#### SUPPLEMENTARY MATERIAL

# Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence

### AUTHORS AND AFFILIATIONS

Menno J. de Jong<sup>1\*</sup>, Aidin Niamir<sup>1</sup>, Magnus Wolf<sup>1,2</sup>, Andrew C. Kitchener<sup>3,4</sup>, Nicolas Lecomte<sup>5</sup>, Ivan V. Seryodkin<sup>6</sup>, Steve Fain<sup>7</sup>, Snorre B. Hagen<sup>8</sup>, Urmas Saarma<sup>9</sup>, Axel Janke<sup>1,2,10</sup>

\* corresponding author. Email to: menno.de-jong@senckenberg.de

1. Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany.

Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9,
Frankfurt am Main, Germany.

3. Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK.

4. School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK

5. Canada Research Chair in Polar and Boreal Ecology, Department of Biology, University of Moncton, Moncton, New Brunswick, E1H1R2, Canada.

6. Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences, 7 Radio St., Vladivostok, 690041, Russia.

7. National Fish & Wildlife Forensic Laboratory, Ashland, OR, USA.

8. Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925, Svanvik, Norway.

9. Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia.

10. LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.

### **TABLE OF CONTENTS**

- Table S1. Sample list.
- **Table S2.** Data underlying figure 4c.
- **Table S3.** Data underlying figure 4e.
- **Table S4.** Data underlying figure 4f.
- Table S5. Data underlying figure 6f.
- Fig. S1A. Mean sequencing depth per sample.
- Fig. S1B. Distribution of read depth across sites along the nuclear genome.
- Fig. S1C. Relatedness between individuals.
- Fig. S2A. PCoA-plot showing genetic structure in western Eurasia.
- Fig. S2B. OLS dendrogram of Euclidean distances.
- Fig. S2C. Discrepancy between path lengths and genetic distance.
- Fig. S2D. Microsatellite dataset bioNJ dendrogram.
- Fig. S3A. Mitogenome maximum likelihood phylogeny.
- Fig. S3B. Mitogenome maximum likelihood phylogeny (clade 3a).
- Fig. S4A. Climate suitability modelling (SDM) flowchart.
- Fig. S4B. Climate suitability modelling (SDM), present projection.
- Fig. S5A. Admixtools f3-statistics.
- Fig. S5B. Admixtools f3-statistics: mean vs sd.
- Fig. S5C. Treemix maximum likelihood phylogenies with 0 to 8 migration edges.
- Fig. S6A. Determination of optimal K using cross-entropy score criterion.
- Fig. S6B-D. Admixture plots for X-chromosomal and autosomal datasets.
- Fig. S7A. Genome-wide heterozygosity (He); Darwindow versus bcftools.
- Fig. S7B. Genome-wide heterozygosity (He) before and exclusion of ROHs.
- Fig. S8. Heterozygosity levels within ROHs.
- Fig. S9. Sex determination based on levels of missing data at the Y-chromosome.
- Fig. S10A-C. Heterozygosity as a function of read depth and bcftools call settings.
- Fig. S11. Genome wide heterozygosity as a function of bcftools call 'snpGap' setting.
- Fig. S12. Overall depth per site.
- Fig. S13A-C. Microsatellite (VNTR) genotyping from short read sequencing data.
- Fig. S14A-B. Accuracy of hierarchical clustering methods.
- Fig. S15A. Haploblock detection.
- Fig. S15B. Number of variable (i.e., polymorphic) sites per haploblock.

**Table S1. Sample list.** List of brown bears samples sequenced for this study or retrievedfrom the NCBI SRA repository.

| name           | population | colour        | latitude | longitude | authors            | NCBI_ID      |
|----------------|------------|---------------|----------|-----------|--------------------|--------------|
| ABC1           | ABCbc      | blue4         | 56.9508  | -134.942  | Liu et al. 2014    | SAMN02256316 |
| ABC10          | ABCa       | mediumblue    | 57.44    | -134.2    | Cahill et al. 2014 | SAMN02045560 |
| ABC11          | ABCbc      | blue4         | 57.87083 | -135.772  | Cahill et al. 2014 | SAMN03247209 |
| ABC12          | ABCbc      | blue4         | 57.87083 | -135.772  | Cahill et al. 2014 | SAMN03252406 |
| ABC13          | ABCa       | mediumblue    | 57.44    | -134.2    | Miller at al. 2012 | SAMN01057688 |
| ABC14          | ABCbc      | blue4         | 56.95083 | -134.942  | Miller et al. 2012 | SAMN01057689 |
| ABC15          | ABCcoast2  | darkorchid2   | 57.98417 | -133.788  | this_study         | SAMN32301302 |
| ABC16          | ABCcoast2  | darkorchid2   | 57.98417 | -133.788  | this_study         | SAMN32301303 |
| ABC2           | ABCbc      | blue4         | 56.9508  | -134.942  | Liu et al. 2014    | SAMN02256317 |
| ABC3           | ABCbc      | blue4         | 57.87083 | -135.772  | Liu et al. 2014    | SAMN02256318 |
| ABC4           | ABCbc      | blue4         | 57.87083 | -135.772  | Liu et al. 2014    | SAMN02256319 |
| ABC5           | ABCbc      | blue4         | 57.87083 | -135.772  | Liu et al. 2014    | SAMN02256320 |
| ABC6           | ABCa       | mediumblue    | 57.73333 | -134.333  | Liu et al. 2014    | SAMN02256321 |
| ABC7           | ABCa       | mediumblue    | 57.73333 | -134.333  | this_study         | SAMN32301304 |
| ABC8           | ABCa       | mediumblue    | 57.73333 | -134.333  | this_study         | SAMN32301305 |
| ABC9           | ABCa       | mediumblue    | 57.73333 | -134.333  | this_study         | SAMN32301306 |
| Alaska1        | Kodiak     | lightskyblue3 | 57.79    | -152.407  | this_study         | SAMN32301307 |
| Alaska11       | Alaska     | steelblue3    | 68.143   | -151.736  | this_study         | SAMN32301308 |
| Alaska12       | Alaska     | steelblue3    | 68.143   | -151.736  | this_study         | SAMN32301309 |
| Alaska2        | Alaska     | steelblue3    | 60.55444 | -151.258  | Miller et al. 2012 | SAMN01057690 |
| Alaska3        | Alaska     | steelblue3    | 63.12989 | -151.197  | Cahill et al. 2013 | SAMN02045559 |
| Alaska7        | Alaska     | steelblue3    | 68.143   | -151.736  | this_study         | SAMN32301310 |
| Alaska9        | Alaska     | steelblue3    | 68.143   | -151.736  | this_study         | SAMN32301311 |
| AlaskaN1       | Alaska     | steelblue3    | 70.29    | -148.79   | this_study         | SAMN32301397 |
| AlaskaSW1      | Aleutian   | deepskyblue   | 55.328   | -160.5    | this_study         | SAMN32301393 |
| AlaskaSW2      | Aleutian   | deepskyblue   | 55.81    | -166.66   | this_study         | SAMN32301394 |
| AlaskaSW3      | Aleutian   | deepskyblue   | 55.81    | -166.66   | this_study         | SAMN32301395 |
| AlaskaW1       | Alaska     | steelblue3    | 66.94    | -160.6    | this_study         | SAMN32301396 |
| Americanblack1 | Black      | black         | 53       | -121      | Cahill et al. 2013 | SAMN02045561 |
| Americanblack2 | Black      | black         | 53       | -121      | Miller et al. 2012 | SAMN01057691 |
| Amur1          | Amur       | darkgreen     | 52.43055 | 140.3289  | this_study         | SAMN32301312 |
| Amur2          | Amur       | darkgreen     | 46.0321  | 136.677   | this_study         | SAMN32301313 |
| Amur3          | Amur       | darkgreen     | 45.4562  | 137.185   | this_study         | SAMN32301314 |
| Amur4          | Sakhalin   | darkcyan      | 48       | 142.2532  | this_study         | SAMN32301315 |
| Amur5          | Yakutia    | limegreen     | 57.645   | 136.23    | this_study         | SAMN32301316 |
| Canada1        | Westcoast  | mediumpurple2 | 49.93    | -117.627  | this_study         | SAMN32301317 |
| Canada10       | HudsonBay  | darkorchid4   | 61.117   | -94.05    | this_study         | SAMN32301318 |
| Canada11       | HudsonBay  | darkorchid4   | 61.117   | -94.05    | this_study         | SAMN32301319 |
| Canada12       | HudsonBay  | darkorchid4   | 61.117   | -94.05    | this_study         | SAMN32301320 |
| Canada2        | HudsonBay  | darkorchid4   | 62.2373  | -92.5922  | this_study         | SAMN32301321 |
| Canada3        | HudsonBay  | darkorchid4   | 61.117   | -94.05    | this_study         | SAMN32301322 |

| Canada4          | HudsonBay  | darkorchid4   | 61.117   | -94.05   | this_study         | SAMN32301323 |
|------------------|------------|---------------|----------|----------|--------------------|--------------|
| Canada5          | HudsonBay  | darkorchid4   | 64.167   | -95.5    | this_study         | SAMN32301324 |
| Canada6          | HudsonBay  | darkorchid4   | 64.167   | -95.5    | this_study         | SAMN32301325 |
| Canada7          | HudsonBay  | darkorchid4   | 62.75    | -92      | this_study         | SAMN32301326 |
| Canada8          | HudsonBay  | darkorchid4   | 61.117   | -94.05   | this_study         | SAMN32301327 |
| Canada9          | HudsonBay  | darkorchid4   | 61.117   | -94.05   | this_study         | SAMN32301328 |
| CentralRussia1   | Ural       | yellow2       | 55.5     | 80.5     | this_study         | SAMN32301329 |
| Central Russia2  | CentreRus2 | bisque3       | 55.5     | 91.4     | this_study         | SAMN32301330 |
| Central Russia 3 | CentreRus  | greenyellow   | 55.4     | 91.4     | this_study         | SAMN32301331 |
| Central Russia4  | CentreRus  | greenyellow   | 60.3     | 94.3     | this_study         | SAMN32301332 |
| Central Russia 5 | Ural       | yellow2       | 57.6     | 57.6     | this_study         | SAMN32301333 |
| Estonia1         | Baltic     | gold3         | 59.008   | 26.226   | this_study         | SAMN32301334 |
| Estonia2         | Baltic     | gold3         | 59.2672  | 27.552   | this_study         | SAMN32301335 |
| FarEast1         | Magadan    | aquamarine2   | 59.5638  | 150.8035 | this_study         | SAMN32301336 |
| FarEast10        | Magadan    | aquamarine2   | 59.6     | 153.15   | this_study         | SAMN32301344 |
| FarEast11        | Magadan    | aquamarine2   | 59.6     | 153.15   | this_study         | SAMN32301345 |
| FarEast2         | Magadan    | aquamarine2   | 59.5638  | 150.8035 | this_study         | SAMN32301337 |
| FarEast3         | Magadan    | aquamarine2   | 59.5638  | 150.8035 | this_study         | SAMN32301338 |
| FarEast4         | Magadan    | aquamarine2   | 59.5638  | 150.8035 | this_study         | SAMN32301339 |
| FarEast6         | Yakutia    | limegreen     | 56.65    | 124.7    | this_study         | SAMN32301340 |
| FarEast7         | Yakutia    | limegreen     | 64.31348 | 133.5363 | this_study         | SAMN32301341 |
| FarEast8         | Yakutia    | limegreen     | 60.02505 | 123.3926 | this_study         | SAMN32301342 |
| FarEast9         | Yakutia    | limegreen     | 64.16806 | 116.4672 | this_study         | SAMN32301343 |
| Finland          | Baltic     | gold3         | 61.28333 | 28.83333 | Liu et al. 2014    | SAMN02256315 |
| Finland2         | Baltic     | gold3         | 61.6934  | 29.729   | this_study         | SAMN32301346 |
| Finland3         | Baltic     | gold3         | 61.91971 | 27.81635 | this_study         | SAMN32301347 |
| Georgia          | MiddleEast | grey50        | 43.02592 | 43.04349 | Barlow et al. 2018 | SAMEA4762871 |
| Greece1          | Europe     | darkred       | 39.07421 | 21.82431 | Benazo et al. 2018 | SAMN07422268 |
| Himalaya1*       | Himalaya   | grey20        | 38.11    | 70.41    | this_study         | SAMN32301348 |
| Hokkaido1        | Hokkaido   | darkcyan      | 42.9239  | 143.1961 | this_study         | SAMN32301349 |
| HokkaidoCentral1 | Hokkaido   | darkcyan      | 43.317   | 141.967  | Endo et al. 2021   | DRR276776    |
| HokkaidoCentral2 | Hokkaido   | darkcyan      | 45.092   | 141.831  | Endo et al. 2021   | DRR276777    |
| HokkaidoEast1    | Hokkaido   | darkcyan      | 43.728   | 144.587  | Endo et al. 2021   | DRR276778    |
| Hokkaido East 2  | Hokkaido   | darkcyan      | 43.987   | 144.952  | Endo et al. 2021   | DRR276779    |
| HokkaidoSouth1   | Hokkaido   | darkcyan      | 41.729   | 140.4298 | Endo et al. 2021   | DRR276774    |
| HokkaidoSouth2   | Hokkaido   | darkcyan      | 42.942   | 140.617  | Endo et al. 2021   | DRR276775    |
| IranGudrun*      | MiddleEast | grey50        | 38       | 46       | this_study         | SAMN32301350 |
| ltaly1           | Europe     | darkred       | 42.03908 | 13.43847 | Benazo et al. 2017 | SAMN07422262 |
| Kamtschatka3     | Kamtchatka | cyan2         | 56.21095 | 159.3467 | this_study         | SAMN32301351 |
| Kamtschatka4     | Kamtchatka | cyan2         | 56.21095 | 159.3467 | this_study         | SAMN32301352 |
| Kirkenes         | NorthScand | orange        | 69.72706 | 30.04578 | this_study         | SAMN32301362 |
| Kodiak1          | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301353 |
| Kodiak2          | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301354 |
| Kodiak3          | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301355 |
| Kodiak4          | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301356 |
| Kodiak5          | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301357 |

