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Materials and Methods

Phenotyping

We examined a broad array of phenotypes across two large cohorts for which cross-mate corre-
lation estimation was feasible. This included 341,997 unrelated European ancestry UK Biobank
participants (14) and 373,283 spousal pairs drawn from Danish registry data (30–33).

With respect to the UKB phenotypes, we a priori selected a variety of previously-studied phe-
notypes discussed in previous influential publications (6, 7), discarding measures redundant with
available measures of higher quality. For example, we excluded college completion (f.6138)
which factors into the higher-resolution measure of years of education, while retaining the latter.
Similarly, we excluded total cholesterol (f.30690) while retaining the component phenotypes
low-density lipoprotein (LDL) cholesterol (f.23405), high-density lipoprotein (HDL) choles-
terol (f.23405), and triglycerides (f.30870). Blood biochemistry phenotypes were further
adjusted for statin usage.

With respect to the psychiatric phenotypes, we examined all disorders that were available in the
Danish registry data and for which LDSC genetic correlation estimates were available in a recent
well-powered investigation of the multivariate genetic architecture of psychiatric disorders (23).
The Danish Civil Registration System has been registering all people legally residing in Denmark
since 1968, and it includes information about sex, date of birth, parental links, and life events
(for example, migration or death). The System is linked via anonymized identification numbers
to the Danish National Patient Register and the Danish Psychiatric Central Research Register that
include all diagnostic information regarding general medical conditions and specific psychiatric
conditions, respectively, including all inpatient and outpatient contacts. We estimated estimated
cross-mate tetrachoric correlations within and across six psychiatric phenotypes considering both
ICD-8 and ICD-10 definitions (see Table S7). The definitions are based on those used by the
iPSYCH initiative (34).

Identification of mating pairs in the UK Biobank

We identified putative mate pairs in the UK Biobank using a procedure broadly similar to that of
Howe and colleagues (35) with two distinctions: 1. we incorporated geographical information
to impute cohabitation status, and 2. we relaxed the condition that both potential mates must
report having lived in the same location for precisely the same number of years. We considered
sex-discordant pairs of European ancestry participants from the same assessment centers (f.54)
who reported living with a spouse (f.699), excluding pairs discordant on any of the following
measures:

• latitude / longitude of home location rounded to the nearest kilometer (f.20074, f.20075)

• inverse distance between home and nearest road / major road (f.24010, f.24012)

• coastal proximity (f.24508)

• household size (f.709)



• number of vehicles (f.728)

• accommodation type (f.670)

• rental status (f.680)

To minimize the possibility of identifying cohabitating relatives, we required pairs to be discordant
on the age of at least one parent (f.1807, f.1846, f.2946, f.3526) and removed third
degree or closer relatives via estimated kinship coefficients. Finally, we discarded all participant
groupings meeting these criteria including more than two individuals. This resulted in a total of
40,697 putative mate pairs (81,394 individuals).

Identification of mating pairs in the Danish population cohort

We obtained empirical estimates of spousal correlations for six psychiatric disorders in the Danish
Population using the Danish Civil Registration System (30, 31), the Danish National Patient Reg-
ister (32), and the Danish Psychiatric Central Research Register (33). We first randomly selected
500,000 individuals born between 1981 and 2005 from the Danish Civil Registration System. The
parents of these individuals served as our sample of mates (373,283 spousal pairs total).

Cross-mate phenotypic correlation estimation

We estimated cross-mate correlations using a structural equation modeling approach via the R
package lavaan v0.6-8 (36). Specifically, for the UK Biobank phenotypes, we estimated the sex-
constrained structural model corresponding to Eq. (2), with Y and Z representing a pair of pheno-
types after regressing out the effects of sex, age, sex×age and age2 (with the exception of metabolic
phenotypes, which were also adjusted for statin use). For the psychiatric phenotypes, which were
dichotomous, we proceded similarly, using a sex-constrained liability-threshold model to estimate
cross-mate tetrachoric correlations for all disorders simultaneously. All models were estimated via
maximum likelihood using asymptotic standard errors and pairwise-complete observations.

Simulation framework

We present results derived from two forward-time simulation frameworks: a highly realistic but
computationally intensive scheme (hereafter referred to as the large-scale framework) and a sim-
plified, computationally efficient scheme (hereafter referred to as the simplified framework), both
of which we describe in detail in the following sections. We justify employing the simplified frame-
work by validating its output against that of the realistic framework, concluding that the simplified
framework is sufficient for modeling the effects of xAM. Further, comparing these methods allows
us to isolate the impacts (or lack thereof) of several phenomena of interest, including pleiotropy
and local linkage disequilibrium (LD). We provide the code necessary to repeat or extend these
analyses online (28). All analyses were conducted using R v4.0.2 or R v4.1.0 (37) unless other-
wise stated.



Large-scale framework

With the exception of extending the mating scheme to the bivariate case, we proceded as in (10).
Briefly, we used the genotypes of unrelated European ancestry UK Biobank participants at one mil-
lion phased, imputed HapMap3 SNPs with minor allele frequency (MAF) ≥ 0.01 as the founder
population. Meoisis was simulated by dividing the genome into 10 kB blocks and deriving recom-
bination probabilities from a linear interpolation of the 1000 Genomes Project Phase 3 recombina-
tion map (38), thus preserving the existing local LD structure.

For each simulation, m=1e4 loci were selected as causal variants for the two phenotypes Y, Z such
that their standardized effects βy,βz were jointly bivariate Gaussian with respective variances
m−1h2

y;pan,m
−1h2

z;pan and correlation ρβ . Phenotypes were then generated according to the additive
model in Eq. (6). Individuals (represented by pairs of phenotype values) were mated according to
the exchangeable cross-mate correlation regime described below.

In order to avoid any potential confounds due to within-sample relatedness, each coupling pro-
duced a single offspring, thereby halving the sample size with each successive generation and en-
suring no pair of individuals share any indentical-by-descent segments with respect to the founder
population. At each generation, we obtained heritability and genetic correlation estimates from
HE regression as implemented in GCTA v1.93.2b (18), LDSC as implemented in LDSC v1.0.1
(6), and REML as implemented in BOLT-LMM v2.3.4 (19). For LDSC, we estimated LD scores
within sample using input paramater ld-wind-cm=1.0 and obtained GWAS summary statistics
using plink2 v2.0 (39). To improve computational efficiency, we analyzed subsamples of n=4e5
individuals, with the exception of the fourth and fifth generation results presented in Fig. 2A,
which were respectively limited to n=2e5, 1e5 by the diminishing sample size at each generation.

