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Supplementary Figure 1. XRD patterns and the corresponding JCPDS data of VO2 

(a), VO2 (B), and VO2 (M). 
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Supplementary Figure 2. FE-SEM images for the several types of VO2 on the 

carbon fiber cloth. Low-magnification FE-SEM images of a), b) VO2 (a), d) VO2 (B), 

and g) VO2 (M). High-magnification FE-SEM images of c) VO2 (a), e) VO2 (B), and h) 

VO2 (M). Cross-sectional FE-SEM images of f) VO2 (B) and i) VO2 (M). 
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Supplementary Figure 3. EDS results of VO2 (a).  
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Supplementary Figure 4. Morphology and structural characterization of the 

pristine materials. The HRTEM images at atomic resolution of pristine a) VO2 (a), d) 

VO2 (B), and h) VO2 (M). Their corresponding FFT patterns are shown in b), e), and i), 

respectively. Schematic illustrations of c) VO2 (a), g) VO2 (B), and k) VO2 (M). The 

simulated diffraction patterns of f) VO2 (B) and j) VO2 (M). 
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Supplementary Figure 5. Cycle life performance of VO2 (a) at 200 mA g−1. 
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Supplementary Figure 6. XRD patterns of VO2 (a) powder, VO2 (B) powder, and 

VO2 (M) powder. 

  



9 

 

 

Supplementary Figure 7. Material characterizations of amorphous VO2 powders. 

a) and b) The FE-SEM images of amorphous VO2 powder. 
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Supplementary Figure 8. Material characterization and electrochemical 

performance of pure CF. a) XRD pattern and b) cycle performance at 50 mA g−1 for 

pure CF. 
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Supplementary Figure 9. XPS spectra of V 2p of a) VO2 (a), b) VO2 (B) and c) VO2 

(M) at pristine state and discharged state of 1 V. 
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Supplementary Figure 10. In situ XRD patterns of a) VO2 (a), b) VO2 (B), and c) 

VO2 (M) half cells during a cycle and the corresponding galvanostatic curves. The peak 

positions marked by the following symbols are due to the Be disk: ▲: Be11Fe; ●: Be12Cr; 

■: Be2Cr; ★: BeS. 
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Supplementary Figure 11. In situ XRD test with a blank sample. The peaks labeled 

with different symbols on the peaks correspond to: ▲: Be11Fe; ●: Be12Cr; ■: Be2Cr; ★: 

BeS. 
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Supplementary Figure 12. The electrokinetic analyses conducted by CV test. a), e), 

and i) CV curves for VO2 (a), VO2 (B), and VO2 (M) at different scan rates. b), f) and 

j) Relationship between the logarithmic scan rates and logarithmic peak currents. c), g) 

and k) Contribution of pseudocapacitive capacities for K+ storage at different scan rates. 

d), h), and l) The capacitive fractions at a scan rate of 1.0 mV s−1 for VO2 (a), VO2 (B), 

and VO2 (M), respectively. 
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Supplementary Figure 13. Investigation of the K+ ions migration kinetics by GITT. 

Transient voltage profiles versus specific capacity for potassiation/de-potassiation in a) 

VO2 (a), b) VO2 (B), and c) VO2 (M) obtained from GITT. A single step of GITT for d) 

VO2 (a), e) VO2 (B), and f) VO2 (M) during the initial discharge process. 
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Supplementary Figure 14. The chemical diffusion coefficient DK calculated by 

GITT. The representation transient voltage of a galvanostatic pulse as a function of the 

square root of time from GITT for a) VO2 (a), b) VO2 (B), and c) VO2 (M). The 

calculated chemical diffusion coefficient DK versus voltage for d) VO2 (a), e) VO2 (B), 

and f) VO2 (M), respectively. 
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Supplementary Figure 15. The electrochemical impedance spectroscopy. a) An 

equivalent circuit model for the impedance spectra. Nyquist plots for VO2 in different 

phases at b) open-circuit voltage states, c) charged states after 100 cycles, and d) 

charged states after 1000 cycles. 
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Supplementary Figure 16. The FE-SEM images after cycling. FE-SEM of a), b) VO2 

(a), c), d) VO2 (B), and e), f) VO2 (M) after 100 cycles at charged states. 
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Supplementary Figure 17. Elemental mappings of V and O for a) VO2 (a), b) VO2 

(B), and c) VO2 (M). 
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Supplementary Figure 18. Strain mapping with uniaxial strain components εxx (left) 

and εyy (right), as obtained by GPA of the HRTEM image for pristine VO2 (B). 
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Supplementary Figure 19. Von Mises stress within the a) VO2 (a), b) VO2 (B), and c) 

VO2 (M) particles at different times along the radial direction. 
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Supplementary Figure 20. 3D view of equivalent stress after K+ ions diffusion in a) 

VO2 (B) particle for 160 ms, and b) VO2 (M) particle for 400 ms, respectively. 
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Supplementary Figure 21. The schematic structural changes for VO2 (a) and VO2 

(B) during the potassiation and depotassiation. 
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Supplementary Figure 22. Comparison of full battery a) rate capability and b) 
cycling performance of VO2 (a) as the cathode with the reported systems1-7. 
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Supplementary Figure 23. The FE-SEM images of VO2 (a) after bending 1000 
times at charged states. 
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Supplementary Table 1. The atomic ratio of elements from EDS. 

Element Wt % Atomic % 

C 

O 

V 

76.09 87.92 

9.37 8.12 

14.54 3.96 

 
  



27 

 

Supplementary Table 2. The fitting results of EIS for VO2 in different phases. 

Sample Item Initial 100 cycles 1000 cycles 

VO2 (a) 

Re (Ω) 6.319 15.74 22.93 

Rf (Ω) 1.45 127.5 93 

Rct (Ω) 3904 2414 756.7 

VO2 (B) 

Re (Ω) 6.08 7.123 8.144 

Rf (Ω) 2.407 754.8 470.4 

Rct (Ω) 5421 3462 2315 

VO2 (M) 

Re (Ω) 8.008 10.13 9.684 

Rf (Ω) 1.258 1245 483.8 

Rct (Ω) 8345 4418 2534 
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Supplementary Table 3. The density test results for amorphous VO2 powders. 

Sample Volume (cm
3
) Density (g cm

-3
) Elapsed Time (mm:ss) 

Temperature 

(°C) 

1 

2 

3 

0.1802 2.8075 11:13 31.14 

0.1800 2.8100 13:46 31.18 

0.1797 2.8141 16:15 31.24 

4 0.1804 2.8031 18:49 31.29 

5 0.1809 2.7961 21:22 31.29 
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