| Kodiak6        | Kodiak     | lightskyblue3 | 57.79    | -152.407 | this_study         | SAMN32301392 |
|----------------|------------|---------------|----------|----------|--------------------|--------------|
| Montana        | Westcoast  | mediumpurple2 | 46.96526 | -109.534 | Liu et al. 2014    | SAMN02256322 |
| NorthSweden    | MidScand   | indianred1    | 66.60665 | 19.82324 | Liu et al. 2014    | SAMN02256314 |
| Norway1***     | NorthScand | orange        | 69.96887 | 23.27165 | this_study         | SAMN32301358 |
| Norway2***     | NorthScand | orange        | 69.96887 | 23.27165 | this_study         | SAMN32301359 |
| Norway3        | NorthScand | orange        | 69.4439  | 25.80482 | this_study         | SAMN32301360 |
| Norway4        | NorthScand | orange        | 69.4439  | 25.80482 | this_study         | SAMN32301361 |
| Norway6        | NorthScand | orange        | 70.483   | 26.0135  | this_study         | SAMN32301363 |
| Norway7        | MidScand   | orange        | 70.483   | 26.0135  | this_study         | SAMN32301364 |
| Norway8        | NorthScand | orange        | 70.483   | 26.0135  | this_study         | SAMN32301365 |
| polar1         | polar      | blue          | 70.78    | -22.91   | Liu et al. 2014    | SAMN02231736 |
| polar4         | polar      | blue          | 70.78    | -22.91   | Liu et al. 2014    | SAMN02231733 |
| polarSvalbard1 | polar      | blue          | 79       | 17.6     | Miller et al. 2012 | SAMN01057666 |
| polarSvalbard2 | polar      | blue          | 79       | 17.6     | Miller et al. 2012 | SAMN01057636 |
| Rumania1       | Europe     | darkred       | 44.43996 | 26.09631 | this_study         | SAMN32301366 |
| Rumania2       | Europe     | darkred       | 44.43996 | 26.09631 | this_study         | SAMN32301367 |
| Rumania3       | Europe     | darkred       | 44.43996 | 26.09631 | this_study         | SAMN32301368 |
| Rumania4       | Europe     | darkred       | 44.43996 | 26.09631 | this_study         | SAMN32301369 |
| Rumania5       | Europe     | darkred       | 44.43996 | 26.09631 | this_study         | SAMN32301370 |
| Russia         | CentreRus  | greenyellow   | 55.23    | 91.37    | Barlow et al. 2018 | SAMEA4762872 |
| Russia_Kola1   | NorthScand | orange        | 68.979   | 33.09    | this_study         | SAMN32301371 |
| Russia_Kola3   | NorthScand | orange        | 68.979   | 33.09    | this_study         | SAMN32301372 |
| Slovakia1      | Europe     | darkred       | 48.14816 | 17.10674 | Benazo et al. 2017 | SAMN07422269 |
| Slovenia       | Europe     | darkred       | 46.445   | 14.01778 | Barlow et al. 2018 | SAMEA4762870 |
| Slovenia1      | Europe     | darkred       | 46.15124 | 14.99546 | Benazo et al. 2017 | SAMN07422272 |
| SouthNorway1   | SouthScand | orangered3    | 60.83333 | 11.6666  | this_study         | SAMN32301373 |
| SouthNorway2   | SouthScand | orangered3    | 60.83333 | 11.6666  | this_study         | SAMN32301374 |
| SouthNorway3   | SouthScand | orangered3    | 60.83333 | 11.6666  | this_study         | SAMN32301375 |
| SouthNorway4   | MidScand   | indianred1    | 63.16666 | 10.3333  | this_study         | SAMN32301376 |
| SouthNorway5   | SouthScand | orangered3    | 63.16666 | 10.3333  | this_study         | SAMN32301377 |
| SouthNorway6   | MidScand   | indianred1    | 63.16666 | 10.3333  | this_study         | SAMN32301378 |
| SouthNorway7   | MidScand   | indianred1    | 63.16666 | 10.3333  | this_study         | SAMN32301379 |
| SouthSweden    | SouthScand | orangered3    | 62.73334 | 17.58332 | Liu et al. 2014    | SAMN02256313 |
| Spain1         | Europe     | darkred       | 43.46278 | -3.805   | Benazo et al. 2017 | SAMN07422271 |
| Sweden3        | SouthScand | orangered3    | 61.00487 | 14.53714 | Cahill et al. 2014 | SAMN03252407 |
| TorontoZoo**   | ABCcoast1  | darkorchid2   | 58.747   | -134.878 | Taylor et al. 2018 | SAMN09907428 |
| TurkeyMartin*  | MiddleEast | grey50        | 39.9     | 41.3     | this_study         | SAMN32301380 |
| Ural1          | Ural       | yellow2       | 58       | 56.31667 | this_study         | SAMN32301381 |
| Ural2          | Ural       | yellow2       | 58       | 56.31667 | this_study         | SAMN32301382 |
| Ural3          | Ural       | yellow2       | 58       | 56.31667 | this_study         | SAMN32301383 |
| Ural4          | Ural       | yellow2       | 58       | 56.31667 | this_study         | SAMN32301384 |
| Ural5          | Ural       | yellow2       | 60.3262  | 56.423   | this_study         | SAMN32301385 |
| Ural6          | Ural       | yellow2       | 63.3162  | 42.533   | this_study         | SAMN32301386 |
| US1            | Westcoast  | mediumpurple2 | 44.0682  | -114.742 | this_study         | SAMN32301387 |
| US2            | Westcoast  | mediumpurple2 | 48.1978  | -114.316 | this_study         | SAMN32301388 |
| US3            | Westcoast  | mediumpurple2 | 44.03971 | -109.541 | this_study         | SAMN32301389 |

| US6 | Westcoast | mediumpurple2 | 48.8  | -117.255 | this_study | SAMN32301390 |
|-----|-----------|---------------|-------|----------|------------|--------------|
| US8 | Westcoast | mediumpurple2 | 44.56 | -111.444 | this_study | SAMN32301391 |

\*born in zoo; \*\*orphaned in the wild, relocated to zoo; \*\*\*duplex sequenced sample

**Table S2. Data underlying figure 4c.** Data underlying figure 4c, showing population pairwise Fst-values, calculated with the software vcftools, for an in-silico meta-population experiencing a change in population connectivity, simulated with the software SLIM2. See main text for more details.

| nonulation nairs    | nonulation pairs short           | fet        | fet corrected | n concrations | ~     | No    |
|---------------------|----------------------------------|------------|---------------|---------------|-------|-------|
| NorthWest SouthWest | population_pairs_short           | 0.0016644  | 0.0009172     |               | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | -0.0016644 | -0.0008173    | 0             | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.029999   | 0.048961      | 0             | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.028862   | 0.046916      | 0             | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | -0.001793  | -0.00060982   | 0             | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.029791   | 0.048799      | 0             | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.029125   | 0.047257      | 0             | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | 0.01507    | 0.026538      | 1000          | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.0062002  | 0.011513      | 1000          | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.0049871  | 0.0092058     | 1000          | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | 0.0049691  | 0.0089826     | 1000          | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.011516   | 0.02058       | 1000          | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.01058    | 0.017879      | 1000          | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | 0.002202   | 0.0047807     | 100           | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.018268   | 0.030495      | 100           | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.021742   | 0.036826      | 100           | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | 0.0011341  | 0.0035982     | 100           | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.02213    | 0.037243      | 100           | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.018247   | 0.030421      | 100           | 0.001 | 10000 |
| NorthWest SouthWest | p12 p11                          | 0.019845   | 0.033569      | 1500          | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.0064325  | 0.011659      | 1500          | 0.001 | 10000 |
| SouthEast SouthWest | p12 p11                          | 0.0060963  | 0.011017      | 1500          | 0.001 | 10000 |
| SouthEast NorthEast | p12 p22                          | 0.0050276  | 0.0095231     | 1500          | 0.001 | 10000 |
| NorthWest SouthEast | p12 p12                          | 0.012754   | 0.021837      | 1500          | 0.001 | 10000 |
| NorthEast SouthWest | p22 p11                          | 0.013364   | 0.023313      | 1500          | 0.001 | 10000 |
| NorthWest SouthWest | n12 n11                          | 0.019043   | 0.033201      | 2000          | 0.001 | 10000 |
| NorthFast_NorthWest | n22 n12                          | 0.0074276  | 0.013559      | 2000          | 0.001 | 10000 |
| SouthEast SouthWest | n12 n11                          | 0.0060433  | 0.011254      | 2000          | 0.001 | 10000 |
| SouthEast_SouthWest | n12 n22                          | 0.006488   | 0.012245      | 2000          | 0.001 | 10000 |
| NorthWest SouthEast | n12 n12                          | 0.013117   | 0.02335       | 2000          | 0.001 | 10000 |
| NorthEast SouthWest | n22 n11                          | 0.013541   | 0.02333       | 2000          | 0.001 | 10000 |
| NorthWest SouthWest | $p_{22}p_{11}$                   | 0.0135093  | 0.024474      | 2000          | 0.001 | 10000 |
| NorthEast NorthWest | $p_{12}p_{11}$<br>$p_{22}p_{12}$ | 0.0033033  | 0.0075145     | 200           | 0.001 | 10000 |
| SouthEast_NorthWest | $p_{22} p_{12}$                  | 0.011038   | 0.020044      | 200           | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11<br>p12_p22               | 0.012721   | 0.02100       | 200           | 0.001 | 10000 |
| NorthWest SouthEast | p12_p22                          | 0.00088770 | 0.0031812     | 200           | 0.001 | 10000 |
| NorthEast SouthWast | p12_p12<br>p22_p11               | 0.013713   | 0.023437      | 200           | 0.001 | 10000 |
| NorthWest SouthWest | p22_p11                          | 0.012933   | 0.022197      | 200           | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | -0.0005961 | 0.00096306    | 20            | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.027795   | 0.0458        | 20            | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11<br>=12_=22               | 0.027381   | 0.040823      | 20            | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | -0.0028602 | -0.0015891    | 20            | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.026455   | 0.044987      | 20            | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.029095   | 0.048523      | 20            | 0.001 | 10000 |
| Northwest_Southwest | p12_p11                          | 0.0077611  | 0.0136        | 300           | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.015705   | 0.026662      | 300           | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.010954   | 0.018555      | 300           | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | 0.0050161  | 0.008/12/     | 300           | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.013357   | 0.022802      | 300           | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.017273   | 0.028885      | 300           | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | 0.0071991  | 0.012589      | 400           | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.010453   | 0.017996      | 400           | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.0084148  | 0.015419      | 400           | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | 0.0058376  | 0.010823      | 400           | 0.001 | 10000 |
| NorthWest_SouthEast | p12_p12                          | 0.011401   | 0.01919       | 400           | 0.001 | 10000 |
| NorthEast_SouthWest | p22_p11                          | 0.012234   | 0.021661      | 400           | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11                          | -0.0004584 | 0.0019153     | 50            | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                          | 0.026455   | 0.045255      | 50            | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                          | 0.024897   | 0.042048      | 50            | 0.001 | 10000 |
| SouthEast_NorthEast | p12_p22                          | 0.00017428 | 0.0022829     | 50            | 0.001 | 10000 |
| NorthWest SouthEast | p12 p12                          | 0.026922   | 0.045849      | 50            | 0.001 | 10000 |