Simplified framework

Given the computational resources required by the large-scale framework in light of the large num-
ber of trait pairs we wanted to base simulations on (each run of the large-scale framework gener-
ates several terrabytes of output), we developed a simplified framework using entirely synthetic
data and only including causal loci. We constructed founder genotypes by randomly drawing 2m
haploid SNPs with m allele frequencies distributed uniformly on [0.01, 0.99] independently for n
individuals, with meiosis proceeding as described below.

Phenotype simulation with and without pleiotropy. We again generated phenotype pairs accord-
ing to the additive model in Eq. (6), restricting our focus to the case of genetically orthogonal traits.
Given a specified effect correlation (in this case ρβ = 0), pleiotropy is irrelevant. We demonstrated
this by simulating phenotypes under either complete pleiotropy (all causal variants have non-zero
effects on both phenotypes) and zero pleiotropy (all causal variants have non-zero effects on only
one of pair of phenotypes). We independently sampled i.i.d. Gaussian genetic effects βy,βz, using
a single set of m causal variants to simulate pleiotropy at every locus and two independent sets of
m/2 causal variants to simulate the absence of pleiotropy. Fig. S6 demonstrates that, as expected,
the fraction of causal variants shared between phenotypes has no bearing on the impact of xAM.
However, as the zero pleiotropy simulation procedure reduced sampling variance across simula-
tions (in a finite sample, ρβ has greater variance when causal variants overlap), we utilized this



approach for the projections of ρ̂xAM presented in the primary text. The number of causal variants
had no apparent impact on quantities of interest (Fig. S3).

Manipulating local LD. Denoting the first and second copies of an individual’s haploid genotypes
at the jth diploid locus by X [1]

j , X
[2]
j , respectively, we manipulated local LD during meiosis I by

enforcing recombination events at each single line with probability precomb. and each double line
with probability 0.5 below:

X
[1]
1 X

[1]
2 · · · X [1]

c X
[1]
c+1 X

[1]
c+2 · · · X

[1]
2c · · · · · · X [1]

m

X
[2]
1 X

[2]
2 · · · X [2]

c X
[2]
c+1 X

[2]
c+2 · · · X

[2]
2c · · · · · · X [2]

m

(1)

Here c = m/20 divides the genome into 20 independently inherited pseudo-chromosomes. Within
each chromosome, recombination events occur between contiguous loci with probability precomb. ∈
(0.0, 0.5], such that precomb. = 0.5 corresponds to unlinked loci, with the strength of local LD
increasing as precomb. → 0. Fig. S5 demonstrates the irrelevance of precomb. with respect to score
correlation and estimated effect correlation; simulations with strong local LD (precomb. = 0.01) and
weak local LD (precomb. = 0.5) yielded results consistent with the realistic framework simulation
results.

Mating regimes

For two phenotypes Y, Z, denote their joint distribution across mates by
Y ∗

Z∗

Y ∗∗

Z∗∗

 ∼ MVN

0,


1
syz 1
ryy ryz 1
ryz rzz syz 1


 , (2)

where the number of asterisks distinguishes the two mates. Whereas the within-mate single-trait
correlation (the conventional phenotype correlation) syz is unaffected by mating patterns within
a given generation, the cross-mate single-trait correlations ryy, rzz and the cross-mate cross-trait
correlation ryz are free parameters determined by the mating regime.

For the large-scale simulations presented in Fig. 2, individuals were mated by randomly splitting
the sample in half and pairing individuals across the two subsamples, ordering each subsample on
a linear combination of their phenotypic values and Gaussian noise. This corresponds to an ex-
changeable cross-mate correlation structure with all cross-mate correlations ryy, ryz, rzz equal to a
single input parameter rmate. Though this method is computationally efficient and thus well-suited
to this particular use-case, it is incapable of achieving arbitrary cross-mate correlation structures.
Thus, a more flexible approach was needed for the estimation of ρ̂xAM, which employs empirical
estimates of the cross-mate correlation parameters.

We achieved arbitrary cross-mate correlation structures, a problem for which we were unable to
find a previously published solution, by using an ad hoc approach based on propensity-score match-
ing methods as implemented in the R package MatchIt v4.2.0 (40). Specifically, we randomly split
the sample in half and used the nearest Mahalanobis distance matching algorithm on a scalar



multiple of each of the two phenotypes, their product, and their difference. The multiplier hyper-
parameter was chosen numerically by finding the rational function of the correlation parameters
in Eq. (2) that minimized the average ℓ∞ distance between the desired and realized cross-mate
correlations across replicate samples. Discrepancies between target correlations and achieved cor-
relations were modest: across all generations of UKB simulations, the average median discrepancy
was 0.0007 and 90% of all cross-mate correlations were within 0.02 of their target values. We fur-
ther validated this approach by directly comparing it to the linear combination ordering approach
described above, specifying a single value for each of the parameters ryy = rzz = ryz = rmate.
Both methods yielded equivalent results (Fig. S4).

Annotation- and locus-level simulation studies

Partitioned genetic correlation estimates under xAM

We sought to understand how xAM affects genetic correlation estimates across genomic regions
with distinct bivariate architectures. To this end, we simulated xAM across two phenotypes, Y and
Z, with loci divided across six distinct, equally-sized annotations (Fig. S12): (1) enriched for large,
overlapping, correlated effects for both traits (ρβ = 0.25, h2

y;pan = h2
z;pan = .122); (2) enriched

for large, overlapping, uncorrelated effects for both traits (ρβ = 0.0, h2
y;pan = h2

z;pan = .122); (3)
enriched for large effects for Y only (ρβ = 0.0, h2

y;pan = .122, h2
z;pan = .002); (4) enriched for

large effects for Z only (ρβ = 0.0, h2
y;pan = .002, h2

z;pan = .122); (5) enriched for non-overlapping
large effects for Z only (equal parts SNPs as described by the previous two annotations); and (6)
not enriched for large effects on either trait (ρβ = 0.0, h2

y;pan = h2
z;pan = .002). We then compared

partitioned HE regression estimates:
tr K1K1 · · · tr K1Kp tr K1

... . . . ...
...

tr KpK1 · · · tr KpKp tr Kp

tr K1 · · · tr Kp n
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...
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after up to five generations of xAM, where Ki denotes the genomic relatedness matrix for annota-
tion i ∈ {1, . . . , p} (41, 42).

