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APPENDIX A
HETEROGENEOUS AND DYNAMIC GRAPHS

Compared to typical homogeneous graphs, the heteroge-
neous graphs further include attributes indicating types of
nodes and edges that contain richer topological and feature
information. Generally, typical contrastive and predictive
frameworks can still be adapted to learn representations
from heterogeneous and dynamic graphs, as long as a
proper graph encoder, such as message passing neural
networks with edge attributes and R-GCNs [1]. To better
utilize the information in node and edge types, recent work
proposes contrastive methods with view generations and
objectives specifically designed for heterogeneous graphs.
In particular, for the view generation, HeCo [2] proposes to
generate the network schema and meta-paths as two views
in the contrastive framework for heterogeneous graphs, as
introduced in Section 3.3.3. Moreover, for the computation
of contrastive objectives, HGNN [3] proposes to adopt
asymmetric projection heads for the representation of two
nodes with different types. For predictive methods, the
meta-paths in heterogeneous graphs are adopted as addi-
tional self-supervision to help improve the performance of
downstream tasks. The dynamic graph can be considered
as a special case of heterogeneous where the additional
attributes contain temporal information indicating the time
when the nodes and edges are constructed in a continuous
form. Tian et al. [4] propose the time-aware GNN encoder
for dynamic graphs and the DDGCL framework where two
temporal subgraphs obtained at different time points are
adopted as two views. While still following the general con-
trastive framework, the specific design of view generation,
encoders, and objectives for homogeneous and dynamic
graphs can bring additional performance gain compared to
general contrastive methods on homogeneous graphs.

APPENDIX B

COMPARISONS BETWEEN CONTRASTIVE AND PRE-
DICTIVE MODELS

As described in Section 1, the major methodological differ-
ence between contrastive methods and predictive methods

is whether paired samples are required for training, as
contrastive methods contrast negative pairs from positive

ones. They both aim to learn encoders that compute infor-
mative representations. For contrastive learning, the goal
is achieved by maximizing mutual information between
representations of different parts of the data. In other words,
the mutual information I(v;, f(v;)) between any given
view v; and its representation f(v;) is maximized only if
I(f(vi), f(v;)) is maximized, ideally, to I(v;,v;) for any
views of a given graph. For predictive methods, the goal
is achieved by learning representations that preserve (by
being able to predict) certain properties or characteristics
of the original graph.

Empirically, contrastive methods are usually more com-
putationally expensive compared to predictive methods but
generally outperform most predictive methods in terms
of downstream classification performance. On the other
hand, recent predictive methods based on invariance-
regularization can achieve performance on par with the
SOTA contrastive methods. The design of pretext learning
tasks in predictive methods is more flexible so more do-
main knowledge can be included to benefit the learning
of representations. However, most predictive methods are
less theoretically guided compared to contrastive methods
grounded on mutual information, as discussed in Section
7, which may lead to the reduced performance mentioned
above.

APPENDIX C
GRAPH ENCODERS IN CONTRASTIVE LEARNING

Graph encoders are usually constructed based on graph
neural networks (GNNs) following a neighborhood ag-
gregation strategy, where the representation of a node is
iteratively updated by combining the its own representa-
tion with the aggregated representation over its neighbors.
Formally, the k-th layer of GNN is:
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where ") denotes the feature vector of node v at the
k-th layer, and N (v) is a set of neighbor nodes of wv.
Graph encoders mainly differ from their ag%regation strate-
gies. COMBINE®®(.) and AGGREGATE™™)(.) are compo-

nent functions that determine types of GNNs, such as



Graph Convolutional Networks (GCNs) [5], Graph Atten-
tion Networks (GATs) [6] and Graph Isomorphism Net-
works (GINs) [7].