| NorthEast_SouthWest | p22_p11                    | 0.024634   | 0.042315    | 50   | 0.001 | 10000 |
|---------------------|----------------------------|------------|-------------|------|-------|-------|
| NorthWest_SouthWest | p12_p11                    | 0.01221    | 0.020687    | 600  | 0.001 | 10000 |
| NorthEast_NorthWest | p22_p12                    | 0.0083325  | 0.015382    | 600  | 0.001 | 10000 |
| SouthEast_SouthWest | p12_p11                    | 0.009134   | 0.01615     | 600  | 0.001 | 10000 |
| SouthEast NorthEast | p12 p22                    | 0.006187   | 0.011148    | 600  | 0.001 | 10000 |
| NorthWest SouthEast | p12 p12                    | 0.011604   | 0.020378    | 600  | 0.001 | 10000 |
| NorthEast SouthWest | p22 p11                    | 0.012565   | 0.021939    | 600  | 0.001 | 10000 |
| NorthWest_SouthWest | p12 p11                    | 0.013253   | 0.022443    | 800  | 0.001 | 10000 |
| NorthFast_NorthWest | n22 n12                    | 0 007449   | 0.013929    | 800  | 0.001 | 10000 |
| SouthEast_SouthWest | n12 n11                    | 0.0048254  | 0.0091897   | 800  | 0.001 | 10000 |
| SouthEast_SouthWest | $p_{12} p_{11}$            | 0.0040254  | 0.0091037   | 800  | 0.001 | 10000 |
| NorthWest SouthEast | $p_{12} p_{22}$            | 0.004275   | 0.0002425   | 800  | 0.001 | 10000 |
| NorthEast SouthWost | $p_{12} p_{12}$            | 0.0050052  | 0.010702    | 800  | 0.001 | 10000 |
| NorthWast SouthWast | $p_{22}p_{11}$             | 0.011015   | 0.010795    | 800  | 0.001 | 10000 |
| NorthWest_SouthWest | p12_p11<br>=22_=12         | 0.0013957  | 0.0044303   | 0    | 0.01  | 10000 |
| NorthEast_NorthWest | p22_p12                    | 0.029619   | 0.048977    | 0    | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | 0.02937    | 0.048575    | 0    | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | 0.00023757 | 0.0024598   | 0    | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | 0.028/19   | 0.046839    | 0    | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | 0.030191   | 0.050079    | 0    | 0.01  | 10000 |
| NorthWest_SouthWest | p12_p11                    | 0.00057653 | 0.0025494   | 1000 | 0.01  | 10000 |
| NorthEast_NorthWest | p22_p12                    | -0.0017011 | -0.0010384  | 1000 | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | -0.0010633 | 0.00011376  | 1000 | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | -0.0016206 | -0.0011041  | 1000 | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | 0.00040848 | 0.0022437   | 1000 | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | -0.0006624 | 0.0002275   | 1000 | 0.01  | 10000 |
| NorthWest_SouthWest | p12_p11                    | 0.0002325  | 0.0021496   | 100  | 0.01  | 10000 |
| NorthEast NorthWest | p22 p12                    | -4.51E-05  | 0.0014435   | 100  | 0.01  | 10000 |
| SouthEast SouthWest | p12 p11                    | 0.001553   | 0.0038886   | 100  | 0.01  | 10000 |
| SouthEast NorthEast | p12 p22                    | -0.0004668 | 0.00102     | 100  | 0.01  | 10000 |
| NorthWest_SouthEast | n12 n12                    | 0.000885   | 0.0026248   | 100  | 0.01  | 10000 |
| NorthEast SouthWest | n22 n11                    | 0.0012427  | 0.0035396   | 100  | 0.01  | 10000 |
| NorthWest_SouthWest | n12 n11                    | -3 11F-05  | 0.0015828   | 1500 | 0.01  | 10000 |
| NorthEast NorthWest | $p_{12} p_{11}$            | 0.00052334 | 0.0010020   | 1500 | 0.01  | 10000 |
| SouthEast_NorthWest | $p_{22} p_{12}$            | 0.00032334 | 0.003003    | 1500 | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11<br>p12_p22         | -0.0018978 | 0.0012037   | 1500 | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | -2.22E-05  | 0.0022904   | 1500 | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | 0.0001769  | 0.0020727   | 1500 | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | 5.97E-05   | 0.002088    | 1500 | 0.01  | 10000 |
| Northwest_Southwest | p12_p11                    | 0.0023675  | 0.004793    | 2000 | 0.01  | 10000 |
| NorthEast_NorthWest | p22_p12                    | -0.0008681 | 0.00057816  | 2000 | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | 0.00034741 | 0.0019184   | 2000 | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | 0.000/112/ | 0.0025843   | 2000 | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | -2.91E-05  | 0.0012685   | 2000 | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | 0.0021083  | 0.0048286   | 2000 | 0.01  | 10000 |
| NorthWest_SouthWest | p12_p11                    | 0.00079274 | 0.0033716   | 200  | 0.01  | 10000 |
| NorthEast_NorthWest | p22_p12                    | -0.0009949 | 0.0002151   | 200  | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | -0.0009886 | 0.00070781  | 200  | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | -0.0002781 | 0.0014571   | 200  | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | -0.001086  | 9.29E-05    | 200  | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | 0.00036658 | 0.0028135   | 200  | 0.01  | 10000 |
| NorthWest_SouthWest | p12_p11                    | -0.0019592 | -0.0016907  | 20   | 0.01  | 10000 |
| NorthEast_NorthWest | p22_p12                    | 0.012074   | 0.020113    | 20   | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | 0.01193    | 0.019335    | 20   | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | 0.00095022 | 0.0027496   | 20   | 0.01  | 10000 |
| NorthWest_SouthEast | p12_p12                    | 0.0090834  | 0.015517    | 20   | 0.01  | 10000 |
| NorthEast_SouthWest | p22_p11                    | 0.014811   | 0.023801    | 20   | 0.01  | 10000 |
| NorthWest SouthWest | p12 p11                    | 0.00050635 | 0.0023167   | 300  | 0.01  | 10000 |
| NorthEast NorthWest | p22 p12                    | -0.0013465 | -0.00024724 | 300  | 0.01  | 10000 |
| SouthEast SouthWest | p12 p11                    | -0.0020219 | -0.0014258  | 300  | 0.01  | 10000 |
| SouthEast NorthFast | p12 p22                    | -0.0029416 | -0.0023168  | 300  | 0.01  | 10000 |
| NorthWest SouthFast | p12 p12                    | -0.000931  | -0.00011508 | 300  | 0.01  | 10000 |
| NorthEast SouthWest | p22 p11                    | -6.82F-05  | 0.0021087   | 300  | 0.01  | 10000 |
| NorthWest SouthWest | n12 n11                    | 0.0010859  | 0.0033629   | 400  | 0.01  | 10000 |
| NorthFast_NorthWest | n22 n12                    | -0.0015867 | -0.00076629 | 400  | 0.01  | 10000 |
| SouthEast SouthWort | r = 2 - r = 2<br>n12 n11   | -0 0005162 | 0.0015306   | 400  | 0.01  | 10000 |
| SouthEast NorthEast | $p_{12} p_{11}$<br>n12 n22 | -0.0003103 | 0.0013330   | 400  | 0.01  | 10000 |
| NorthWort SouthEast | p12_p22<br>n12_n12         | 2 17E_0E   | 0.0017005   | 400  | 0.01  | 10000 |
| NorthEast SouthMest | p12_p12<br>p22_p11         | 3.4/E-U3   | 0.0010565   | 400  | 0.01  | 10000 |
| NorthWest CouteWest | µ22_µ11<br>p12_p11         | 0.00020902 | 0.0019202   | 400  | 0.01  | 10000 |
| NorthWest_SouthWest | p12_p11                    | 0.00062478 | 0.002468    | 5U   | 0.01  | 10000 |
| NorthEast_NorthWest | µ22_p12                    | 0.0048614  | 0.009107    | 5U   | 0.01  | 10000 |
| SouthEast_SouthWest | p12_p11                    | 0.005961   | 0.011625    | 50   | 0.01  | 10000 |
| SouthEast_NorthEast | p12_p22                    | -0.0005366 | 0.0011799   | 50   | 0.01  | 10000 |

| NorthWest_SouthEast | p12_p12 | 0.0042014  | 0.0073787  | 50  | 0.01 | 10000 |
|---------------------|---------|------------|------------|-----|------|-------|
| NorthEast_SouthWest | p22_p11 | 0.0063389  | 0.011788   | 50  | 0.01 | 10000 |
| NorthWest_SouthWest | p12_p11 | 0.0018117  | 0.004439   | 600 | 0.01 | 10000 |
| NorthEast_NorthWest | p22_p12 | 0.00034797 | 0.0021728  | 600 | 0.01 | 10000 |
| SouthEast_SouthWest | p12_p11 | -0.0002872 | 0.0016415  | 600 | 0.01 | 10000 |
| SouthEast_NorthEast | p12_p22 | -0.0007988 | 0.00023739 | 600 | 0.01 | 10000 |
| NorthWest_SouthEast | p12_p12 | 0.000342   | 0.0017299  | 600 | 0.01 | 10000 |
| NorthEast_SouthWest | p22_p11 | 0.00022503 | 0.0021391  | 600 | 0.01 | 10000 |
| NorthWest_SouthWest | p12_p11 | 0.0025582  | 0.0052721  | 800 | 0.01 | 10000 |
| NorthEast_NorthWest | p22_p12 | 0.00063412 | 0.0028843  | 800 | 0.01 | 10000 |
| SouthEast_SouthWest | p12_p11 | 0.001163   | 0.0037795  | 800 | 0.01 | 10000 |
| SouthEast_NorthEast | p12_p22 | 0.0007615  | 0.0032794  | 800 | 0.01 | 10000 |
| NorthWest_SouthEast | p12_p12 | 0.00079553 | 0.0026129  | 800 | 0.01 | 10000 |
| NorthEast_SouthWest | p22_p11 | 0.001432   | 0.003658   | 800 | 0.01 | 10000 |

**Table S3. Data underlying figure 4e.** Data underlying figure 4e, showing f3-scores for population triplets, calculated with the software admixtools, for an in-silico stepping-stone meta-population, simulated with the software SLIM2. See main text for more details.

|                     |                      |                      | (2)      |          | -      |                    |               | N -  |            |
|---------------------|----------------------|----------------------|----------|----------|--------|--------------------|---------------|------|------------|
| source1             | source2              | target               | f3       | std_err  | 2      | n_snps             | n_generations | Ne   | admix_prop |
| p1                  | p2                   | р3                   | 0.048315 | 0.001911 | 25.288 | 77958              | 0             | 5000 | 0.001      |
| p1                  | p2                   | p4                   | 0.055982 | 0.002116 | 26.455 | 77758              | 0             | 5000 | 0.001      |
| p1                  | p2                   | p5                   | 0.043554 | 0.001899 | 22.931 | 77938              | 0             | 5000 | 0.001      |
| p2                  | р3                   | p1                   | 0.046452 | 0.002002 | 23.198 | 77958              | 0             | 5000 | 0.001      |
| p2                  | p3                   | p4                   | 0.054757 | 0.002071 | 26.441 | 77862              | 0             | 5000 | 0.001      |
| p2                  | p3                   | p5                   | 0.045012 | 0.001813 | 24.831 | 78091              | 0             | 5000 | 0.001      |
| n1                  | n4                   | n2                   | 0.043544 | 0.001936 | 22,492 | 77758              | 0             | 5000 | 0.001      |
| р=<br>n1            | n4                   | n3                   | 0.047107 | 0.001956 | 24 088 | 78307              | 0             | 5000 | 0.001      |
| p1                  | р <del>т</del><br>р5 | p3<br>p2             | 0.047107 | 0.001990 | 24.000 | 70307              | 0             | 5000 | 0.001      |
| μ1<br>1             | р5<br>гг             | μ2<br>π2             | 0.043077 | 0.001884 | 25.10  | 77938              | 0             | 5000 | 0.001      |
| pi                  | p5                   | p3                   | 0.04976  | 0.001951 | 25.506 | 78554              | 0             | 5000 | 0.001      |
| p1                  | p5                   | p4                   | 0.055043 | 0.002078 | 26.489 | /82/2              | 0             | 5000 | 0.001      |
| p2                  | р3                   | p1                   | 0.046452 | 0.002002 | 23.198 | 77958              | 0             | 5000 | 0.001      |
| p2                  | р3                   | p4                   | 0.054757 | 0.002071 | 26.441 | 77862              | 0             | 5000 | 0.001      |
| p2                  | р3                   | p5                   | 0.045012 | 0.001813 | 24.831 | 78091              | 0             | 5000 | 0.001      |
| p2                  | p4                   | p1                   | 0.043308 | 0.002076 | 20.856 | 77758              | 0             | 5000 | 0.001      |
| p2                  | p4                   | р3                   | 0.043988 | 0.001923 | 22.876 | 77862              | 0             | 5000 | 0.001      |
| p2                  | p4                   | p5                   | 0.042621 | 0.001859 | 22.926 | 77821              | 0             | 5000 | 0.001      |
| n2                  | n5                   | n1                   | 0.043175 | 0.00191  | 22,608 | 77938              | 0             | 5000 | 0.001      |
| r=<br>n2            | n5                   | n3                   | 0.046508 | 0.001957 | 23 766 | 78091              | 0             | 5000 | 0.001      |
| p2<br>p2            | p5<br>p5             | p5<br>p4             | 0.054000 | 0.001007 | 23.700 | 77821              | 0             | 5000 | 0.001      |
| μz<br>2             | p5                   | μ4<br>21             | 0.034908 | 0.002027 | 27.087 | 77021              | 0             | 5000 | 0.001      |
| µ3                  | p4                   | p1                   | 0.047669 | 0.002089 | 22.818 | 78307              | 0             | 5000 | 0.001      |
| рЗ                  | p4                   | p2                   | 0.044751 | 0.001979 | 22.607 | //862              | 0             | 5000 | 0.001      |
| р3                  | p4                   | p5                   | 0.045163 | 0.001851 | 24.395 | 77737              | 0             | 5000 | 0.001      |
| р3                  | p5                   | p1                   | 0.044995 | 0.002016 | 22.324 | 78554              | 0             | 5000 | 0.001      |
| р3                  | p5                   | p2                   | 0.042233 | 0.00195  | 21.66  | 78091              | 0             | 5000 | 0.001      |
| р3                  | p5                   | p4                   | 0.052351 | 0.002072 | 25.267 | 77737              | 0             | 5000 | 0.001      |
| p4                  | p5                   | p1                   | 0.044241 | 0.002001 | 22.115 | 78272              | 0             | 5000 | 0.001      |
| p4                  | ρ5                   | p2                   | 0.044601 | 0.001924 | 23.177 | 77821              | 0             | 5000 | 0.001      |
| n4                  | n5                   | n3                   | 0.046359 | 0.001977 | 23,453 | 77737              | 0             | 5000 | 0.001      |
| n1                  | n2                   | n3                   | 0.028106 | 0.001237 | 22 714 | 77468              | 1000          | 5000 | 0.001      |
| p1                  | p2<br>p2             | p3<br>n/             | 0.050597 | 0.001733 | 20 108 | 80748              | 1000          | 5000 | 0.001      |
| р1<br>р1            | p2<br>p2             | ρ <del>4</del><br>25 | 0.050557 | 0.001733 | 22.120 | 807 <del>4</del> 8 | 1000          | 5000 | 0.001      |
| μ1<br>π2            | μ <u>2</u>           | μ5<br>π1             | 0.007808 | 0.002059 | 35.265 | 30007              | 1000          | 5000 | 0.001      |
| μz                  | µ3                   | pi                   | 0.02099  | 0.001158 | 18.123 | 77408              | 1000          | 5000 | 0.001      |
| p2                  | рз                   | p4                   | 0.027788 | 0.001282 | 21.677 | 80561              | 1000          | 5000 | 0.001      |
| p2                  | p3                   | p5                   | 0.04966  | 0.001687 | 29.44  | 81045              | 1000          | 5000 | 0.001      |
| p1                  | p4                   | p2                   | 0.000989 | 0.000991 | 0.998  | 80748              | 1000          | 5000 | 0.001      |
| p1                  | p4                   | р3                   | 0.005342 | 0.001146 | 4.661  | 81650              | 1000          | 5000 | 0.001      |
| p1                  | p5                   | p2                   | 0.003248 | 0.001044 | 3.113  | 80667              | 1000          | 5000 | 0.001      |
| p1                  | p5                   | р3                   | 0.010428 | 0.001222 | 8.533  | 82078              | 1000          | 5000 | 0.001      |
| p1                  | p5                   | p4                   | 0.005654 | 0.001185 | 4.774  | 81007              | 1000          | 5000 | 0.001      |
| p2                  | p3                   | p1                   | 0.02099  | 0.001158 | 18.123 | 77468              | 1000          | 5000 | 0.001      |
| p2                  | p3                   | p4                   | 0.027788 | 0.001282 | 21.677 | 80561              | 1000          | 5000 | 0.001      |
| n2                  | n3                   | n5                   | 0.04966  | 0.001687 | 29.44  | 81045              | 1000          | 5000 | 0.001      |
| p=<br>n2            | p0<br>n/             | p3<br>n1             | 0.02014  | 0.001254 | 16.058 | 80748              | 1000          | 5000 | 0.001      |
| p2<br>p2            | р <del>4</del><br>р4 | p1<br>p2             | 0.02014  | 0.001234 | 10.000 | 80561              | 1000          | 5000 | 0.001      |
| pz<br>p2            | p4<br>p4             | p5<br>pE             | 0.004514 | 0.001025 | 4.412  | 80501              | 1000          | 5000 | 0.001      |
| μz                  | μ <del>4</del>       | μS                   | 0.021009 | 0.001281 | 10.921 | 80510              | 1000          | 5000 | 0.001      |
| p2                  | p5                   | pi                   | 0.017844 | 0.001259 | 14.179 | 80667              | 1000          | 5000 | 0.001      |
| p2                  | p5                   | p3                   | 0.00736  | 0.001075 | 6.844  | 81045              | 1000          | 5000 | 0.001      |
| p2                  | p5                   | p4                   | 0.003411 | 0.001097 | 3.109  | 80510              | 1000          | 5000 | 0.001      |
| р3                  | p4                   | p1                   | 0.044334 | 0.001689 | 26.243 | 81650              | 1000          | 5000 | 0.001      |
| р3                  | p4                   | p2                   | 0.023951 | 0.00122  | 19.628 | 80561              | 1000          | 5000 | 0.001      |
| р3                  | p4                   | p5                   | 0.024602 | 0.001296 | 18.988 | 78060              | 1000          | 5000 | 0.001      |
| р3                  | p5                   | p1                   | 0.039118 | 0.001597 | 24.502 | 82078              | 1000          | 5000 | 0.001      |
| p3                  | p5                   | p2                   | 0.02108  | 0.001296 | 16.259 | 81045              | 1000          | 5000 | 0.001      |
| p3                  | p5                   | p4                   | 0.000558 | 0.00098  | 0.57   | 78060              | 1000          | 5000 | 0.001      |
| p4                  | p5                   | p1                   | 0.066137 | 0.002051 | 32,242 | 81007              | 1000          | 5000 | 0.001      |
| n4                  | n5                   | n2                   | 0 048491 | 0.001688 | 28 729 | 80510              | 1000          | 5000 | 0.001      |
| n4                  | р-5<br>n5            | n3                   | 0 021680 | 0 001300 | 22.725 | 78060              | 1000          | 5000 | 0.001      |
| μ <del></del><br>n1 | P2                   | p3                   | 0.031009 | 0.001333 | 10 90  | 7000               | 1000          | 5000 | 0.001      |
| hT                  | μz                   | μS                   | 0.034421 | 0.001/31 | 13.02  | 11921              | 100           | 3000 | 0.001      |