GWAS effect estimates under xAM

We next examined whether the distorting effects of xAM on estimates at the genome-wide or
annotation-specific levels also effected locus-specific analyses. To this end, we simulated equally-
heritable phenotypes Y and Z subject to xAM as described to above, this time with fully indepen-
dent genetic architectures: half of variants were causal for Y but not Z and half were causal for
Z but not Y . We then performed standard GWAS on phenotype Y after up to five generations of
xAM and examined effect estimate bias, power, and false positive rates (Figs. S7 to S10).

Estimation of GWAS summary statistics in the UK Biobank

From among 488,363 UK Biobank participants, we retained putative “White British” individuals
using field f.22006 (n=409,692). We then filtered out 199 individuals with excess genotype



missingness (>0.05), 312 individuals with a mismatch between self-reported and genetic sex, 999
inviduals with excess heterozygosity (≥5 standard deviations above the mean), and 90 individ-
uals who requested their data be redacted. We then removed 629 individuals related to ten or
more individuals (KING coefficient ≥ 2−9/2) as a preprocessing step to the application of the
maximal_independent_set algorithm implemented in the NetworkX Python package (43).
This resulted in 342,257 unrelated individuals. In contrast to (14), who estimated kinships using
≈92,000 common SNPs with small loadings onto the first few PCs in the full sample (including
multiple ancestries; see S3.7 of (14)), we estimated kinships using 561,780 common SNPS in a
sample of European ancestry individuals. The close relatives the UKB identified in f.22021 are
a subset of our more conservative approach: we identified all 81,218 related individuals in this
subsample identified by the UKB plus an additional 3,261 not identitified by (14).

For each phenotype of interest, we estimated association regression weights at 1,157,133 imputed
HapMap3 SNPs with missingness < 0.01, Hardy-Weinberg equilibrium p > 1e-5, INFO impu-
tation quality score > 0.9, and MAF > 0.01 using plink v2.0 (39). Covariates included sex,
age, sex×age, age2, 21 genomic principal components, assessment center, and genotyping batch
(though we note that metabolic phenotypes were further adjusted for statin use as detailed above).
Analyses were restricted to unrelated European ancestry individuals.

Empirical heritability and genetic correlation estimates

UK Biobank cohort

We estimated marker-based heritabilities and genetic correlations using LDSC v1.0.1 (4) with
internal summary statistics (see previous section) and LD scores (computed for regression SNPs
with input parameter ld-wind-cm=1.0). We obtained pedigree-based heritability estimates
from the empirical literature, using estimates derived in UK-based samples whenever available. In
the case of classical twin studies, we used results from “ACE” models, which are expected to yield
downward-biased heritability estimates under assortative mating (44) and thus constitute the more
conservative option, when available (Table S2).

Literature-derived estimates for psychiatric disorders

We used a subset of the LDSC genetic correlation estimates reported by Grotzinger and colleagues
(23) corresponding to the set of psychiatric disorders for which we estimated cross-mate cross-trait
correlations in the Danish population cohort. As with the UK Biobank phenotypes, we extracted
pedigree-based heritability estimates from demographically comparable samples preferring “ACE”
estimates when available (Table S4).

Projected genetic correlation estimates under xAM alone

We implemented a simulation based approach to quantifying the magnitudes of empirical ρ̂β esti-
mates with respect to expectations for genetically orthogonal traits under xAM alone. For each pair
of traits Y, Z we ran 400 replicate simulations with a founder population size of n = 64,000, set-
ting the panmictic heritability parameters to empirical estimates and allocating m = 1000 distinct
causal variants for each phenotype, thus ensuring ρβ = 0 (though we note that neither the number



of causal variants nor the extent to which causal variants overlap impacts simulation results; see
Figs. S3 and S6, respectively). We then simulated multiple generations of xAM using empirical es-
timates of the cross-mate correlations r̂yy, r̂zz, r̂yz, at each generation obtaining method-of-moment
estimates of ρβ , which we denote ρ̂xAM, using HE regression, which, as demonstrated in Fig. 2,
produces results equivalent to LDSC regression in this setting.

In order to propagate uncertainty in the empirical estimates through the simulations, simulation
inputs were randomly sampled from the asymptotic sampling distributions of the corresponding
empirical estimates. We first randomly sampled the empirical genetic correlation estimate ρ̂emp
and the input parameters h2

y;pan and h2
z;pan from their sampling distributions and ryy, rzz, ryz from

their joint sampling distribution:(
ρ̂β;emp, h

2
y;0, h

2
z;0, ryy, rzz, ryz

)
∼ MVN

((
ρ̂β, ĥ

2
y, ĥ

2
z, r̂yy, r̂zz, r̂yz

)
, Ω̂

)
, (3)

where Ω̂ denotes the empirical variance-covariance matrix. We then compared ρ̂emp estimates
to those projected by the simulation, which we denote ρ̂xAM, to compute the ratio statistic γ̂ =
ρ̂xAM/ρ̂emp. The empirical quantiles of γ̂, which approximate its posterior distribution, were then
used to compute credible intervals. For primary analyses, which used LDSC genetic correlation
estimates and pedigree-based heritability estimates derived from independent samples, only the
off-diagonal elements of Ω̂ corresponding to the cross-mate correlation parameters, which we esti-
mated via structural equation modeling, were nonzero. For the supplementary analyses of the UKB
phenotypes using LDSC heritability estimates presented in Fig. S14 and Figs. S15A and S15B,
we proceeded analogously as the sample variance-covariances of ĥ2

y, ĥ2
z, ρ̂β are not reported by

the LDSC software used for heritability estimation (though we note that the Genomic SEM im-
plementation of LDSC does provide these quantities (24)). We later present sensitivity analyses
demonstrating that treating ĥ2 and ρ̂β estimates as independent had a limited impact on our results.
Additionally, we compared the above definition of γ̂ to an alternative definition based on genetic
covariances, γ̂cov = ĉovg;xAM/ĉovg;emp, which yielded similar results (Fig. S19).

Impact of xAM and misclassification errors

We ran an additional set of simulations again using the simplified forward-time simulation frame-
work to characterize the impact of xAM on binary traits subject to misclassification. We simulated
two continuous phenotypes with no pleiotropy, this time fixing all the cross-mate correlation pa-
rameters to 0.5 while varying trait prevalence as well as the rate and directionality of misclassifi-
cation errors. Prior to effect correlation estimation, we dichotomized phenotypes using the cutoffs
derived from the standard normal quantile function. We introduced misclassification errors by
randomly selecting a fixed number of true cases for the first phenotype and relabeling them as
controls for the first and cases for the second and preceding analogously for the second phenotype
(Fig. S11).