C.1

The most straight-forward way to obtain the node-level
representation h, for node v is to directly use the node
feature at the final layer K of the encoder [8, 9, 10], ie.,
h, = x. One may also adopt skip connections or
jumping knowledge [11] to generate node-level represen-
tation. However, the node-level representation produced by
concatenating node features from all layers have different
dimension from node features. To avoid such inconsistency
in vector dimension, [12, 13] and [14] concatenate node
features of all layers, followed by a linear transformation:

h, = CONCAT([z(E_ YW, 3)

where W € R(2x dx)xd js the weight matrix used to shrink
the dimension size of h,,.

The READOUT function is considered as the key op-
eration to compute the graph-level representation hgrqpn
given the node-level representations H of the graph. For
the sake of node permutation invariance, summation and
averaging are most commonly used READOUT functions.
Sun et al. [12], You et al. [13] and Hassani and Khasahmadi
[14] employ sum over all the nodes’ representations as

Node-Level and Graph-Level Representations

V|
hgrapn = READOUT(H) = o() _ hy), (4)
v=1

where |V| denotes the total number of nodes in the given
graph, and o is either sigmoid function, multi-layer percep-
tron or identity function. Velickovié et al. [8] and Jiao et al.
[10] employ mean pooling READOUT that averages all the
node-level representations as

Rgrapn = READOUT(H) = o—(m > hy). (5)

C.2 Effects of Graph Encoders

Typically, GNN-based encoders are not constrained on
choices of GNN types and most frameworks [14, 15] allow
various choices. However, some studies have more thor-
ough considerations of GNN types. InfoGraph [12] adopts
GIN to achieve less inductive bias for graph-level applica-
tions. GraphCL [13] finds GIN outperforms GCN and GAT
in semi-supervised learning on node classification tasks. Hu
et al. [9] observe that the most expressive GIN achieves
the best performance with pre-training, although GIN has
slightly inferior performance than the less expressive GNNs
without pre-training. That is, GIN achieves the highest
performance gain of pre-training. This observation agrees
with [16] that fully-utilization of pre-training requires an
expressive model as limited expressive models can harm
performance and the observation [17] that the quality of
learned representations is impacted more by the choice of
encoder than the objective. On the contrary, for SUBG-
CON [10], GCN-based encoders outperform other GNN-
based encoders as GCN is more suitable to handle sub-
graphs than more expressive GIN and GAT. In addition,
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Velickovi¢ et al. [8] and Zhu et al. [18] employ different
encoders on different learning tasks, i.e., GCN for trans-
ductive learning tasks, GraphSage-GCN or a mean-pooling
layer with skip connection for inductive learning on larges
Reddit, and mean-pooling layers with skip or dense skip
connections for inductive learning on multiple graphs PPI.
These observations imply that different contrastive learning
frameworks and methods may prefer distinct GNN types
for encoders. Even for the same framework, encoder choices
may vary when applying to different datasets.

APPENDIX D
COMPARISON OF CONTRASTIVE OBJECTIVES

Among all contrastive objectives for graphs, the JS estimator
7(/5) and InfoNCE Z(NCE) based on lower-bounds to mu-
tual information are most commonly used. Regarding the
two estimators generally, Hjelm et al. [19] empirically shows
that InfoNCE generally outperforms the ]S estimator in most
cases. However, compared to the ]S estimator, InfoNCE is
more sensitive to the number of negative samples N and
requires a large number of negative samples in order to be
competitive. Consequently, when the number of negative
samples, i.e., the mini-batch size, is limited, the performance
of InfoNCE could be limited and the JS estimator may
become a better choice.

In addition, Hassani and Khasahmadi [14] perform ab-
lation studies comparing the three objectives Z(OV) Z(8)
and Z(NCE) with batch size ranged from 32 to 256 for graph
classification and ranged from 2 to 8 for node classification.
They show that the JS estimator generally leads to the best
performance among all objectives on graph classification
datasets, while InfoNCE (or NT-Xent) achieves overall best
performance on node-classification tasks.