| p1                  | p2         | p4       | 0.043816 | 0.001829  | 23.95   | 79654 | 100  | 5000 | 0.001 |
|---------------------|------------|----------|----------|-----------|---------|-------|------|------|-------|
| n1                  | n2         | n5       | 0.053531 | 0.002198  | 24 356  | 78741 | 100  | 5000 | 0.001 |
| p1<br>p2            | p2<br>p2   | p5<br>p1 | 0.053551 | 0.002150  | 24.350  | 77051 | 100  | 5000 | 0.001 |
| μz                  | μs         | pī       | 0.054876 | 0.002253  | 24.352  | 77951 | 100  | 5000 | 0.001 |
| p2                  | p3         | p4       | 0.039377 | 0.001738  | 22.657  | 78867 | 100  | 5000 | 0.001 |
| p2                  | р3         | p5       | 0.057019 | 0.002145  | 26.579  | 79461 | 100  | 5000 | 0.001 |
| p1                  | p4         | p2       | 0.039407 | 0.001953  | 20.178  | 79654 | 100  | 5000 | 0.001 |
| n1                  | n4         | n3       | 0 029956 | 0.001716  | 17 459  | 79968 | 100  | 5000 | 0 001 |
| р <u>т</u><br>р1    | ρī         | p2       | 0.020556 | 0.001044  | 20.42   | 79741 | 100  | 5000 | 0.001 |
| hī                  | p2         | μz       | 0.039710 | 0.001944  | 20.45   | /0/41 | 100  | 5000 | 0.001 |
| p1                  | р5         | рЗ       | 0.037856 | 0.00188   | 20.139  | 80546 | 100  | 5000 | 0.001 |
| p1                  | p5         | p4       | 0.03095  | 0.001812  | 17.082  | 78985 | 100  | 5000 | 0.001 |
| p2                  | p3         | p1       | 0.054876 | 0.002253  | 24.352  | 77951 | 100  | 5000 | 0.001 |
| n2                  | n3         | n4       | 0 039377 | 0 001738  | 22 657  | 78867 | 100  | 5000 | 0 001 |
| n2                  | p2         | pF       | 0.057010 | 0.002145  | 26 570  | 70461 | 100  | 5000 | 0.001 |
| μz                  | p5         | h2       | 0.037019 | 0.002145  | 20.579  | 79401 | 100  | 5000 | 0.001 |
| p2                  | p4         | p1       | 0.048554 | 0.002219  | 21.878  | 79654 | 100  | 5000 | 0.001 |
| p2                  | p4         | р3       | 0.023777 | 0.001538  | 15.462  | 78867 | 100  | 5000 | 0.001 |
| p2                  | p4         | p5       | 0.040399 | 0.0018    | 22.448  | 79203 | 100  | 5000 | 0.001 |
| n2                  | n5         | n1       | 0.04824  | 0.002322  | 20,779  | 78741 | 100  | 5000 | 0.001 |
| n2                  | р5<br>рБ   | p1<br>p2 | 0.01021  | 0.001729  | 10 156  | 70/61 | 100  | 5000 | 0.001 |
| μz                  | p2         | h2       | 0.03137  | 0.001728  | 10.150  | 79401 | 100  | 5000 | 0.001 |
| p2                  | р5         | p4       | 0.030646 | 0.001/19  | 17.828  | /9203 | 100  | 5000 | 0.001 |
| р3                  | p4         | p1       | 0.059444 | 0.002285  | 26.012  | 79968 | 100  | 5000 | 0.001 |
| p3                  | p4         | p2       | 0.043907 | 0.001847  | 23.777  | 78867 | 100  | 5000 | 0.001 |
| ,<br>n3             | n4         | n5       | 0.048106 | 0.001833  | 26 251  | 78837 | 100  | 5000 | 0 001 |
| p3                  | ρī         | p5<br>p1 | 0.051261 | 0.001005  | 20.201  | 90E16 | 100  | 5000 | 0.001 |
| h2                  | p5         | μī       | 0.031301 | 0.002303  | 22.207  | 80340 | 100  | 5000 | 0.001 |
| р3                  | p5         | p2       | 0.036252 | 0.001872  | 19.371  | 79461 | 100  | 5000 | 0.001 |
| р3                  | p5         | p4       | 0.023096 | 0.00163   | 14.167  | 78837 | 100  | 5000 | 0.001 |
| p4                  | p5         | p1       | 0.061791 | 0.002399  | 25.756  | 78985 | 100  | 5000 | 0.001 |
| n4                  | n5         | n2       | 0.052757 | 0.002106  | 25 049  | 79203 | 100  | 5000 | 0 001 |
| p1                  | р5<br>»Г   | p2       | 0.032757 | 0.001903  | 22.015  | 79203 | 100  | 5000 | 0.001 |
| p4                  | μs         | μs       | 0.040151 | 0.001802  | 22.284  | /883/ | 100  | 5000 | 0.001 |
| p1                  | p2         | p3       | 0.02104  | 0.001183  | 17.787  | 78204 | 2000 | 5000 | 0.001 |
| p1                  | p2         | p4       | 0.042416 | 0.001345  | 31.526  | 80920 | 2000 | 5000 | 0.001 |
| p1                  | p2         | p5       | 0.06171  | 0.001903  | 32.423  | 81452 | 2000 | 5000 | 0.001 |
| n2                  | n3         | n1       | 0.026626 | 0 001275  | 20 886  | 78204 | 2000 | 5000 | 0 001 |
| n2                  | p3         | p1       | 0.020020 | 0.00102   | 20.000  | 900E0 | 2000 | 5000 | 0.001 |
| μz                  | p5         | μ4<br>-  | 0.022705 | 0.00105   | 22.109  | 80950 | 2000 | 5000 | 0.001 |
| p2                  | p3         | p5       | 0.042041 | 0.001568  | 26.814  | 82107 | 2000 | 5000 | 0.001 |
| p1                  | p4         | p2       | -0.00292 | 0.000953  | -3.067  | 80920 | 2000 | 5000 | 0.001 |
| p1                  | p4         | p3       | 0.001433 | 0.001018  | 1.407   | 81309 | 2000 | 5000 | 0.001 |
| n1                  | n5         | n2       | -0.00198 | 0 000982  | -2 014  | 81452 | 2000 | 5000 | 0 001 |
| р <u>т</u><br>р1    | р5<br>рБ   | p2       | 0.00167  | 0.001006  | 1 5 2 4 | 01102 | 2000 | 5000 | 0.001 |
| hī                  | p2         | h2       | 0.00107  | 0.001090  | 1.524   | 02229 | 2000 | 5000 | 0.001 |
| p1                  | p5         | p4       | 0.00159  | 0.001023  | 1.555   | 80618 | 2000 | 5000 | 0.001 |
| p2                  | р3         | p1       | 0.026626 | 0.001275  | 20.886  | 78204 | 2000 | 5000 | 0.001 |
| p2                  | p3         | p4       | 0.022765 | 0.00103   | 22.109  | 80950 | 2000 | 5000 | 0.001 |
| n2                  | n3         | n5       | 0 042041 | 0.001568  | 26 814  | 82107 | 2000 | 5000 | 0 001 |
| ~2<br>~2            | p3<br>p4   | p5<br>n1 | 0.077625 | 0.001300  | 20.014  | 80020 | 2000 | 5000 | 0.001 |
| μz                  | μ4<br>-    | pī       | 0.027635 | 0.001372  | 20.142  | 80920 | 2000 | 5000 | 0.001 |
| p2                  | p4         | р3       | 0.00241  | 0.000881  | 2.735   | 80950 | 2000 | 5000 | 0.001 |
| p2                  | p4         | p5       | 0.020347 | 0.001213  | 16.78   | 81261 | 2000 | 5000 | 0.001 |
| p2                  | p5         | p1       | 0.026656 | 0.001454  | 18.329  | 81452 | 2000 | 5000 | 0.001 |
| n2                  | n5         | n3       | 0.001699 | 0 000963  | 1 764   | 82107 | 2000 | 5000 | 0 001 |
| ~2<br>~2            | р5<br>»Г   | p5<br>p4 | 0.001033 | 0.0000000 | 0.697   | 01261 | 2000 | 5000 | 0.001 |
| μz                  | μs         | p4       | 0.00064  | 0.000932  | 0.687   | 81201 | 2000 | 5000 | 0.001 |
| p3                  | p4         | p1       | 0.046882 | 0.001656  | 28.309  | 81309 | 2000 | 5000 | 0.001 |
| р3                  | p4         | p2       | 0.016656 | 0.001055  | 15.784  | 80950 | 2000 | 5000 | 0.001 |
| p3                  | p4         | p5       | 0.019625 | 0.001185  | 16.563  | 78465 | 2000 | 5000 | 0.001 |
| '<br>n3             | n5         | n1       | 0.046637 | 0 001751  | 26.63   | 82229 | 2000 | 5000 | 0 001 |
| p3                  | р5<br>рБ   | p1<br>p2 | 0.017265 | 0.001136  | 15 200  | 02107 | 2000 | 5000 | 0.001 |
| μ <u>3</u>          | μ <u>5</u> | μz       | 0.01/305 | 0.001136  | 15.288  | 82107 | 2000 | 5000 | 0.001 |
| р3                  | p5         | p4       | 0.001353 | 0.000925  | 1.462   | 78465 | 2000 | 5000 | 0.001 |
| p4                  | p5         | p1       | 0.06972  | 0.001944  | 35.872  | 80618 | 2000 | 5000 | 0.001 |
| p4                  | 2a         | p2       | 0.0387   | 0.001362  | 28.419  | 81261 | 2000 | 5000 | 0.001 |
| n4                  | n5         | n3       | 0 023775 | 0.001126  | 21 118  | 78465 | 2000 | 5000 | 0.001 |
| р <del>т</del><br>1 |            | p5<br>2  | 0.023773 | 0.001120  | 21.110  | 70-05 | 2000 | 5000 | 0.001 |
| pī                  | p2         | рз       | 0.049736 | 0.00197   | 25.251  | 77979 | 20   | 5000 | 0.001 |
| p1                  | p2         | p4       | 0.050978 | 0.001947  | 26.186  | 78485 | 20   | 5000 | 0.001 |
| p1                  | p2         | p5       | 0.052709 | 0.002069  | 25.476  | 78251 | 20   | 5000 | 0.001 |
| p2                  | p3         | p1       | 0.051424 | 0.00209   | 24.608  | 77979 | 20   | 5000 | 0.001 |
| n2                  | n3         | n4       | 0 051499 | 0.002049  | 25 131  | 78059 | 20   | 5000 | 0 001 |
| 24<br>27            | ~2         | ~-       | 0.051455 | 0.002040  | 20.101  | 70000 | 20   | 5000 | 0.001 |
| p∠                  | p3         | p5       | 0.055/12 | 0.002137  | 20.005  | 78080 | 20   | 5000 | 0.001 |
| p1                  | p4         | p2       | 0.049972 | 0.002082  | 23.999  | 78485 | 20   | 5000 | 0.001 |
| p1                  | p4         | р3       | 0.050254 | 0.002127  | 23.622  | 78162 | 20   | 5000 | 0.001 |
| p1                  | p5         | p2       | 0.047317 | 0.002016  | 23.474  | 78251 | 20   | 5000 | 0.001 |
| n1                  | n5         | n?       | 0.052704 | 0.002131  | 24 737  | 78450 | 20   | 5000 | 0 001 |
| n1                  | ~F         | 54<br>54 | 0.052704 | 0.002101  | 21.757  | 70160 | 20   | E000 | 0.001 |
| hī                  | b2         | p4       | 0.050/01 | 0.002053  | 24.094  | /8102 | 20   | 5000 | 0.001 |
| p2                  | p3         | pl       | 0.051424 | 0.00209   | 24.608  | /7979 | 20   | 5000 | 0.001 |
| p2                  | р3         | p4       | 0.051499 | 0.002049  | 25.131  | 78059 | 20   | 5000 | 0.001 |
| p2                  | р3         | p5       | 0.055712 | 0.002137  | 26.065  | 78080 | 20   | 5000 | 0.001 |