Projected genetic correlation estimates under xAM and misdiagnostic errors

We next investigated the combined impact of xAM and diagnostic errors on genetic correlations
among psychiatric disorders. Along with the previously mentioned parameters, we additionally



sampled diagnostic thresholds for each disorder from their joint sampling distribution with the
three cross-mate cross-correlation parameters as estimated in our cross-mate tetrachoric correlation
structural models. These thresholds were then used to dichotomize latent continuous phenotypes
prior to genetic correlation estimation at each generation. Given that the low prevalences for some
disorders lead to excessively noisy genetic correlation estimates in the context of a non-ascertained
sample (balancing case-control ratios while retaining statistical efficiency would necessitate run-
ning much larger, more computationally expensive simulations) we proceded as follows:

• For each of 250 Monte Carlo samples of the input parameters:

For each of 50 replicate simulations, proceed through the simplified framework
as previously described, except:

At each generation, dichotomize continuous phenotypes prior to genetic
correlation estimation

For each misdiagnosis rate (0%, 5%, 10%, 15%), for each of 5 replicates:

Achieve prescribed misdiagnosis rate by randomly permuting
cases for the two disorders

Estimate genetic correlation (that is, compute ρ̂xAM)

Record the median estimates across the 5 replicates for each misdiagno-
sis rate

• Record the median estimates across the 50 replicates for each misdiagnosis rate

• Combine with 500 random draws from the sampling distribution of ρ̂emp to compute 250 ×
500 estimates of γ̂

• Derive point estimates and credible intervals using the empirical quantiles of γ̂

This procedure was designed to propagate all uncertainty in the input parameters and empirical
genetic correlation estimates while reducing noise related to the simulation procedure. Outside of
analyses specifically examining misdiagnostic error, we report γ̂ values for psychiatric disorders
based on simulations of continuous phenotypes. These estimates were virtually identical to those
of the corresponding binary phenotypes without diagnostic error (Pearson r=0.999; Welch t-test
of difference in means p=.981), but had smaller standard errors (mean difference of 0.078).

Sensitivity analysis of the effects of parameter dependence on γ̂ estimates

The estimates of γ̂ presented in the primary manuscript are based on empirical heritability (re-
spectively [resp] genetic correlation) estimates derived from previously published pedigree-based
(resp. marker-based) methods. Since they are estimated in independent samples, the sampling
distributions of the estimates are necessarily independent. However, when estimated jointly, heri-
tability estimates and genetic correlation estimates tend to be positively correlated. To approximate
the extent to which positive dependence among the input parameters might alter our γ̂ estimates,



we proceeded as follows, using the sampling covariance matrices of the LDSC genetic variance
and covariance estimates for the psychiatric disorders reported by Grotzinger and colleagues (23),
together with pedigree-based heritability estimates.

Across all of the psychiatric disorder pairs studied in the current manuscript, parameter estimates
for ANX and MDD had the strongest dependence as measured by the largest single off-diagonal
element of the sampling correlation matrix, which we reproduce below:

v̂arg;ANX ĉovg v̂arg;MDD

v̂arg;ANX 1.00 0.47 0.29
ĉovg 0.47 1.00 0.79

v̂arg;MDD 0.29 0.79 1.00

. (4)

For the sake of comparison, the smallest off-diagonal element across all trait pairs was (-0.086).

We then used the multivariate delta method to obtain the corresponding sample covariance matrix
of the heritability and genetic correlation estimates. We used this covariance matrix to sample pan-
mictic heritabilities and genetic correlation estimates from the multivariate Gaussian distribution
centered on the pedigree-based heritability estimates for ANX and MDD and the LDSC estimate
of their genetic correlation. Explicitly, denoting ANX and MDD by y, z, respectively, denoting the
covariance matrix corresponding to correlation matrix above by Σ, and defining f : (a, b, c) 7→
(a, b, c/

√
ab), u = (v̂arg;y;LDSC, v̂arg;z;LDSC, ĉovg;LDSC), and µ = (ĥ2

y;ped, ĥ
2
z;ped, ρ̂LDSC), we randomly

sampled panmictic heritabilities and genetic correlation estimates from the distributionh
2
y;pan
h2

z;pan
ρemp

 ∼ MVN (µ,∇f(u)⊺Σ∇f(u)) .

We then used the sampled panmictic heritability estimates as inputs to our forward-time simulator,
which we used to obtain ρ̂β estimates, which we in turn compared to the jointly sampled LDSC
genetic correlation estimate to obtain γ̂:

h2
y;pan.
h2

z;pan.

}
simulator−→ ρxAM, γ̂ = ρxAM

ρemp
.

This procedure yields a reasonable, if artificial, approximation of the potential qualitative changes
to our results caused by strong dependence between the empirical heritability estimates used to
seed our simulations and the empirical genetic correlation estimates to which we compare our
results. Figure S20 compares the results of this procedure to those of the procedure implemented
in the primary manuscript, where panmictic heritabilities and genetic correlations estimates are
drawn independently. The dependent sampling procedure yielded larger, less variable γ̂ estimates.

Cross-chromosome correlation of polygenic scores in the UK Biobank

We first randomly split the UK Biobank into two disjoint subsamples, with 80% of participants
comprising the training set and the remaining 20% comprising the test data. Next, we ran a GWAS
for each phenotype in the training sample using covariates and procedures identical to those de-
scribed previously and clumped results using plink v1.90b, employing a 250kB sliding window



and an R2 threshold of 0.05. We then used the training sample summary statistics to compute
polygenic scores for separately for even and odd chromosomes using up to 20 p-value thresholds
spaced logarithmically on the interval [5e-8, 1.0], with the resulting number of scores depending
on the maximally significant SNP for a given trait (Fig. S18).

For any given pair of phenotypes Y, Z, there are two potential even/odd chromosome polygenic
score correlations, cor(ℓ̂y;even, ℓ̂z;odd) and cor(ℓ̂y;odd, ℓ̂z;even), neither of which is of greater interest
than the other. Thus, we estimated both quantities via a single parameter, ρℓ;eo, in the constrained
structural model 

ℓ̂y;even

ℓ̂y;odd

ℓ̂z;even

ℓ̂z;odd

 ∼ MVN

0,


1
ϕyy 1
ψyz ρℓ;eo 1
ρℓ;eo ψzy ϕzz 1


 , (5)

where ρℓ;eo is the only free parameter of interest. For the simpler case of single-trait even/odd cor-
relations, we used the correspondingly simpler unconstrained bivariate Gaussian structural model.
Again, we estimated structural models using the R package lavaan v0.6-8 (36) via maximum like-
lihood with asymptotic standard errors.