Moreover, Jiao et al. [10] compares the non-bound based
triplet margin loss, the logistic loss [20] as an equivalence of
the JS estimator and the BPR loss as an equivalence of the
InfoNCE with NV = 1 under their graph contrastive frame-
work. Their results show that the JS estimator and the BPR
loss (the InfoNCE loss with N = 1) are similarly effective in
their method, while the triplet margin loss achieves the best
performance among the three objectives. The results indicate
that the triplet margin loss can still be effective, given some
certain views of the graphs, when the positive pairs and
negative pairs should not be discriminated absolutely.

APPENDIX E
SUMMARY OF SSL METHODS FOR GNNSs

We summarize contrastive methods and predictive methods
reviewed in this survey in Supplementary Table 1 and
Supplementary Table 2, respectively.

APPENDIX F
OVERVIEW OF THE SSLGRAPH LIBRARY WITHIN
DIG

An overview of the developed DIG-sslgraph library is
shown in Supplementary Figure 1.



TABLE 1

Summary of contrastive methods for GNNs in chronological order. Columns categorize the methods by their learning objectives, level of
representations for contrast (G: graph, N: node), the type of view generation, and the level of their majorly targeted downstream tasks. We also
include notes to show their specific constraints or related literature in other domains such as vision for additional references, when applicable. For
downstream tasks, the task of link prediction is also considered as node-level as it is based on representations of a pair of nodes. *The triplet loss
is equivalent to the NT-Xent (InfoNCE) loss where the number of negative samples equals to one.

Method Objective Rep. Levels View Generation Targeted Downstream Tasks Other Notes

DGI [8] JSE G-N Identical Node-level Deep Infomax [19]
InfoGraph [12] JSE G-N Identical Graph-level Deep Infomax [19]
Hu et al. [9] JSE G-G Subgraphs Graph-level -

GMI [21] JSE N-N Identical Node-level -

GCC [15] InfoNCE G-G Subgraphs Graph-level -
SUBG-CON [10]  Triplet* G-G Subgraphs Graph-level -

GRACE [18] InfoNCE N-N Structural & Feature Node-level Molecular Graph
MVGRL [14] JSE G-N Structural & Subgraphs Node-level -

GraphCL [13] InfoNCE G-G Random Graph-level SimCLR [22]
GCA [23] InfoNCE N-N Structural & Subgraphs Node-level -

PHD [24] JSE G-G Subgraphs Graph-level Molecular Graph
PT-HGNN [3] InfoNCE N-N Structural Node-level Heterogeneous Graph
HeCo [2] InfoNCE N-N (Scheilalb&(grls/[i}tl;-path) Node-level Heterogeneous Graph
InfoGCL [25] InfoNCE  G-G/G-N/N-N Optimized (searched) Graph-level/Node-level Tian et al. [26]
AD-GCL [27] InfoNCE G-G Optimized (learned) Graph-level Tian et al. [26]

TABLE 2

Summary of predictive methods for GNNs. Columns categorize the methods by their sources of supervision, sub-categories, pretext tasks, and
paradigms of utilizing self-supervision. In the training paradigm column, URL denotes unsupervised representation learning, Pretrain denotes
unsupervised pretraining, and Auxiliary denotes auxiliary learining.

Method Source of Supervision  Sub-category Pretext Task Training Paradigm
GAE [28] Graph autoencoder Adjacency reconstruction URL
VGAE [28] Variational autoencoder Adjacency reconstruction URL
MGAE [29] Denoising autoencoder Node feature reconstruction URL
ARGA/ARVGA [30] Variational autoencoder Adjacency reconstruction URL
GALA [31] Reconstruction Graph autoencoder Node feature reconstruction URL
SIG-VGA [32] Variational autoencoder Adjacency reconstruction URL
GPT-GNN [33] Auto-regressive reconstruction ~ Node and edge reconstruction URL
SuperGAT [34] Graph autoencoder Adjacency reconstruction Auxiliary
SimP-GCN [35] Graph autoencoder Node-pair similarity rec. Auxiliary
BGRL [36] Invariance - Pseudo-contrastive URL
CCA-SSG [37] larizati - Correlation reduction URL
LaGraph [38] reguiarization - Latent graph prediction URL
S2GRL [39] Statistical property K-hop connectivity prediction URL
GROVER [40] Graph properties iféiﬁ?g;:iii&mam Motif, contextual property pred. Pretrain
Hwang et al. [41] Topological property Meta-path prediction Auxiliary
M3S [42] Pseudo-labels Self-training Pseudo-label prediction URL
IFC-GCN [43] Self-training Pseudo-label prediction Pretrain

