Supplementary information for

Phase-engineered cathode for super-stable potassium storage

Lichen Wu^{1,2}, Hongwei Fu^{1,2}, Shu Li^{1,2}, Jian Zhu^{3*}, Jiang Zhou⁴, Apparao M. Rao⁵, Limei Cha^{6,7,8}*, Kunkun Guo⁹, Shuangchun Wen¹, Bingan Lu^{1,2}*

¹ School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China.

² State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, P. R. China.

³ College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.

⁴ School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China.

⁵ Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, SC 29634, USA.

⁶ Materials Science and Engineering program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, P. R. China.

⁷ Materials Science and Engineering program, Technion–Israel Institute of Technology, Haifa 32000, Israel.

⁸ MATEC key lab, Guangdong Technion-Israel Institute of Technology, Shantou 515063, P. R. China.

⁹ College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China.

*Corresponding author. E-mail: jzhu@hnu.edu.cn(J.Z.); cha.limei@gtiit.edu.cn

(L.C.); luba2012@hnu.edu.cn (B.L.)

This file includes:

Supplementary Figures 1 to 23 Supplementary Tables 1 to 3 Supplementary References

Supplementary Figure 1. XRD patterns and the corresponding JCPDS data of $\rm VO_{2}$ (a), $VO_2(B)$, and $VO_2(M)$.

Supplementary Figure 2. FE-SEM images for the several types of VO₂ on the carbon fiber cloth. Low-magnification FE-SEM images of a), b) $VO_2(a)$, d) $VO_2(B)$, and g) $VO_2(M)$. High-magnification FE-SEM images of c) $VO_2(a)$, e) $VO_2(B)$, and h) $VO₂(M)$. Cross-sectional FE-SEM images of f) $VO₂(B)$ and i) $VO₂(M)$.

Supplementary Figure 3. EDS results of VO₂ (a).

Supplementary Figure 4. Morphology and structural characterization of the pristine materials. The HRTEM images at atomic resolution of pristine a) $VO₂(a)$, d) $VO₂(B)$, and h) $VO₂(M)$. Their corresponding FFT patterns are shown in b), e), and i), respectively. Schematic illustrations of c) $VO_2(a)$, g) $VO_2(B)$, and k) $VO_2(M)$. The simulated diffraction patterns of f) $VO₂(B)$ and j) $VO₂(M)$.

Supplementary Figure 5. Cycle life performance of $\text{VO}_2(\text{a})$ at 200 mA g^{-1} .

Supplementary Figure 6. XRD patterns of VO_2 (a) powder, VO_2 (B) powder, and VO2 (M) powder.

Supplementary Figure 7. Material characterizations of amorphous VO2 powders.

a) and b) The FE-SEM images of amorphous VO2 powder.

Supplementary Figure 8. Material characterization and electrochemical **performance of pure CF.** a) XRD pattern and b) cycle performance at 50 mA g^{-1} for pure CF.

Supplementary Figure 9. XPS spectra of V $2p$ of a) VO_2 (a), b) VO_2 (B) and c) VO_2

(M) at pristine state and discharged state of 1 V.

Supplementary Figure 10. In situ XRD patterns of a) $VO₂(a)$, b) $VO₂(B)$, and c) VO2 (M) half cells during a cycle and the corresponding galvanostatic curves. The peak positions marked by the following symbols are due to the Be disk: \blacktriangle : Be₁₁Fe; \bullet : Be₁₂Cr; ■: $Be₂Cr; \star$: BeS.

Supplementary Figure 11. In situ XRD test with a blank sample. The peaks labeled with different symbols on the peaks correspond to: \blacktriangle : Be₁₁Fe; \bullet : Be₁₂Cr; \blacktriangle : Be₂Cr; \star : BeS.

Supplementary Figure 12. The electrokinetic analyses conducted by CV test. a), e), and i) CV curves for VO_2 (a), VO_2 (B), and VO_2 (M) at different scan rates. b), f) and j) Relationship between the logarithmic scan rates and logarithmic peak currents. c), g) and k) Contribution of pseudocapacitive capacities for K^+ storage at different scan rates. d), h), and l) The capacitive fractions at a scan rate of 1.0 mV s⁻¹ for VO₂(a), VO₂(B), and $VO₂(M)$, respectively.

Supplementary Figure 13. Investigation of the K^+ ions migration kinetics by GITT. Transient voltage profiles versus specific capacity for potassiation/de-potassiation in a) $VO₂(a), b) VO₂(B), and c) VO₂(M) obtained from GITT. A single step of GITT for d)$ $VO₂(a), e) VO₂(B), and f) VO₂(M) during the initial discharge process.$

Supplementary Figure 14. The chemical diffusion coefficient D_K calculated by GITT. The representation transient voltage of a galvanostatic pulse as a function of the square root of time from GITT for a) VO_2 (a), b) VO_2 (B), and c) VO_2 (M). The calculated chemical diffusion coefficient D_K versus voltage for d) $VO_2(a)$, e) $VO_2(B)$, and f) $VO₂(M)$, respectively.