| n2               | n4        | n1                   | 0.047899  | 0.001978 | 24,214  | 78485         | 20   | 5000         | 0.001 |
|------------------|-----------|----------------------|-----------|----------|---------|---------------|------|--------------|-------|
| n2               | p/        | n3                   | 0.046717  | 0.001977 | 23 631  | 78059         | 20   | 5000         | 0.001 |
| μ <u>2</u>       | μ4<br>π.1 | μ3                   | 0.040717  | 0.001977 | 25.031  | 78033         | 20   | 5000         | 0.001 |
| p2               | p4        | p5                   | 0.052431  | 0.002061 | 25.445  | /8288         | 20   | 5000         | 0.001 |
| p2               | p5        | p1                   | 0.05057   | 0.002196 | 23.023  | 78251         | 20   | 5000         | 0.001 |
| p2               | p5        | р3                   | 0.051847  | 0.002121 | 24.444  | 78080         | 20   | 5000         | 0.001 |
| p2               | p5        | p4                   | 0.053394  | 0.00202  | 26.428  | 78288         | 20   | 5000         | 0.001 |
| n3               | n4        | n1                   | 0.050909  | 0.001897 | 26.831  | 78162         | 20   | 5000         | 0.001 |
| p3               | p1        | p1<br>p2             | 0.030303  | 0.002026 | 24.206  | 70102         | 20   | 5000<br>E000 | 0.001 |
| ha               | p4        | μz                   | 0.049459  | 0.002030 | 24.290  | 78039         | 20   | 5000         | 0.001 |
| p3               | p4        | р5                   | 0.057621  | 0.002192 | 26.292  | //860         | 20   | 5000         | 0.001 |
| р3               | p5        | p1                   | 0.048466  | 0.002047 | 23.672  | 78450         | 20   | 5000         | 0.001 |
| p3               | p5        | p2                   | 0.044378  | 0.001963 | 22.612  | 78080         | 20   | 5000         | 0.001 |
| n3               | n5        | n4                   | 0 04824   | 0 002055 | 23 475  | 77860         | 20   | 5000         | 0.001 |
| p3               | pS        | p1                   | 0.01021   | 0.00107  | 24 452  | 70160         | 20   | 5000<br>E000 | 0.001 |
| μ4<br>•          | ha        | μı                   | 0.040174  | 0.00197  | 24.452  | 78102         | 20   | 5000         | 0.001 |
| р4               | p5        | p2                   | 0.04759   | 0.002063 | 23.064  | /8288         | 20   | 5000         | 0.001 |
| p4               | p5        | р3                   | 0.049959  | 0.002239 | 22.315  | 77860         | 20   | 5000         | 0.001 |
| p1               | p2        | р3                   | 0.030056  | 0.001295 | 23.213  | 78355         | 4000 | 5000         | 0.001 |
| p1               | p2        | p4                   | 0.046173  | 0.001503 | 30.729  | 81882         | 4000 | 5000         | 0.001 |
| r=<br>n1         | n2        | n5                   | 0.067703  | 0.002002 | 33.81   | 8161/         | 1000 | 5000         | 0.001 |
| -2<br>-2         | μ2<br>π2  | μ5<br>π1             | 0.007703  | 0.002002 | 21 100  | 70255         | 4000 | 5000         | 0.001 |
| pz               | p3        | pı                   | 0.025802  | 0.001217 | 21.199  | /8355         | 4000 | 5000         | 0.001 |
| p2               | р3        | p4                   | 0.020015  | 0.001123 | 17.83   | 81493         | 4000 | 5000         | 0.001 |
| p2               | р3        | p5                   | 0.04211   | 0.001569 | 26.837  | 81954         | 4000 | 5000         | 0.001 |
| p1               | p4        | p2                   | -0.00215  | 0.000904 | -2.374  | 81882         | 4000 | 5000         | 0.001 |
| n1               | n4        | n3                   | 0 003712  | 0 000983 | 3 777   | 82024         | 4000 | 5000         | 0.001 |
| р <u>т</u><br>n1 | pΓ        | p5<br>n2             | 0.0007.12 | 0.000047 | 2 1 2 0 | 01614         | 4000 | 5000         | 0.001 |
| pı               | p5        | pz                   | -0.00203  | 0.000947 | -2.139  | 81614         | 4000 | 5000         | 0.001 |
| p1               | p5        | р3                   | 0.00488   | 0.001049 | 4.654   | 82529         | 4000 | 5000         | 0.001 |
| p1               | p5        | p4                   | 0.000767  | 0.001056 | 0.727   | 82382         | 4000 | 5000         | 0.001 |
| p2               | p3        | p1                   | 0.025802  | 0.001217 | 21.199  | 78355         | 4000 | 5000         | 0.001 |
| n2               | n3        | n4                   | 0 020015  | 0.001123 | 17 83   | 81493         | 4000 | 5000         | 0.001 |
| n2               | p3        | p                    | 0.020015  | 0.001120 | 26.007  | 910E4         | 4000 | 5000<br>E000 | 0.001 |
| μz               | ha        | h2                   | 0.04211   | 0.001309 | 20.657  | 01954         | 4000 | 5000         | 0.001 |
| p2               | p4        | p1                   | 0.026388  | 0.001284 | 20.548  | 81882         | 4000 | 5000         | 0.001 |
| p2               | p4        | р3                   | 0.004284  | 0.000916 | 4.675   | 81493         | 4000 | 5000         | 0.001 |
| p2               | p4        | p5                   | 0.021218  | 0.00132  | 16.072  | 82239         | 4000 | 5000         | 0.001 |
| p2               | p5        | p1                   | 0.026264  | 0.00132  | 19.894  | 81614         | 4000 | 5000         | 0.001 |
| n2               | р5<br>р5  | p-<br>p2             | 0.005221  | 0.000080 | 5 280   | 8105 <i>1</i> | 4000 | 5000         | 0.001 |
| μ2               | p5        | μ3                   | 0.005551  | 0.000989 | 5.365   | 01934         | 4000 | 5000         | 0.001 |
| p2               | p5        | p4                   | 0.000648  | 0.000925 | 0.7     | 82239         | 4000 | 5000         | 0.001 |
| р3               | p4        | p1                   | 0.052836  | 0.001657 | 31.884  | 82024         | 4000 | 5000         | 0.001 |
| р3               | p4        | p2                   | 0.024056  | 0.001111 | 21.654  | 81493         | 4000 | 5000         | 0.001 |
| p3               | p4        | <b>5</b> α           | 0.022283  | 0.001254 | 17.763  | 78523         | 4000 | 5000         | 0.001 |
| n3               | n5        | n1                   | 0.051638  | 0.00178  | 29 007  | 82529         | 4000 | 5000         | 0.001 |
| -2               | р5<br>"Г  | -2<br>2              | 0.001000  | 0.00170  | 10.071  | 02023         | 4000 | 5000         | 0.001 |
| рз               | p5        | p2                   | 0.023015  | 0.001207 | 19.071  | 81954         | 4000 | 5000         | 0.001 |
| p3               | p5        | p4                   | -0.00039  | 0.000899 | -0.436  | 78523         | 4000 | 5000         | 0.001 |
| p4               | p5        | p1                   | 0.073315  | 0.002001 | 36.64   | 82382         | 4000 | 5000         | 0.001 |
| p4               | p5        | p2                   | 0.043455  | 0.001403 | 30.967  | 82239         | 4000 | 5000         | 0.001 |
| n4               | n5        | n3                   | 0 024835  | 0.001101 | 22 556  | 78523         | 4000 | 5000         | 0.001 |
| р і<br>n1        | p2        | p3                   | 0.027705  | 0.00160  | 22.330  | 70323         | E0   | 5000<br>E000 | 0.001 |
| μı               | μz        | p3                   | 0.037705  | 0.00169  | 22.313  | /81//         | 50   | 5000         | 0.001 |
| p1               | p2        | p4                   | 0.048419  | 0.001862 | 26.011  | 78347         | 50   | 5000         | 0.001 |
| p1               | p2        | р5                   | 0.053415  | 0.002098 | 25.458  | 78420         | 50   | 5000         | 0.001 |
| p2               | p3        | p1                   | 0.054316  | 0.00209  | 25.986  | 78177         | 50   | 5000         | 0.001 |
| p2               | p3        | p4                   | 0.045742  | 0.001861 | 24.582  | 78081         | 50   | 5000         | 0.001 |
| n2               | n3        | n5                   | 0 053955  | 0.002108 | 25 597  | 79281         | 50   | 5000         | 0.001 |
| μ <u>2</u><br>n1 | p5<br>p4  | p5<br>n2             | 0.033333  | 0.002100 | 23.557  | 79201         | 50   | 5000         | 0.001 |
| μı               | p4        | μz                   | 0.044137  | 0.001873 | 23.502  | /834/         | 50   | 5000         | 0.001 |
| p1               | p4        | p3                   | 0.035061  | 0.001727 | 20.303  | 79376         | 50   | 5000         | 0.001 |
| p1               | p5        | p2                   | 0.042539  | 0.001814 | 23.45   | 78420         | 50   | 5000         | 0.001 |
| p1               | p5        | p3                   | 0.038238  | 0.001803 | 21.212  | 80492         | 50   | 5000         | 0.001 |
| n1               | n5        | n4                   | 0 038831  | 0 001738 | 22 348  | 78769         | 50   | 5000         | 0.001 |
| ~ <u>7</u>       | p3        | р <del>т</del><br>"1 | 0.050051  | 0.001/30 | 22.540  | 70705         | 50   | 5000         | 0.001 |
| μz               | p3        | рт                   | 0.054316  | 0.00209  | 25.980  | /81//         | 50   | 5000         | 0.001 |
| p2               | рЗ        | p4                   | 0.045742  | 0.001861 | 24.582  | 78081         | 50   | 5000         | 0.001 |
| p2               | р3        | p5                   | 0.053955  | 0.002108 | 25.597  | 79281         | 50   | 5000         | 0.001 |
| p2               | p4        | p1                   | 0.044596  | 0.001929 | 23.123  | 78347         | 50   | 5000         | 0.001 |
| p2               | p4        | p3                   | 0.025573  | 0.001597 | 16.012  | 78081         | 50   | 5000         | 0.001 |
| n2               | - ·<br>n/ |                      | 0.042010  | 0.001050 | 22 262  | 79509         | 50   | 5000         | 0.001 |
| μ <u>2</u>       | P4        | h2                   | 0.045010  | 0.001939 | 22.303  | 70520         | 50   | 5000         | 0.001 |
| p2               | р5        | pı                   | 0.0462    | 0.001878 | 24.595  | /8420         | 50   | 5000         | 0.001 |
| p2               | p5        | р3                   | 0.030316  | 0.001633 | 18.56   | 79281         | 50   | 5000         | 0.001 |
| p2               | p5        | p4                   | 0.040414  | 0.00177  | 22.827  | 78598         | 50   | 5000         | 0.001 |
| ВЗ               | p4        | n1                   | 0.057025  | 0.002109 | 27.035  | 79376         | 50   | 5000         | 0.001 |
| n3               | n/        | n?                   | 0.046830  | 0 001720 | 27 002  | 78091         | 50   | 5000         | 0.001 |
| 59<br>29         | ~1<br>P-1 | <u>م</u> د           | 0.040035  | 0.001723 | 27.023  | 70676         | 50   | 5000         | 0.001 |
| h2               | p4        | p5                   | 0.048622  | 0.001954 | 24.88/  | /80/0         | 50   | 5000         | 0.001 |
| р3               | p5        | p1                   | 0.05377   | 0.002011 | 26.735  | 80492         | 50   | 5000         | 0.001 |
| р3               | p5        | p2                   | 0.041995  | 0.001681 | 24.983  | 79281         | 50   | 5000         | 0.001 |
| р3               | p5        | p4                   | 0.035614  | 0.001759 | 20.253  | 78676         | 50   | 5000         | 0.001 |
| p4               | 2α        | p1                   | 0.054303  | 0.002113 | 25.701  | 78769         | 50   | 5000         | 0.001 |
|                  | r -       | r –                  |           |          |         |               |      |              |       |

