were calculated using the prop.test function in R (A, E) or Wilcoxon rank sum test (B,

F). ****p*<0.001, ** *p*<0.01, * *p*<0.05.

Figure S4. Differential macrophage heterogeneity in young vs. aged skin wounds at 4dpw and 7dpw. Related to Figure 4.

- A. v3-only data corresponding to v2+v3 data in Figure 4B.
- B. v3-only data corresponding to v2+v3 data in Figure 4C.
- C. UMAP of macrophage subpopulations present in young+aged skin wounds at 7dpw (v2+v3).
- D. Heatmap of top 10 differentially expressed marker genes in C. v3-only heatmap of the same 10 markers is shown on the right.
- E. Population proportion of each immune cell type in C. Corresponding v3-only data is shown at the bottom.
- F. Gene scoring analysis of 4dpw and 7dpw macrophage subpopulations for hypoxia-, glycolysis-, and oxidative phosphorylation-associated signatures using v2+v3 or v3-only young and aged samples.
- G. RNA velocity analysis of macrophages from young and aged skin wounds at 7dpw (v2+v3).
- H. RNAScope data showing spatial distribution of *Arg1* and *Il1r2* transcripts in young and aged skin wounds at 4dpw. DAPI stains the nuclei. Scale bars: 500 μ m in low-magnification image (left); 100 μ m in high-magnification images (right). Quantification of *Il1r2*⁺ cells per total DAPI-stained nuclei in young and aged skin wound beds is shown on the right (n=3 pairs). Bar graphs represent mean±SD.
- I. Feature plots showing expression of *Itgam*, *Arg1*, *Adgre1*, and *C1qa*, in macrophage populations of young+aged skin wound samples at 7dpw (v2+v3).
- J. Immunofluorescence of K14 and F4/80 proteins in young and aged skin wounds at 4dpw.
 DAPI stains the nuclei. Scale bars: 500 μm.

p-values were calculated using the prop.test function in R (B, E) or unpaired two-tailed Student's t-test (H). ***p<0.001, ** p<0.01, * p<0.05.

Figure S5. Macrophage-mediated signaling in young and aged skin wounds. Related to Figure 5.

A-D: v3-only analysis using young and aged skin wound data at 4dpw.

- A. v3-only data corresponding to v2+v3 data in Figure 5D.
- B. v3-only data corresponding to v2+v3 data in Figure 5E.
- C. v3-only data corresponding to v2+v3 data in Figure 5F.
- D. v3-only data corresponding to v2+v3 data in Figure 5G.

E-G: v2+v3 analysis of *Arg1*^{Hi} macrophage/APM-mediated signaling in young and aged skin wounds at 7dpw. See Figure 5 legends for additional information.

H-J: v3-only data corresponding to v2+v3 data in (E-G) above.

K. RNAScope data showing spatial distribution of *Arg1* and *Col1a1* transcripts in young and aged skin wounds at 4dpw. Scale bars: 100 μ m. Yellow arrowheads indicate instances of spatial proximity between *Arg1*⁺ and *Col1a1*⁺ cells.

Figure S6. Aging induces substantial changes in both structure and strength of putative cell-cell communications. Related to Figure 6.

A-G: v3-only analysis using young and aged skin wound data at 4dpw.

- A. v3-only data corresponding to v2+v3 data in Figure 6A.
- B. v3-only data corresponding to v2+v3 data in Figure 6B.
- C. v3-only data corresponding to v2+v3 data in Figure 6C.
- D. v3-only data corresponding to v2+v3 data in Figure 6D.
- E. v3-only data corresponding to v2+v3 data in Figure 6F.
- F. v3-only data corresponding to v2+v3 data in Figure 6G.
- G. v3-only data corresponding to v2+v3 data in Figure 6H.

H-J: v2+v3 analysis for young and aged skin wounds at 7dpw. See Figure 6 legends for additional information.

- H. 7dpw data related to 4dpw data in Figure 6A.
- I. 7dpw data related to 4dpw data in Figure 6C.
- J. 7dpw data related to 4dpw data in Figure 6H.

K-M: v3-only data corresponding to v2+v3 data in (H-J) above.

Figure S7. Dysregulated signaling in aged skin wounds compared to young skin wounds. Related to Figure 7.

- A. v3-only data corresponding to v2+v3 data in Figure 7B.
- B. Inferred TGF-β-mediated cell-cell communications from non-fibroblast subsets to fibroblast subsets in young (left) and aged (right) skin wounds at 4dpw using v2+v3 data. The number of putative interactions (i.e., links in the diagram) is indicated on the top.

C-E: v3-only analysis using young and aged skin wound data at 4dpw.

C. v3-only data corresponding to v2+v3 data in Figure 7D.

- D. v3-only data corresponding to v2+v3 data in Figure 7E.
- E. v3-only data corresponding to v2+v3 data in Figure 7F.

F-H: v2+v3 analysis for young and aged skin wounds at 7dpw. See Figure 7 legends for additional information.

- F. 7dpw data related to 4dpw data in Figure 7A.
- G. 7dpw data related to 4dpw data in Figure 7E.
- H. 7dpw data related to 4dpw data in Figure 7F.

I-K: v3-only data corresponding to v2+v3 data in (F-H) above.

- L. Low-magnification images of additional RNAScope data showing spatial distribution of *Ccl19* and *Ccr7* transcripts in young and aged skin wounds (see high-magnification images in Figure 7G). DAPI stains the nuclei. Scale bar: 100 μm.
- M. Quantification of *Ccl19*⁺ cells and *Ccr7*⁺ cells per total DAPI-stained nuclei in young and aged skin wound beds (n=3 pairs). Bar graphs represent mean±SD.

p-values were calculated using Wilcoxon rank sum test (E, H) or unpaired two-tailed Student's ttest (M). ***p<0.001, ** p<0.01.