APPENDIX G
EFFICIENCY AND DOWNSTREAM ACCURACY OF
DIG IMPLEMENTATIONS

We compare the efficiency and downstream accuracy be-
tween individual original implementations and DIG imple-
mentations for SSL methods in Supplementary Table 3. All
results are obtained from running corresponding implemen-
tations under the unsupervised setting on the same environ-
ment and device with a single NVIDIA V100 GPU. We use
the standard dataset split for training and test [44] for all
datasets. Note that the left column of downstream accuracy
are reproduced results using the official code provided by
the authors and may differ from the original results reported
in their paper due to environment difference, randomness,
training/test data split, or any unreleased tricks. For exam-
ple, the original GRACE code uses different datasets split
with individual prefixed random seeds for each dataset. To

assure fair comparisons, we perform evaluation of the orig-
inal GRACE under the standard datasets split. Regarding
the efficiency, the DIG-sslgraph implementations consume
significantly less training time for GraphCL, MVGRL, and
InfoGraph, due to more efficient view generation compu-
tations. Besides, DIG consumes the same level of GPU
memory as original implementations for all four methods.
Although DIG-sslgraph does not focus on efficiency opti-
mization, we will keep improving the efficiency in future
released versions.
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Fig. 1. An overview of the developed ssligraph library within DIG: Dive into Graphs. The library provides a standardized evaluation framework
consisting of customizable framework and pre-implemented models for contrastive methods, data interface and evaluation tools for both contrastive
and predictive methods.

TABLE 3
Comparisons on efficiency and downstream accuracy between individual original implementations and DIG implementations for SSL methods.
Efficiencies are compared in terms of in terms of training time and GPU memory. Four pre-implemented methods, GraphCL, MBGRL, InfoGraph,

and GRACE, are compared.

Method Dataset Time cost per GPU memory Downstream accuracy
training epoch consumption
Original DIG Original DIG Original DIG
NCI1 68.6915s 7.279s 1459MB 1499MB 0.7954 £+ 0.0141 0.7961 £ 0.0143
GraphCL PROTEINS 5.223s 3.996s 1463MB 1607MB 0.7547 £ 0.0350 0.7637 £ 0.0290
MUTAG 0.278s 0.446s 1431MB 1475MB 0.8991 £ 0.0495 0.9096 £ 0.0669
MUTAG 9.417s 1.602s 1917MB 2091IMB 0.8778 £ 0.0665 0.8877 £ 0.0646
MVGRL PTC-MR 8.213s 2.986s 2827MB 2493MB 0.5755 % 0.0670 0.5903 £ 0.0859
IMDB-B 27.342s 8.557s 4459MB 4783MB 0.7450 4 0.0377 0.7370 £ 0.0377
MUTAG 0.585s 0.551s 1459MB 1459MB 0.8939 £ 0.0885 0.9041 £ 0.0927
InfoGraph PTC-MR 0.808s 0.924s 1471MB 1445MB 0.6249 + 0.0966 0.6196 £ 0.0422
IMDB-B 9.356s 3.013s 1485MB 1465MB 0.7370 £ 0.0276 0.7400 £ 0.0313
CORA 0.020s 0.064s 1701IMB 1773MB 0.7869 £ 0.0013 0.7877 £ 0.0096
GRACE CiteSeer 0.030s 0.083s 2001IMB 2145MB 0.6858 + 0.0004 0.6842 £ 0.0061
PubMed 0.233s 0.345s 12703MB 13963MB 0.8217 £ 0.0005 0.8188 £ 0.0046
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