| n4                   | n5                   | n2                   | 0.052215  | 0.00203  | 25 717  | 78598  | 50   | 5000 | 0 001 |
|----------------------|----------------------|----------------------|-----------|----------|---------|--------|------|------|-------|
| p1                   | p<br>p<br>E          | n2                   | 0.025591  | 0.001747 | 20.266  | 70676  | EO   | 5000 | 0.001 |
| μ4<br>- 1            | 45<br>12             | h2                   | 0.055561  | 0.001747 | 20.500  | 70070  | 50   | 5000 | 0.001 |
| p1                   | p2                   | р3                   | 0.04238   | 0.001879 | 22.553  | /893/  | 0    | 5000 | 0.01  |
| p1                   | p2                   | p4                   | 0.050589  | 0.002044 | 24.75   | 78318  | 0    | 5000 | 0.01  |
| p1                   | p2                   | p5                   | 0.052067  | 0.002113 | 24.647  | 77730  | 0    | 5000 | 0.01  |
| p2                   | p3                   | p1                   | 0.048243  | 0.002007 | 24.041  | 78937  | 0    | 5000 | 0.01  |
| n2                   | n3                   | n4                   | 0.046216  | 0 001927 | 23.98   | 78522  | 0    | 5000 | 0.01  |
| 24<br>2              | p3                   | р <del>т</del><br>рГ | 0.040210  | 0.001327 | 23.50   | 70522  | 0    | 5000 | 0.01  |
| pz                   | p3                   | μs                   | 0.050637  | 0.002107 | 24.031  | /801/  | 0    | 5000 | 0.01  |
| p1                   | p4                   | p2                   | 0.0506    | 0.002175 | 23.264  | 78318  | 0    | 5000 | 0.01  |
| p1                   | p4                   | р3                   | 0.038028  | 0.001835 | 20.729  | 78155  | 0    | 5000 | 0.01  |
| p1                   | p5                   | p2                   | 0.049144  | 0.002167 | 22.674  | 77730  | 0    | 5000 | 0.01  |
| n1                   | n5                   | n3                   | 0 040966  | 0 001762 | 23 244  | 78173  | 0    | 5000 | 0.01  |
| р±<br>р1             | p5<br>pE             | p3<br>p4             | 0.010900  | 0.001702 | 22.211  | 70170  | 0    | 5000 | 0.01  |
| pi                   | h2                   | μ4                   | 0.031988  | 0.002213 | 25.469  | 77701  | 0    | 5000 | 0.01  |
| p2                   | рЗ                   | p1                   | 0.048243  | 0.002007 | 24.041  | /893/  | 0    | 5000 | 0.01  |
| p2                   | р3                   | p4                   | 0.046216  | 0.001927 | 23.98   | 78522  | 0    | 5000 | 0.01  |
| p2                   | р3                   | p5                   | 0.050637  | 0.002107 | 24.031  | 78617  | 0    | 5000 | 0.01  |
| p2                   | p4                   | p1                   | 0.050148  | 0.00215  | 23.321  | 78318  | 0    | 5000 | 0.01  |
| n2                   | n4                   | n3                   | 0 039912  | 0 001852 | 21 554  | 78522  | 0    | 5000 | 0.01  |
| 24<br>2              | р <del>т</del><br>л/ | р5<br>»Г             | 0.0533312 | 0.001052 | 21.004  | 70522  | 0    | 5000 | 0.01  |
| μz                   | P4                   | p5                   | 0.055470  | 0.002002 | 25.951  | 77915  | 0    | 5000 | 0.01  |
| p2                   | р5                   | p1                   | 0.051609  | 0.002017 | 25.583  | ///30  | 0    | 5000 | 0.01  |
| p2                   | p5                   | р3                   | 0.044295  | 0.001922 | 23.042  | 78617  | 0    | 5000 | 0.01  |
| p2                   | p5                   | p4                   | 0.05344   | 0.002216 | 24.111  | 77915  | 0    | 5000 | 0.01  |
| p3                   | p4                   | p1                   | 0.052645  | 0.002069 | 25.443  | 78155  | 0    | 5000 | 0.01  |
| n2                   | n/                   | n2                   | 0.05/001  | 0.002052 | 26.9    | 79522  | 0    | 5000 | 0.01  |
| h2                   | P4                   | μz                   | 0.054991  | 0.002032 | 20.8    | 76522  | 0    | 5000 | 0.01  |
| рЗ                   | p4                   | р5                   | 0.057911  | 0.00223  | 25.965  | ///90  | 0    | 5000 | 0.01  |
| р3                   | p5                   | p1                   | 0.049672  | 0.002141 | 23.198  | 78173  | 0    | 5000 | 0.01  |
| р3                   | p5                   | p2                   | 0.050569  | 0.002096 | 24.129  | 78617  | 0    | 5000 | 0.01  |
| p3                   | p5                   | p4                   | 0.049035  | 0.002155 | 22.755  | 77790  | 0    | 5000 | 0.01  |
| p/                   | n5                   | n1                   | 0.048739  | 0.002018 | 24 156  | 77701  | 0    | 5000 | 0.01  |
| р <del>4</del><br>ъ4 | р5<br>~Г             | p1<br>2              | 0.040733  | 0.002018 | 24.130  | 7701   | 0    | 5000 | 0.01  |
| p4                   | p5                   | p2                   | 0.047739  | 0.002162 | 22.078  | //915  | 0    | 5000 | 0.01  |
| p4                   | p5                   | р3                   | 0.037106  | 0.001806 | 20.548  | 77790  | 0    | 5000 | 0.01  |
| p1                   | p2                   | р3                   | 0.001033  | 0.000664 | 1.556   | 82590  | 1000 | 5000 | 0.01  |
| p1                   | p2                   | p4                   | 0.004448  | 0.000732 | 6.076   | 83193  | 1000 | 5000 | 0.01  |
| n1                   | '<br>n2              | n5                   | 0 005574  | 0 000692 | 8 057   | 83444  | 1000 | 5000 | 0.01  |
| p-<br>p2             | n2                   | p0<br>n1             | 0.002171  | 0.000671 | 4 725   | 82500  | 1000 | 5000 | 0.01  |
| μ <u>2</u>           | p3                   | p1                   | 0.003171  | 0.000071 | 4.725   | 82350  | 1000 | 5000 | 0.01  |
| p2                   | рз                   | p4                   | 0.002806  | 0.00073  | 3.845   | 83354  | 1000 | 5000 | 0.01  |
| p2                   | р3                   | p5                   | 0.005468  | 0.000687 | 7.958   | 83626  | 1000 | 5000 | 0.01  |
| p1                   | p4                   | p2                   | -0.00132  | 0.000668 | -1.981  | 83193  | 1000 | 5000 | 0.01  |
| p1                   | p4                   | p3                   | -0.00062  | 0.000659 | -0.935  | 83551  | 1000 | 5000 | 0.01  |
| n1                   | n5                   | n2                   | -0.00028  | 0 000668 | -0 418  | 83444  | 1000 | 5000 | 0.01  |
| р <u>т</u><br>р1     | р5<br>рБ             | p2<br>p2             | 0.00020   | 0.000000 | 1 207   | 03444  | 1000 | 5000 | 0.01  |
| pi                   | - p2                 | h2                   | 0.000920  | 0.000715 | 1.297   | 03033  | 1000 | 5000 | 0.01  |
| p1                   | р5                   | p4                   | -0.0003   | 0.000661 | -0.46   | 83074  | 1000 | 5000 | 0.01  |
| p2                   | р3                   | p1                   | 0.003171  | 0.000671 | 4.725   | 82590  | 1000 | 5000 | 0.01  |
| p2                   | р3                   | p4                   | 0.002806  | 0.00073  | 3.845   | 83354  | 1000 | 5000 | 0.01  |
| n2                   | n3                   | n5                   | 0.005468  | 0.000687 | 7,958   | 83626  | 1000 | 5000 | 0.01  |
| p-<br>p2             | p0<br>n4             | p0<br>n1             | 0.002025  | 0.000662 | 1 5 8 5 | 82102  | 1000 | 5000 | 0.01  |
| μ2<br>2              | p4                   | -2                   | 0.003033  | 0.000002 | 4.305   | 03155  | 1000 | 5000 | 0.01  |
| p2                   | p4                   | р3                   | -0.00075  | 0.000641 | -1.1/4  | 83354  | 1000 | 5000 | 0.01  |
| p2                   | p4                   | p5                   | 0.000844  | 0.000648 | 1.301   | 83007  | 1000 | 5000 | 0.01  |
| p2                   | p5                   | p1                   | 0.001989  | 0.000635 | 3.133   | 83444  | 1000 | 5000 | 0.01  |
| p2                   | p5                   | p3                   | -0.00026  | 0.000659 | -0.393  | 83626  | 1000 | 5000 | 0.01  |
| n2                   | n5                   | n4                   | -0.00135  | 0.000639 | -2.109  | 83007  | 1000 | 5000 | 0.01  |
| n2                   | p0<br>n4             | p1                   | 0.004915  | 0.000722 | 6 668   | 92551  | 1000 | 5000 | 0.01  |
| p3                   | P4                   | p1                   | 0.004813  | 0.000722 | 0.008   | 03351  | 1000 | 5000 | 0.01  |
| p3                   | p4                   | p2                   | 0.000319  | 0.000655 | 0.487   | 83354  | 1000 | 5000 | 0.01  |
| р3                   | p4                   | p5                   | 0.001333  | 0.000727 | 1.834   | 82729  | 1000 | 5000 | 0.01  |
| р3                   | p5                   | p1                   | 0.003277  | 0.000664 | 4.933   | 83655  | 1000 | 5000 | 0.01  |
| <b>£</b> 3           | <b>ρ</b> 5           | p2                   | -0.00017  | 0.000644 | -0.268  | 83626  | 1000 | 5000 | 0.01  |
| n3                   | n5                   | n4                   | -0 00184  | 0.000605 | -3 039  | 82729  | 1000 | 5000 | 0.01  |
| p3                   | р5<br>"Г             | p1                   | 0.007702  | 0.000713 | 10.044  | 02725  | 1000 | 5000 | 0.01  |
| p4                   | p5                   | pi                   | 0.007793  | 0.000712 | 10.944  | 83074  | 1000 | 5000 | 0.01  |
| p4                   | р5                   | p2                   | 0.004476  | 0.000736 | 6.078   | 83007  | 1000 | 5000 | 0.01  |
| p4                   | p5                   | р3                   | 0.003916  | 0.000706 | 5.546   | 82729  | 1000 | 5000 | 0.01  |
| p1                   | p2                   | p3                   | 0.008827  | 0.000835 | 10.573  | 82455  | 100  | 5000 | 0.01  |
| p1                   | p2                   | p4                   | 0.017872  | 0.001017 | 17.575  | 83115  | 100  | 5000 | 0.01  |
| n1                   | n?                   | n5                   | 0 03127/  | 0.00126  | 74 821  | 83/197 | 100  | 5000 | 0.01  |
| њт<br>Мт             | μ <u>2</u>           | P2                   | 0.031274  | 0.00120  | 24.001  | 03407  | 100  | 5000 | 0.01  |
| pz                   | рз                   | рт                   | 0.00825   | 0.000807 | 10.219  | 82455  | 100  | 5000 | 0.01  |
| p2                   | р3                   | p4                   | 0.005881  | 0.000812 | 7.241   | 83942  | 100  | 5000 | 0.01  |
| p2                   | р3                   | p5                   | 0.017915  | 0.001052 | 17.03   | 84051  | 100  | 5000 | 0.01  |
| p1                   | p4                   | p2                   | -0.00468  | 0.000749 | -6.252  | 83115  | 100  | 5000 | 0.01  |
| p1                   | n4                   | n3                   | -0.00305  | 0.000731 | -4.18   | 83946  | 100  | 5000 | 0.01  |
| r-<br>n1             | рт<br>рЕ             | 24<br>02             | 0.00365   | 0.000731 | 1.10    | 02/07  | 100  | E000 | 0.01  |
| hT                   | h2                   | μz                   | -0.00300  | 0.00082  | -4.40/  | 0348/  | 100  | 5000 | 0.01  |
| p1                   | р5                   | p3                   | -0.00415  | 0.000742 | -5.601  | 84022  | 100  | 5000 | 0.01  |
| p1                   | p5                   | p4                   | -0.00299  | 0.000906 | -3.297  | 83305  | 100  | 5000 | 0.01  |