Supplementary Figure 15. The electrochemical impedance spectroscopy. a) An equivalent circuit model for the impedance spectra. Nyquist plots for VO₂ in different phases at b) open-circuit voltage states, c) charged states after 100 cycles, and d) charged states after 1000 cycles.

Supplementary Figure 16. The FE-SEM images after cycling. FE-SEM of a), b) VO² (a), c), d) $VO_2(B)$, and e), f) $VO_2(M)$ after 100 cycles at charged states.

Supplementary Figure 17. Elemental mappings of V and O for a) $VO₂(a)$, b) $VO₂$ (B) , and c) $VO₂(M)$.

Supplementary Figure 18. Strain mapping with uniaxial strain components ε_{xx} (left) and ε_{yy} (right), as obtained by GPA of the HRTEM image for pristine VO₂ (B).

Supplementary Figure 19. Von Mises stress within the a) $VO_2(a)$, b) $VO_2(B)$, and c)

VO2 (M) particles at different times along the radial direction.

Supplementary Figure 20. 3D view of equivalent stress after K^+ ions diffusion in a)

VO2 (B) particle for 160 ms, and b) VO2 (M) particle for 400 ms, respectively.

Supplementary Figure 21. The schematic structural changes for $VO₂$ (a) and $VO₂$ (B) during the potassiation and depotassiation.

Supplementary Figure 22. Comparison of full battery a) rate capability and b) cycling performance of VO_2 (a) as the cathode with the reported systems¹⁻⁷.

Supplementary Figure 23. The FE-SEM images of $VO₂$ (a) after bending 1000 times at charged states.

		Atomic $\%$
C	76.09	87.92
O	9.37	8.12
V	14.54	3.96

Supplementary Table 1. The atomic ratio of elements from EDS.

Sample	Item	Initial	100 cycles	1000 cycles
VO ₂ (a)	$R_e(\Omega)$	6.319	15.74	22.93
	$R_f(\Omega)$	1.45	127.5	93
	$R_{ct}(\Omega)$	3904	2414	756.7
VO ₂ (B)	$R_e(\Omega)$	6.08	7.123	8.144
	$R_f(\Omega)$	2.407	754.8	470.4
	$R_{ct}(\Omega)$	5421	3462	2315
VO ₂ (M)	$R_e(\Omega)$	8.008	10.13	9.684
	$R_f(\Omega)$	1.258	1245	483.8
	$R_{ct}(\Omega)$	8345	4418	2534

Supplementary Table 2. The fitting results of EIS for $VO₂$ in different phases.

Volume cm^3) Sample				Temperature
	Density $(g \text{ cm}^{-3})$	Elapsed Time (mm:ss)	$({}^{\circ}C)$	
1	0.1802	2.8075	11:13	31.14
2	0.1800	2.8100	13:46	31.18
3	0.1797	2.8141	16:15	31.24
4	0.1804	2.8031	18:49	31.29
5	0.1809	2.7961	21:22	31.29

Supplementary Table 3. The density test results for amorphous $VO₂$ powders.

Supplementary References

- 1 Deng, L. et al. Defect-free potassium manganese hexacyanoferrate cathode material for highperformance potassium-ion batteries. Nat. Commun. 12, 2167 (2021).
- 2 Chong, S. et al. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 14, 9807-9818 (2020).
- 3 Deng, T. et al. Self-templated formation of P2-type K_{0.6}CoO₂ microspheres for high reversible potassium-ion batteries. Nano Lett. 18, 1522-1529 (2018).
- 4 Choi, J. U. et al. K_{0.54}[Co_{0.5}Mn_{0.5}]O₂: New cathode with high power capability for potassium-ion batteries. Nano Energy 61, 284-294 (2019).
- 5 Lin, X., Huang, J., Tan, H., Huang, J. & Zhang, B. $K_3V_2(PO4)_2F_3$ as a robust cathode for potassium-ion batteries. Energy Storage Mater. 16, 97-101 (2019).
- 6 Zhu, Y.-H. et al. Reconstructed orthorhombic V_2O_5 polyhedra for fast ion diffusion in K-ion batteries. Chem 5, 168-179 (2019).
- 7 Wu, L. et al. Layered superconductor Cu_{0.11}TiSe₂ as a high-stable K-cathode. Adv. Funct. Mater., 2109893 (2021).