Finally, we evaluated the relationships between even/odd chromosome polygenic score correlation
estimates and both cross-mate cross-trait correlation estimates and genetic correlation estimates
across all pairs of UKB sample phenotypes. We examined these associations in the context of naïve
linear models, which don’t account for heteroskedasticity and sampling error in the predictor, but
also using a Bayesian measurement error model as implemented in the R package brms v1.8 (45),
which does.



Supplementary Text

Here we present theoretical explanations for the impact of xAM on genetic architecture and sta-
tistical estimators. We consider a pair of phenotypes Y , Z composed of the additive effects of m
standardized haploid variants X1, . . . Xm with phenotype-specific effects βy, βz:

Y =
m∑

i=1
Xiβy;i︸ ︷︷ ︸
:=ℓy

+ εy, Z =
m∑

i=1
Xiβz;i︸ ︷︷ ︸
:=ℓz

+ εz. (6)

Each phenotype is composed of a heritable liability component ℓ, the true polygenic score, and a
non-heritable component ε. For convenience, we assume that causal variants are initially unlinked
and both Y and Z have unit variance under random mating (panmixis), such that the panmictic
heritabilities are h2

y;pan = β⊺
yβy and h2

z;pan = β⊺
zβz.

Long range sign-consistent LD

Denote quantities relating to the members of a parent-parent-offspring trio by [·]∗, [·]∗∗, [̃·], respec-
tively. Let Et[·] denote the expectation of a quantity after t generations of positive xAM. Let Xi,
Xj denote mean-deviated trait-increasing-allele counts at two causal loci for mean-deviated phe-
notypes Y, Z, respectively. We assume that Xi, Xj are unlinked at panmixis (when t = 0). For
simplicity, we assume each variant is causal for one and only one of the two phenotypes, that is,

βy,i ̸= 0 = βy,j, and βz,i = 0 ̸= βz,j,

and we assume the cross-mate covariances are positive and symmetric such that for all t ≥ 0

Et[Y ∗Y ∗∗] ≥ 0, Et[Z∗Z∗∗] ≥ 0,
Et[Y ∗Z∗∗] = Et[Y ∗∗Z∗] > 0.

We assume primary phenotypic assortment: mates’ genotypes are conditionally independent
given the heritable component of either mate’s phenotype. Denoting the heritable components of
Y, Z by ℓy, ℓz, respectively, we assume

p[X∗
i X

∗∗
j |ℓ∗

y, ℓ
∗
z] = p[X∗

i |ℓ∗
y, ℓ

∗
z]p[X∗∗

j |ℓ∗
y, ℓ

∗
z].

Denote the conditional expectation of an individual’s causal variant genotype at locus i given the
heritable components of their phenotypes by

ϕy,i,t(y) := Et[X∗
i |ℓ∗

y = y] = Et[X∗∗
i |ℓ∗∗

y = y],

and denote the conditional expectation of an individual’s causal variant genotype given their mate’s
heritable phenotype components by

ψy,i,t(z) := Et[X∗
i |ℓ∗∗

z = z] = Et[X∗∗
i |ℓ∗

z = z].



We assume that ϕi,t(y), ψi,t(z) are monotone functions in their respective arguments that cross the
origin and that agree in sign with the effect of locus i such that

ϕy,i,t(y) = βy,i · ϕ̃y,t(y),
ψy,i,t(z) = βy,i · ψ̃y,t(z),

where ϕ̃, ψ̃ are non-trivial monotone increasing functions that cross the origin. That is, we assume
that for a trait-increasing allele for Y (that is, when βy,i > 0) ϕy,i,t(y) is an increasing function,
and further, as Y and Z are positively correlated across mates, ψy,i,t(z) will also be increasing.
Likewise, if Xi is trait-decreasing, ϕy,i,t(y) and ψy,i,t(z) will be decreasing in their respective
arguments. Though rather technical in specification, these assumptions are intuitive: if I know
one mate is “high” with respect to (the heritable component of) phenotype Y , I expect “higher”
genotypic values at their own loci and their partner’s loci that increase Y and “lower” genotypic
values at their own and their partner’s loci that decrease Y . Further, this is a weaker assumption
than those of previous authors (for instance, in the single-trait case (46) assumes linearity such that
ϕy,i,t(y) ∝ βy,i · y).

Having introduced our assumptions, we seek to investigate the linkage disequilibrium between Xi,
an arbitrary causal variant for phenotype Y and Xj , an arbitrary causal variant for phenotype Z,
after t > 0 generations of positive xAM across Y and Z. At every generation, we can factor the
covariance E[X̃iX̃j] using the possible patterns of inheritance:

E[X̃iX̃j] = 1
4E[X∗

i X
∗
j ] + 1

4E[X∗
i X

∗∗
j ] + 1

4E[X∗∗
i X

∗
j ] + 1

4E[X∗∗
i X

∗∗
j ]

= 1
2E[X∗

i X
∗
j ] + 1

2E[X∗
i X

∗∗
j ].

As by definition
Et−1[X̃iX̃j] = Et[X∗

i X
∗
j ],

this induces the following recurrence relation:

Et[XiXj] = 1
2Et−1[X∗

i X
∗
j ] + 1

2Et−1[X∗
i X

∗∗
j ]

= 2−tE0[XiXj] +
t−1∑
l=1

2t−lEl[X∗
i X

∗∗
j ].

By hypothesis, Xi, Xj are unlinked at panmixis and thus E0[XiXj] is zero. That leaves us with the
sequence of cross-mate cross-locus moments {El[X∗

i X
∗∗
j ]}t−1

l=0 terms.

Applying the assumption of primary phenotypic assortment, we have

Et[X∗
i X

∗∗
j ] =

∫
Et[X∗

i |ℓ∗
y]Et[X∗∗

j |ℓ∗
z]dP (ℓ∗

y, ℓ
∗
z)

= βy,iβz,j

∫
ϕ̃y,0(ℓ∗

y)ψ̃y,0(ℓ∗
z)dP (ℓ∗

y, ℓ
∗
z).

The above integral is strictly positive, thereby yielding

sgn
[
Et[X∗

i X
∗∗
j ]

]
= sgn [βy,i] · sgn [βz,j] ̸= 0.



All together, we have

Et[XiXj] =
t−1∑
l=1

2t−lEl[X∗
i X

∗∗
j ],

where each of the terms in the above sum has sign sgn [βy,i] · sgn [βz,j], establishing that

sgn [Et[XiXj]] = sgn [βy,i] · sgn [βz,j].