| n2             | n3             | n1             | 0 00825   | 0 000807  | 10 219 | 82455  | 100  | 5000 | 0.01 |
|----------------|----------------|----------------|-----------|-----------|--------|--------|------|------|------|
| P2             | p5<br>         | p1             | 0.00025   | 0.000007  | 7.244  | 02455  | 100  | 5000 | 0.01 |
| pz             | p3             | p4             | 0.005881  | 0.000812  | 7.241  | 83942  | 100  | 5000 | 0.01 |
| p2             | р3             | p5             | 0.017915  | 0.001052  | 17.03  | 84051  | 100  | 5000 | 0.01 |
| p2             | p4             | p1             | 0.009285  | 0.000846  | 10.979 | 83115  | 100  | 5000 | 0.01 |
| n2             | n/             | n2             | 0 00204   | 0 000685  | 2 082  | 820/12 | 100  | 5000 | 0.01 |
| μz             | р4             | μ <u>5</u>     | -0.00204  | 0.000085  | -2.962 | 05942  | 100  | 5000 | 0.01 |
| p2             | p4             | p5             | 0.010006  | 0.000886  | 11.292 | 83296  | 100  | 5000 | 0.01 |
| p2             | p5             | p1             | 0.008251  | 0.00085   | 9.703  | 83487  | 100  | 5000 | 0.01 |
| n2             | n5             | n3             | -0.00415  | 0 000704  | -5 896 | 84051  | 100  | 5000 | 0.01 |
| -2<br>2        | р5<br>Г        | p5             | 0.00413   | 0.000704  | 5.050  | 07001  | 100  | 5000 | 0.01 |
| pz             | p5             | p4             | -0.00401  | 0.000772  | -5.188 | 83296  | 100  | 5000 | 0.01 |
| р3             | p4             | p1             | 0.020422  | 0.001014  | 20.134 | 83946  | 100  | 5000 | 0.01 |
| p3             | p4             | p2             | 0.00731   | 0.000885  | 8.256  | 83942  | 100  | 5000 | 0.01 |
| n2             | n4             | n5             | 0 007824  | 0.00086   | 0 105  | 01710  | 100  | 5000 | 0.01 |
| p3             | μ4<br>-        | p5             | 0.007834  | 0.00080   | 9.105  | 81/18  | 100  | 5000 | 0.01 |
| p3             | p5             | p1             | 0.02155   | 0.00104   | 20.725 | 84022  | 100  | 5000 | 0.01 |
| р3             | p5             | p2             | 0.00944   | 0.000946  | 9.98   | 84051  | 100  | 5000 | 0.01 |
| n3             | p5             | n4             | -0.00188  | 0.000774  | -2.425 | 81718  | 100  | 5000 | 0.01 |
| p4             | pE             | p1             | 0.020450  | 0.001100  | 25 622 | 0220E  | 100  | 5000 | 0.01 |
| μ4             | h2             | pi             | 0.050459  | 0.001166  | 25.055 | 85505  | 100  | 5000 | 0.01 |
| p4             | p5             | p2             | 0.017199  | 0.000995  | 17.293 | 83296  | 100  | 5000 | 0.01 |
| p4             | p5             | р3             | 0.005643  | 0.000807  | 6.99   | 81718  | 100  | 5000 | 0.01 |
| n1             | n2             | n3             | 0 002292  | 0 000664  | 3 45   | 83180  | 2000 | 5000 | 0.01 |
| p_<br>n1       | p-<br>n2       | p0<br>p1       | 0.005402  | 0.000683  | 0.027  | 02220  | 2000 | 5000 | 0.01 |
| рт             | pΖ             | p4             | 0.005493  | 0.000683  | 8.037  | 83337  | 2000 | 5000 | 0.01 |
| p1             | p2             | p5             | 0.013361  | 0.000852  | 15.684 | 83121  | 2000 | 5000 | 0.01 |
| p2             | p3             | p1             | 0.001744  | 0.000693  | 2.517  | 83180  | 2000 | 5000 | 0.01 |
| n2             | n3             | n/             | 0 002844  | 0 000657  | 1 320  | 8/1271 | 2000 | 5000 | 0.01 |
| p2             | p5             | р <del>4</del> | 0.002044  | 0.000057  | 4.525  | 04271  | 2000 | 5000 | 0.01 |
| p2             | p3             | p5             | 0.010668  | 0.000856  | 12.463 | 84068  | 2000 | 5000 | 0.01 |
| p1             | p4             | p2             | -0.00172  | 0.000652  | -2.643 | 83337  | 2000 | 5000 | 0.01 |
| n1             | n4             | n3             | -0.00036  | 0 000647  | -0 555 | 84244  | 2000 | 5000 | 0.01 |
| P1             | р і<br>Г       | -2             | 0.00000   | 0.0000017 | 2.217  | 01211  | 2000 | 5000 | 0.01 |
| рт             | μs             | ρΖ             | -0.00214  | 0.000646  | -3.317 | 83121  | 2000 | 5000 | 0.01 |
| p1             | p5             | р3             | -0.00036  | 0.000719  | -0.496 | 83837  | 2000 | 5000 | 0.01 |
| p1             | p5             | p4             | -0.0021   | 0.000674  | -3.106 | 82885  | 2000 | 5000 | 0.01 |
| n2             | ,<br>n3        | n1             | 0 001744  | 0 000693  | 2 517  | 83180  | 2000 | 5000 | 0.01 |
| μ <u>2</u>     | p5             | pi             | 0.001744  | 0.000055  | 2.517  | 00100  | 2000 | 5000 | 0.01 |
| p2             | р3             | p4             | 0.002844  | 0.000657  | 4.329  | 84271  | 2000 | 5000 | 0.01 |
| p2             | р3             | p5             | 0.010668  | 0.000856  | 12.463 | 84068  | 2000 | 5000 | 0.01 |
| p2             | p4             | p1             | 0.000987  | 0.000674  | 1.465  | 83337  | 2000 | 5000 | 0.01 |
| n)             | n4             | n2             | 0.00111   | 0 000600  | 1 972  | 9/271  | 2000 | 5000 | 0.01 |
| μ <u>2</u>     | р <del>4</del> | p5             | -0.00111  | 0.000005  | -1.025 | 04271  | 2000 | 5000 | 0.01 |
| p2             | p4             | p5             | 0.00564   | 0.000776  | 7.264  | 82850  | 2000 | 5000 | 0.01 |
| p2             | p5             | p1             | 0.001406  | 0.000695  | 2.024  | 83121  | 2000 | 5000 | 0.01 |
| p2             | p5             | p3             | -0.00069  | 0.000641  | -1.082 | 84068  | 2000 | 5000 | 0.01 |
| P-             | n5             | p4             | 0.00168   | 0.000667  | 2 510  | 92950  | 2000 | 5000 | 0.01 |
| μz             | p5             | P4             | -0.00108  | 0.000007  | -2.519 | 82850  | 2000 | 5000 | 0.01 |
| рЗ             | p4             | p1             | 0.004414  | 0.000736  | 5.995  | 84244  | 2000 | 5000 | 0.01 |
| p3             | p4             | p2             | 0.00093   | 0.000655  | 1.421  | 84271  | 2000 | 5000 | 0.01 |
| n3             | n4             | n5             | 0.006065  | 0.000766  | 7.924  | 82554  | 2000 | 5000 | 0.01 |
| p2             | ۳۰<br>۳۲       | рс<br>21       | 0.004411  | 0.000757  | F 927  | 02007  | 2000 | 5000 | 0.01 |
| рз             | p5             | рт             | 0.004411  | 0.000757  | 5.827  | 83837  | 2000 | 5000 | 0.01 |
| р3             | p5             | p2             | 0.000512  | 0.000699  | 0.732  | 84068  | 2000 | 5000 | 0.01 |
| p3             | p5             | p4             | -0.0021   | 0.000683  | -3.071 | 82554  | 2000 | 5000 | 0.01 |
| n/             | n5             | n1             | 0 008634  | 0 000767  | 11 25/ | 82885  | 2000 | 5000 | 0.01 |
| р <del>4</del> | р5<br>. Г      | P1             | 0.0000054 | 0.000707  | 7.204  | 02005  | 2000 | 5000 | 0.01 |
| p4             | р5             | p2             | 0.005465  | 0.000742  | 7.361  | 82850  | 2000 | 5000 | 0.01 |
| p4             | p5             | р3             | 0.003835  | 0.000703  | 5.456  | 82554  | 2000 | 5000 | 0.01 |
| p1             | p2             | p3             | 0.023656  | 0.001402  | 16.868 | 79588  | 20   | 5000 | 0.01 |
| n1             | n2             | n/             | 0 022467  | 0.001217  | 17 062 | 82601  | 20   | 5000 | 0.01 |
| pi             | μ <u>2</u>     | р <del>4</del> | 0.022407  | 0.001317  | 17.005 | 02051  | 20   | 5000 | 0.01 |
| p1             | p2             | р5             | 0.051795  | 0.001879  | 27.567 | 80828  | 20   | 5000 | 0.01 |
| p2             | р3             | p1             | 0.040958  | 0.001755  | 23.334 | 79588  | 20   | 5000 | 0.01 |
| p2             | p3             | p4             | 0.014993  | 0.00113   | 13.27  | 80978  | 20   | 5000 | 0.01 |
| n2             | n2             | n5             | 0 05/222  | 0 001792  | 30 /17 | 81076  | 20   | 5000 | 0.01 |
| μ <u>μ</u>     | μ.             | - P            | 0.00+222  | 0.001703  | 12.005 | 02000  | 20   | 5000 | 0.01 |
| p1             | p4             | p2             | 0.01/934  | 0.001284  | 13.965 | 82691  | 20   | 5000 | 0.01 |
| p1             | p4             | р3             | 0.015974  | 0.001324  | 12.062 | 82245  | 20   | 5000 | 0.01 |
| n1             | n5             | n2             | 0.021727  | 0.001457  | 14,913 | 80828  | 20   | 5000 | 0.01 |
| р-<br>р1       | рс<br>рЕ       | n2             | 0.026020  | 0.001622  | 15 044 | 00020  | 20   | 5000 | 0.01 |
| μт             | ha             | μs             | 0.020039  | 0.001055  | 15.944 | 02190  | 20   | 5000 | 0.01 |
| pl             | p5             | p4             | 0.007717  | 0.001151  | 6.706  | 81587  | 20   | 5000 | 0.01 |
| p2             | p3             | p1             | 0.040958  | 0.001755  | 23.334 | 79588  | 20   | 5000 | 0.01 |
| n2             | n3             | n4             | 0.014993  | 0.00113   | 13 27  | 80978  | 20   | 5000 | 0.01 |
| ~~<br>~?       |                | ۳ <sup>-</sup> | 0.014000  | 0.001702  | 20 447 | 01070  | 20   | 5000 | 0.01 |
| μz             | pЗ             | p5             | 0.054222  | 0.001783  | 30.417 | 910\P  | 20   | 5000 | 0.01 |
| p2             | p4             | p1             | 0.033393  | 0.001568  | 21.294 | 82691  | 20   | 5000 | 0.01 |
| p2             | p4             | £a             | 0.008561  | 0.001123  | 7.626  | 80978  | 20   | 5000 | 0.01 |
| n2             | n/             | n5             | 0 036326  | 0 001574  | 22 000 | 81787  | 20   | 5000 | 0.01 |
| μ <u>2</u>     | Р <del>4</del> | h2             | 0.030336  | 0.001374  | 23.030 | 01/02  | 20   | 5000 | 0.01 |
| p2             | р5             | pl             | 0.029544  | 0.001587  | 18.619 | 80828  | 20   | 5000 | 0.01 |
| p2             | р5             | р3             | 0.014852  | 0.001367  | 10.864 | 81076  | 20   | 5000 | 0.01 |
| p2             | p5             | p4             | 0.004046  | 0.001087  | 3.723  | 81782  | 20   | 5000 | 0.01 |
| n3             | n/             | n1             | 0.049705  | 0.001704  | 27.2   | 82215  | 20   | 5000 | 0.01 |
| 45             | Р <del>4</del> | hī             | 0.040/93  | 0.001/94  | 40.010 | 02243  | 20   | 5000 | 0.01 |
| рз             | p4             | p2             | 0.025656  | 0.001378  | 18.616 | 80978  | 20   | 5000 | 0.01 |
| р3             | p4             | p5             | 0.042765  | 0.00161   | 26.566 | 79529  | 20   | 5000 | 0.01 |
| £a             | n5             | p1             | 0.038526  | 0.001754  | 21.967 | 82196  | 20   | 5000 | 0.01 |
| 1° =           |                | r =            |           |           |        |        |      |      |      |