Inflation of GWAS statistics

We now show that assortment on a single trait (sAM) leads to moderately inflated GWAS effect
estimates. This is a simplification of the bivariate case.

By the same argument used in the previous section, it is easy to see that sAM on phenotype Y
induces sign-consistent long-range LD such that

sgn [E[XiXj]] = sgn[βy;i]sgn[βy;j]

for all causal variants indexed i, j. Without loss of generality, assume all variants i, j ∈ {1, . . . ,m}
are causal and denote the correlation between standardized variants at loci index i, j by

ωij := E[XiXj].

We estimate the GWAS effect of variant Xi on Y as

E[β̂i] = n−1E[β⊺X⊺X.i]

=
m∑

j=1
ωijβj

= βi +
∑
j ̸=i

ωijβj.

Each of the above summands has sign

sgn ωijβj = sgn βi · sgn βj · sgn βj = sgn βi.

Thus, when βi > 0 we have E[β̂i] > βi and when βi < 0 we have E[β̂i] < βi. That is, the
magnitude of the GWAS effect estimate is inflated upwards at causal variants.

Correlation of even/odd chromosome cross-trait polygenic scores

We now consider the correlation between polygenic scores for Y and Z constructed on disjoint
sets of loci (as in even/odd chromosome polygenic score correlations). Partition the indices of the
genome into two non-empty sets E , O, such that {1, . . . ,m} is their disjoint union. Define the
estimated polygenic scores

ℓ̂y;E :=
∑
i∈E

Xiβ̂y;i, ℓ̂z;O :=
∑
j∈O

Xjβ̂z;j.



These correspond to a polygenic score for Y built only on even chromsomes and a polygenic score
for Z built only on odd chromsomes. The expected cross-trait even/odd correlation polygenic score
covariance is then equal to

E[ρ̂ℓ;eo] =
∑
i∈E

∑
j∈O

ωijE[β̂y;iβ̂z;j]

=
∑
i∈E

∑
j∈O

∑
k,l

ωijωikωjlβy;kβz;l.

Compare this to the true cross-trait even/odd chromsome polygenic score correlation

ρℓ;eo =
∑
i∈E

∑
j∈O

ωijβy;iβz;j.

Pulling this out of the previous expression yields

E[ρ̂ℓ;eo] = ρℓ;eo +
∑
i∈E

∑
j∈O

∑
k ̸=i

∑
l ̸=j

ωijωikωjlβy;kβz;l.

Dealing with the above summand requires understanding the relationship between βy;i, βz;j and ωij

for all i, j, which is beyond the scope of the current manuscript. For now, we address the simpler,
but analogous, case of the correlation between polygenic scores for a single phenotype Y restricted
to disjoint sets of chromosomes as analyzed in (11). Again, we assume that i ∈ E ∪O =⇒ βy;i ̸=
0 for simplicity. In this case, we have

E[ρ̂ℓ;eo] = ρℓ;eo +
∑
i∈E

∑
j∈O

∑
k ̸=i

∑
l ̸=j

ωijωikωjlβy;kβy;l, (7)

where each of the above summands has sign

sgn ωijωikωjlβy;kβz;l = (sgn βy;i)2(sgn βy;j)2(sgn βy;k)2(sgn βy;l)2 = +1.

Likewise, the summands comprising the true correlation

ρℓ;eo =
∑
i∈E

∑
j∈O

ωijβy;iβy;j

also all have sign +1, altogether yielding the chain of strict inequalities

E[ρ̂ℓ;eo] > ρℓ;eo > 0.

That is, as anticipated by Yengo et al. (11), single-trait AM induces a true correlation between ge-
netic liabilities restricted to disjoint collections of loci. Note that we do not require the assumption
of equilibrium.
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Figure S1: Cross-mate cross-trait correlations versus cross-mate single-trait correlations.
Cross-mate cross-trait phenotypic correlation estimates (r̂yz) plotted against the average of the
two corresponding cross-mate single-trait correlation estimates (r̂yy, r̂zz). The red dashed line is
the unit slope line. Whereas r̂yz is close to r̂yy and r̂zz for highly similar phenotypes (for example,
BMI and waist circumference), there are many phenotype pairs for which the cross-mate cross-trait
correlation and cross-mate single-trait correlations are of opposing signs (for example, BMI and
years of education). Only phenotype pairs with nominally significant (p < .05) empirical genetic
correlation estimates are shown. Labels for selected trait pairs were removed algorithmically to
aid readability.
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Figure S2: Empirical versus expected mate correlations under single-trait assortative mat-
ing. Empirical versus expected single-trait cross-mate correlations for a secondary trait Z assum-
ing assortment only occurs on a related primary trait Y . In this case, the cross-mate correlation
for Z is expected to be rzz = ryy · s2

yz, where ryy is the cross-mate correlation for Y , and syz is
the within-individual correlation between Y and Z. Whereas cross-mate correlation structures are
consistent with single-trait AM for some highly similar phenotypes (for instance, waist-to-hip ratio
and waist circumference), this is not case in general. The red dashed line is the unit slope line and
the blue solid line is the ordinary least squares line of best fit (estimated slope = 0.18, significantly
different from 1.00 [p =1.66e-6]). For each pair of traits, we display the assignment to Y and Z
that minimized the distance between the observed and expected values of rzz.Only phenotype pairs
with nominally significant (p < .05) empirical genetic correlation estimates were included. Labels
for selected trait pairs were removed algorithmically to aid readability.
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Figure S3: xAM effects and the number of casual variants. Varying the number of causal
variants has no impact on either (A) true score correlations or (B) estimated effect correlations
across simulations of genetically orthogonal traits with panmictic heritabilities and cross-mate
correlations fixed at 0.5.
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Figure S4: Comparison of synthetic mating regimes. Equivalence of mating regimes under
exchangeable correlation structure for genetically orthogonal traits with respect to (A) true score
correlation or (B) estimated effect correlation. Panmictic heritabilities and cross-mate correlations
were fixed at 0.5 across simulations.
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Figure S5: Effects of local LD. Impact of local LD in synthetic data for genetically orthogonal
traits with panmictic heritabilities and cross-mate correlations fixed at 0.5. Enforcing recombina-
tion probabilities between continguous loci (ρrecom.) at varying fixed values or using an empirical
recombination map has no impact on the (A) true score correlation or (B) estimated effect correla-
tion across simulations.
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Figure S6: Pleiotropy and xAM. Score correlation and estimated effect correlation for genetically
orthogonal traits subject to xAM with and without pleiotropy under orthogonal effects. Across sim-
ulations, panmictic heritabilities and cross-mate correlations were fixed at 0.5. Under the separate
casual variants regime, βy;i ̸= 0 if and only if βz;i = 0 for each causal variant indexed i, whereas,
under the shared causal variants regime, every variant is causal for both Y and Z but the effects
are drawn independently.
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Figure S7: Signed bias of GWAS effect estimates under xAM. In the context of a GWAS of
phenotype Y , variants that are causal for Y but not Z are biased upwards in magnitude (left pane);
on the other hand, variants that are causal forZ but not Y are biased towards the their true effects on
Z (right pane). Estimates are based on fifty simulations of bivariate xAM with exchangeable cross-
mate correlations of 0.5, heritabilities of 0.5, and m = 4000 mutually-exclusive causal variants per
phenotype. GWAS sample size was n=16000. The dashed line at

√
1/π corresponds to the average

magnitude of a Gaussian with mean zero and variance h2 = 0.5.
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Figure S8: Example of GWAS effect estimate bias under xAM. GWAS effect estimates versus
true values for a single instance of the fifty replicate simulations presented in Fig. S7. In the
context of a GWAS of phenotype Y , variants that are causal for Y but not Z are biased upwards in
magnitude (top row); on the other hand, variants that are causal for Z but not Y are biased towards
the their true effects on Z (bottom row).
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Figure S9: Signed bias of GWAS estimates for varying m, n. Signed bias of GWAS effect
estimates under xAM is independent of the number of causal variants per phenotype (m) and
sample size n after scaling by

√
m. Estimates are based on fifty simulations of bivariate xAM with

exchangeable cross-mate correlations of 0.5 and heritabilities of 0.5 per combination of m and n.
The dashed line at

√
1/π corresponds to the average magnitude of a Gaussian with mean zero and

variance h2 = 0.5.

(β^y−βy) ⋅m1/2 sign βy (β^y−βy) ⋅m1/2 sign βz (βz−β
^

y) ⋅m1/2 sign βz

n
=

1
6
0
0
0

n
=

4
0
0
0

n
=

6
4
0
0
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.2

0.4

σg;y 2 π

0.0

0.2

0.4

σg;y 2 π

0.0

0.2

0.4

σg;y 2 π

Generations of xAM

S
ig

n
e

d
 b

ia
s

GWAS phenotype
/ SNP annotation

GWAS of Y on SNPs causal for Y

GWAS of Y on SNPs causal for Z m
1000 4000

16000



Figure S10: GWAS falsely identifies pleiotropic SNPs under xAM. SNPs affecting trait Z but
not trait Y will nevertheless approach genome-wide significance (p = 5e-8) in the context of a
GWAS on Y . Additionally, xAM increases power to detect causal variants for the focal phenotype
due to the upward bias shown in Figs. S7 to S9. Both power and the false positive rate increase with
ratio of sample size to average effect size (as modulated via the number of causal variants m under
fixed heritability and sample size; top row), but also as both n and m grow large proportionately
(bottom row). Estimates are based on fifty simulations of bivariate xAM with exchangeable cross-
mate correlations of 0.5 and heritabilities of 0.5 per combination of m and n. To allow use of a
logarithmic scale, values of zero have been replaced with the genome-wide type-I error rate.
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Figure S11: Effects of xAM and misdiagnosis. Impact of xAM and misdiagnosis errors on
genetic correlation estimates between genetically orthogonal binary traits. Panmictic heritabilities
and cross-mate correlations are all fixed at 0.5. Under the unidirectional scheme, individuals with
disorder A are mislabeled as controls for disorder A and cases for disorder B, regardless of their
true status for disorder B, at the rate reflected on the x axis. Under the bidirectional scheme, the
analogous misdiagnoses are enforced for disorder B as well. The induced bias in both cases is
more pronounced for less common disorders.

Misdiagnosis scheme: bidirectional Misdiagnosis scheme: unidirectional

0.00 0.10 0.25 0.50 0.00 0.10 0.25 0.50

0.00

0.25

0.50

0.75

1.00

Misdiagnosis rate

ρ̂
𝛽

Generations of AM 0 1 2 3 Prevalence 0.05 0.1 0.25 0.5



Figure S12: Partitioned genetic correlation under xAM. Partitioned HE regression estimates
of genetic correlation under xAM. Plots reflect estimates across 250 replicate simulations of bi-
variate xAM with exchangeable cross-mate correlations of 0.5, with m = 2,400 causal variants
equally divided into six mutually exclusive annotations (see legend) and a sample size of n =
16,000. Horizontal lines show the true effect correlation for each annotation. Annotations with
orthogonal effects and with little relevance to one or both traits evidence the largest estimates: af-
ter three generations of xAM, the average annotation-specific genetic correlation estimates were
respectively ρ̂(1)

β = 0.63, ρ̂(2)
β = 0.46, ρ̂(3)

β = 0.87, ρ̂(4)
β = 0.87, ρ̂(5)

β = 0.46, and ρ̂(6)
β = 0.70,

all of which were substantially larger than the true annotation-specific effect correlations (0.25 for
annotation (1), 0.00 for all others). The largest annotation-specific estimates were attributed to an-
notations (3) and (4) followed by annotation (6). Annotations explaining less variation than others
will generate annotation-specific genetic covariance estimates that are relatively large compared to
their annotation-specific heritability estimates, leading to extreme upward bias and distorting the
relative ordering of annotation-specific signals. Estimates for which the geometric mean heritabil-
ity estimates across the two traits was less than 1e-3, which yielded unstable genetic correlation
estimates, were dropped for clarity. Error bars reflect 95% credible intervals.
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Figure S13: Impact of xAM on genetic correlation measures versus genetic covariance mea-
sures. Results are those presented in Figs. 2C and 2D (A), or reformulated in terms of covariances
(B). Compared to genetic correlations, genetic covariances are unbounded and thus do not con-
verge to one as ρβ → 1. Additionally, whereas HE and LDSC genetic correlation estimates are
identical, LDSC genetic covariance estimates are attenuated as the LDSC genetic variance estima-
tor is more susceptible to missing heritability issues. This is particularly evident in the attenuated
LDSC genetic variances we observe here, where all causal variants are directly measured in the
simulated marker data; the only source of attenuation here comes from imperfect LD scores, which
as is always the case in practice, have been estimated using a sliding window approach.
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Figure S14: Projected versus empirical ρ̂β for UKB traits. Projections under xAM alone (ρ̂xAM)
versus empirical ρ̂β estimates for UK Biobank trait pairs, substituting either pedigree-based (ĥ2

PED)
or marker-based (ĥ2

SNP) heritability estimates for panmictic heritabilities (h2
pan), as a function of

number of generations of xAM. Error bars reflect 95% credible intervals.
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Figure S15A: Projected γ̂ for UKB traits 1-20. Projected ρ̂β estimates relative to empirical
estimates for UK Biobank trait pairs 1-20, substituting either pedigree-based (ĥ2

PED) or marker-
based (ĥ2

SNP) heritability estimates for panmictic heritabilities (h2
pan), as a function of number of

generations of xAM. Error bars reflect 95% credible intervals.
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Figure S15B: Projected γ̂ for UKB traits 21-42. Projected ρ̂β estimates relative to empirical
estimates for UK Biobank trait pairs 21-42, substituting either pedigree-based (ĥ2

PED) or marker-
based (ĥ2

SNP) heritability estimates for panmictic heritabilities (h2
pan), as a function of number of

generations of xAM. Error bars reflect 95% credible intervals.
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Figure S16: Projected versus empirical ρ̂β for psychiatric trait pairs. Projections reflect up to
five generations of xAM congruent with empirical spousal correlation estimates. Selected points
labeled for emphasis. Error bars reflect 95% credible intervals.
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Figure S17: Projected versus empirical ρ̂β for psychiatric trait pairs subject to misdiagno-
sis. Projections reflect bidirectional misclassification errors and up to five generations of xAM
congruent with empirical spousal correlation estimates. Error bars reflect 95% credible intervals.

Misdiagnosis rate: 15%

Generations of xAM: 1

Misdiagnosis rate: 15%

Generations of xAM: 3

Misdiagnosis rate: 15%

Generations of xAM: 5

Misdiagnosis rate: 10%

Generations of xAM: 1

Misdiagnosis rate: 10%

Generations of xAM: 3

Misdiagnosis rate: 10%

Generations of xAM: 5

Misdiagnosis rate: 5%

Generations of xAM: 1

Misdiagnosis rate: 5%

Generations of xAM: 3

Misdiagnosis rate: 5%

Generations of xAM: 5

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

ANX / BIP
BIP / MDD

ANX / MDD
BIP / SCZ

MDD / SCZ
ANX / SCZ
ALC / MDD
ALC / ANX

ADHD / MDD
ADHD / SCZ
ADHD / BIP

ADHD / ANX
ALC / BIP

ADHD / ALC
ALC / SCZ

ANX / BIP
BIP / MDD

ANX / MDD
BIP / SCZ

MDD / SCZ
ANX / SCZ
ALC / MDD
ALC / ANX

ADHD / MDD
ADHD / SCZ
ADHD / BIP

ADHD / ANX
ALC / BIP

ADHD / ALC
ALC / SCZ

ANX / BIP
BIP / MDD

ANX / MDD
BIP / SCZ

MDD / SCZ
ANX / SCZ
ALC / MDD
ALC / ANX

ADHD / MDD
ADHD / SCZ
ADHD / BIP

ADHD / ANX
ALC / BIP

ADHD / ALC
ALC / SCZ

�̂�



Figure S18: Even/odd PGS correlations for varying thresholds. Associations between cross-
chromosome polygenic score correlations (y-axis) and cross-mate phenotypic correlations (x-axis)
are consistent across varying p-value thresholds.
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Figure S19: Alternative γ̂ definition estimates. An alternative definition of γ̂ based on the ratio
of expected and observed genetic covariance estimates yields similar results as the correlation
based definition used in the primary manuscript. Across all projections for UKB phenotypes,
the covariance ratio was slightly higher as it also reflects xAM-induced inflation of heritability
estimates.
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Figure S20: Impact of parameter dependence on γ̂ estimates. Sensitivity analyses depict-
ing the approximate impact of parameter dependence on γ̂ estimates for ANX and MDD. Strong
parameter dependence leads to larger, less variable γ̂ estimates.
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Captions for Tables S1 to S7

Table S1: Pairwise estimates. Genetic correlation and cross-mate correlation estimates with
standard errors. For each trait pair, rg denotes the LD score regression genetic correlation, rx_yz
is the cross-mate cross-trait correlation, rw_yz is the within-individual correlation, and rx_yy,
rx_zz are the cross-mate correlations for the first and second phenotypes, respectively.

Table S2: UK Biobank univariate data. Pedigree- (h2_ped) and marker-based (h2_snp)
heritability estimates and standard errors for UK Biobank phenotypes. h2_ped_source lists
sources for pedigree estimates and h2_ped_notes includes additional details when relevant.

Table S3: UK Biobank phenotype simulation results. Simulation results for each trait
pair after zero to five generations of xAM consistent with empirical cross-mate corre-
lations. rhobeta_empirical denotes empirical LD score regression genetic correla-
tion estimates. rhoxAM_PED and rhoxAM_SNP denote ρ̂xAM projections computed by
setting panmictic heritabilities to pedigree- versus marker-based estimates respectively, as
is the case for gammahat_PED and gammahat_SNP, which correspond to γ̂ estimates.
rxmate_discrepancy* denotes the average discrepancy from the target cross-mate correla-
tion versus that achieved in simulation. Also included are standard errors and empirical quantiles.

Table S4: Psychiatric phenotype univariate data. Pedigree-based heritability estimates
(h2_ped) and standard errors for psychiatric phenotypes. h2_ped_country lists the coun-
try in which the source sample was ascertained, h2_ped_source lists the source study, and
h2_notes includes additional details when relevant.

Table S5: Psychiatric phenotype simulation results. Pairwise data and simulation results for
each trait pair after zero to five generations of xAM consistent with empirical cross-mate correla-
tions, under varying levels of diagnostic errors (MC_rate). rg and rg_HE correspond to ρ̂emp
and ρ̂xAM, respectively, and rg_rel corresponds to γ̂. Also included are standard errors and up-
per and lower bounds of 95% credible intervals. rx_yz is the cross-mate cross-trait tetrachoric
correlation, rw_yz is the within-individual tetrachoric correlation, and rx_yy, rx_zz are the
cross-mate tetrachoric correlations for the first and second phenotypes, respectively.

Table S6: Even / odd chromosome PGS correlations. Correlations between polygenic scores
(PGS) on odd versus even chromosomes across pairs of UK Biobank phenotypes.

Table S7: Psychiatric phenotype definitions. Definitions of psychiatric disorder phenotypes used
in Danish registry data in terms of ICD-8 and ICD-10 codes.