| £a                   | p5       | p2                   | 0.019331   | 0.001487  | 12.999        | 81076         | 20   | 5000 | 0.01 |
|----------------------|----------|----------------------|------------|-----------|---------------|---------------|------|------|------|
| n3                   | p5       | n4                   | -0.00208   | 0.001019  | -2.038        | 79529         | 20   | 5000 | 0.01 |
| n4                   | p5       | n1                   | 0.04886    | 0.001714  | 28.499        | 81587         | 20   | 5000 | 0.01 |
| n4                   | p5<br>n5 | μ=<br>n2             | 0.036964   | 0.001524  | 24 255        | 81782         | 20   | 5000 | 0.01 |
| n4                   | p5<br>n5 | n3                   | 0.026102   | 0.001359  | 19 203        | 79529         | 20   | 5000 | 0.01 |
| μ <del>4</del><br>n1 | p3       | p3                   | 0.020102   | 0.001555  | 2 914         | 82270         | 4000 | 5000 | 0.01 |
| рт<br>p1             | μ2<br>p2 | μ3<br>p4             | 0.002008   | 0.000084  | 7 506         | 030579        | 4000 | 5000 | 0.01 |
| μ1<br>21             | pz<br>n2 | p4                   | 0.005560   | 0.000709  | 7.590         | 03034         | 4000 | 5000 | 0.01 |
| pi                   | p2       | p5                   | 0.010582   | 0.00076   | 13.927        | 84390         | 4000 | 5000 | 0.01 |
| p2                   | рз       | pi                   | 0.000799   | 0.000595  | 1.342         | 83379         | 4000 | 5000 | 0.01 |
| p2                   | p3       | p4                   | 0.002168   | 0.000654  | 3.313         | 83574         | 4000 | 5000 | 0.01 |
| p2                   | p3       | p5                   | 0.005901   | 0.000694  | 8.508         | 83775         | 4000 | 5000 | 0.01 |
| p1                   | p4       | p2                   | -0.00014   | 0.000569  | -0.249        | 83854         | 4000 | 5000 | 0.01 |
| p1                   | p4       | р3                   | -0.00062   | 0.000628  | -0.982        | 83774         | 4000 | 5000 | 0.01 |
| p1                   | р5       | p2                   | -0.00032   | 0.000624  | -0.506        | 84390         | 4000 | 5000 | 0.01 |
| p1                   | р5       | р3                   | -0.00208   | 0.00061   | -3.413        | 84190         | 4000 | 5000 | 0.01 |
| p1                   | р5       | p4                   | -0.00104   | 0.000637  | -1.629        | 83558         | 4000 | 5000 | 0.01 |
| p2                   | р3       | p1                   | 0.000799   | 0.000595  | 1.342         | 83379         | 4000 | 5000 | 0.01 |
| p2                   | р3       | p4                   | 0.002168   | 0.000654  | 3.313         | 83574         | 4000 | 5000 | 0.01 |
| p2                   | р3       | p5                   | 0.005901   | 0.000694  | 8.508         | 83775         | 4000 | 5000 | 0.01 |
| p2                   | p4       | p1                   | 0.001363   | 0.000662  | 2.059         | 83854         | 4000 | 5000 | 0.01 |
| p2                   | p4       | p3                   | -5.1E-05   | 0.00064   | -0.079        | 83574         | 4000 | 5000 | 0.01 |
| p2                   | p4       | p5                   | 0.004157   | 0.000686  | 6.061         | 83443         | 4000 | 5000 | 0.01 |
| p2                   | p5       | p1                   | 0.001537   | 0.000699  | 2.199         | 84390         | 4000 | 5000 | 0.01 |
| n2                   | n5       | r-<br>n3             | -0.00134   | 0.00059   | -2 271        | 83775         | 4000 | 5000 | 0.01 |
| n2                   | p5<br>n5 | p3<br>n4             | -0.000251  | 0.000594  | -1 452        | 83443         | 4000 | 5000 | 0.01 |
| p2<br>p2             | p5<br>p4 | μ <del>4</del><br>n1 | 0.00000    | 0.000554  | 5 957         | 8277 <i>1</i> | 4000 | 5000 | 0.01 |
| p3<br>p3             | μ4<br>n4 | p1<br>p2             | 0.00401    | 0.000085  | J.857<br>4 91 | 03774         | 4000 | 5000 | 0.01 |
| p5                   | μ4<br>54 | μz                   | 0.003037   | 0.000030  | 4.01          | 03374         | 4000 | 5000 | 0.01 |
| p5                   | µ4       | μ5<br>π1             | 0.00287    | 0.000045  | 4.400         | 02407         | 4000 | 5000 | 0.01 |
| p3                   | p5       | p1                   | 0.005468   | 0.00073   | 7.485         | 84190         | 4000 | 5000 | 0.01 |
| рз                   | p5       | p2                   | 0.004335   | 0.000707  | 6.136         | 83775         | 4000 | 5000 | 0.01 |
| p3                   | p5       | p4                   | 0.000424   | 0.000636  | 0.667         | 82487         | 4000 | 5000 | 0.01 |
| p4                   | p5       | p1                   | 0.00///1   | 0.000767  | 10.128        | 83558         | 4000 | 5000 | 0.01 |
| p4                   | p5       | p2                   | 0.006068   | 0.000675  | 8.986         | 83443         | 4000 | 5000 | 0.01 |
| p4                   | p5       | р3                   | 0.001697   | 0.000639  | 2.657         | 82487         | 4000 | 5000 | 0.01 |
| p1                   | p2       | р3                   | 0.013778   | 0.000955  | 14.422        | 81109         | 50   | 5000 | 0.01 |
| p1                   | p2       | p4                   | 0.030635   | 0.00128   | 23.937        | 82560         | 50   | 5000 | 0.01 |
| p1                   | p2       | p5                   | 0.044198   | 0.001512  | 29.231        | 82577         | 50   | 5000 | 0.01 |
| p2                   | р3       | p1                   | 0.016432   | 0.000945  | 17.396        | 81109         | 50   | 5000 | 0.01 |
| p2                   | р3       | p4                   | 0.011304   | 0.000935  | 12.084        | 83208         | 50   | 5000 | 0.01 |
| p2                   | р3       | p5                   | 0.030696   | 0.001219  | 25.19         | 84322         | 50   | 5000 | 0.01 |
| p1                   | p4       | p2                   | -0.00632   | 0.000807  | -7.825        | 82560         | 50   | 5000 | 0.01 |
| p1                   | p4       | р3                   | -0.00534   | 0.000787  | -6.777        | 82996         | 50   | 5000 | 0.01 |
| p1                   | p5       | p2                   | -0.00451   | 0.000867  | -5.198        | 82577         | 50   | 5000 | 0.01 |
| p1                   | р5       | рЗ                   | 0.000688   | 0.000928  | 0.741         | 83672         | 50   | 5000 | 0.01 |
| p1                   | p5       | p4                   | 0.005496   | 0.001102  | 4.989         | 82507         | 50   | 5000 | 0.01 |
| p2                   | p3       | p1                   | 0.016432   | 0.000945  | 17.396        | 81109         | 50   | 5000 | 0.01 |
| n2                   | n3       | n4                   | 0.011304   | 0.000935  | 12.084        | 83208         | 50   | 5000 | 0.01 |
| n2                   | n3       | p5                   | 0.030696   | 0.001219  | 25.19         | 84322         | 50   | 5000 | 0.01 |
| n2                   | p3<br>n4 | p3<br>n1             | 0.017806   | 0.001047  | 17.006        | 82560         | 50   | 5000 | 0.01 |
| p2<br>n2             | р4<br>р4 | p1<br>n3             | -0.001/000 | 0.001047  | -5 756        | 83208         | 50   | 5000 | 0.01 |
| p2<br>p2             | ρ4<br>p4 | p5<br>p5             | 0.00401    | 0.0000007 | 17 205        | 82200         | 50   | 5000 | 0.01 |
| p2<br>p2             | p4       | μ5<br>n1             | 0.01850    | 0.001007  | 14.095        | 03272         | 50   | 5000 | 0.01 |
| μz<br>2              | μs       | p1<br>n2             | 0.013934   | 0.001003  | 14.965        | 02377         | 50   | 5000 | 0.01 |
| μ2<br>2              | μs       | p3                   | 0.000226   | 0.000808  | 0.28          | 84322         | 50   | 5000 | 0.01 |
| µ∠<br>¤2             | h2       | μ4<br>21             | 0.00368/   | 0.000933  | 3.933         | 03272         | 50   | 5000 | 0.01 |
| рз<br>               | p4       | p1                   | 0.036228   | 0.001358  | 20.0/4        | 82996         | 50   | 5000 | 0.01 |
| рЗ                   | p4       | p2                   | 0.012996   | 0.000887  | 14.649        | 83208         | 50   | 5000 | 0.01 |
| p3                   | p4       | р5                   | 0.022929   | 0.001114  | 20.582        | 80880         | 50   | 5000 | 0.01 |
| р3                   | p5       | p1                   | 0.029988   | 0.001369  | 21.91         | 83672         | 50   | 5000 | 0.01 |
| р3                   | p5       | p2                   | 0.008716   | 0.0009    | 9.681         | 84322         | 50   | 5000 | 0.01 |
| р3                   | р5       | p4                   | -0.0006    | 0.000831  | -0.719        | 80880         | 50   | 5000 | 0.01 |
| p4                   | р5       | p1                   | 0.043549   | 0.001497  | 29.095        | 82507         | 50   | 5000 | 0.01 |
| p4                   | р5       | p2                   | 0.020604   | 0.001078  | 19.108        | 83272         | 50   | 5000 | 0.01 |
| p4                   | р5       | р3                   | 0.007757   | 0.000869  | 8.928         | 80880         | 50   | 5000 | 0.01 |

**Table S4. Data underlying figure 4f.** Data underlying main figure 4f, showing f3-scores for population triplets, calculated with the software admixtools, for an in-silico meta-population, simulated with the software SLIM2, which experiences a pulse admixture event at t=0. See main text for more details.

| source1 | source2 | target   | f3       | std err  | Z       | n snps | n generations | Ne   | admix prop |
|---------|---------|----------|----------|----------|---------|--------|---------------|------|------------|
| p11     | p12     | p22      | 0.045134 | 0.001385 | 32.588  | 99899  | 0             | 5000 | 0.1        |
| p11     | p22     | p12      | -0.00462 | 0.000839 | -5.511  | 99899  | 0             | 5000 | 0.1        |
| p12     | p22     | p11      | 0.007532 | 0.000973 | 7.741   | 99899  | 0             | 5000 | 0.1        |
| p11     | p12     | p22      | 0.018104 | 0.000923 | 19.616  | 99909  | 0             | 5000 | 0.5        |
| p11     | p22     | p12      | -0.01202 | 0.000685 | -17.543 | 99909  | 0             | 5000 | 0.5        |
| p12     | p22     | p11      | 0.027579 | 0.001194 | 23.099  | 99909  | 0             | 5000 | 0.5        |
| p11     | p12     | p22      | 0.099499 | 0.002654 | 37.496  | 99874  | 1000          | 5000 | 0.1        |
| p11     | p22     | p12      | 0.05059  | 0.002191 | 23.085  | 99874  | 1000          | 5000 | 0.1        |
| p12     | p22     | p11      | 0.057703 | 0.002312 | 24.962  | 99874  | 1000          | 5000 | 0.1        |
| p11     | p12     | p22      | 0.076317 | 0.002284 | 33.419  | 99898  | 1000          | 5000 | 0.5        |
| p11     | p22     | p12      | 0.038285 | 0.002036 | 18.807  | 99898  | 1000          | 5000 | 0.5        |
| p12     | p22     | p11      | 0.080227 | 0.002605 | 30.801  | 99898  | 1000          | 5000 | 0.5        |
| p11     | p12     | p22      | 0.052752 | 0.001533 | 34.413  | 99912  | 100           | 5000 | 0.1        |
| p11     | p22     | p12      | 0.005117 | 0.001042 | 4.913   | 99912  | 100           | 5000 | 0.1        |
| p12     | p22     | p11      | 0.00964  | 0.001065 | 9.052   | 99912  | 100           | 5000 | 0.1        |
| p11     | p12     | p22      | 0.03009  | 0.001125 | 26.747  | 99865  | 100           | 5000 | 0.5        |
| p11     | p22     | p12      | -0.00641 | 0.000806 | -7.952  | 99865  | 100           | 5000 | 0.5        |
| p12     | p22     | p11      | 0.027314 | 0.001162 | 23.504  | 99865  | 100           | 5000 | 0.5        |
| p11     | p12     | p22      | 0.092385 | 0.002837 | 32.56   | 99907  | 1500          | 5000 | 0.5        |
| p11     | p22     | p12      | 0.066945 | 0.002472 | 27.086  | 99907  | 1500          | 5000 | 0.5        |
| p12     | p22     | p11      | 0.105233 | 0.002932 | 35.89   | 99907  | 1500          | 5000 | 0.5        |
| p11     | p12     | p22      | 0.139611 | 0.003678 | 37.963  | 99894  | 2000          | 5000 | 0.1        |
| p11     | p22     | p12      | 0.095668 | 0.003349 | 28.564  | 99894  | 2000          | 5000 | 0.1        |
| p12     | p22     | p11      | 0.111281 | 0.003558 | 31.279  | 99894  | 2000          | 5000 | 0.1        |
| p11     | p12     | p22      | 0.126908 | 0.003615 | 35.101  | 99906  | 2000          | 5000 | 0.5        |
| p11     | p22     | p12      | 0.08539  | 0.003125 | 27.325  | 99906  | 2000          | 5000 | 0.5        |
| p12     | p22     | p11      | 0.128442 | 0.003704 | 34.676  | 99906  | 2000          | 5000 | 0.5        |
| p11     | p12     | p22      | 0.057613 | 0.001713 | 33.641  | 99882  | 200           | 5000 | 0.1        |
| p11     | p22     | p12      | 0.003529 | 0.001012 | 3.486   | 99882  | 200           | 5000 | 0.1        |
| p12     | p22     | p11      | 0.011828 | 0.001061 | 11.15   | 99882  | 200           | 5000 | 0.1        |
| p11     | p12     | p22      | 0.03385  | 0.001285 | 26.334  | 99905  | 200           | 5000 | 0.5        |
| p11     | p22     | p12      | -0.00463 | 0.00085  | -5.451  | 99905  | 200           | 5000 | 0.5        |
| p12     | p22     | p11      | 0.035835 | 0.001392 | 25.745  | 99905  | 200           | 5000 | 0.5        |
| p11     | p12     | ,<br>p22 | 0.04951  | 0.001497 | 33.082  | 99891  | 20            | 5000 | 0.1        |
| p11     | p22     | p12      | -0.00475 | 0.000834 | -5.688  | 99891  | 20            | 5000 | 0.1        |
| p12     | p22     | p11      | 0.004968 | 0.000874 | 5.687   | 99891  | 20            | 5000 | 0.1        |
| p11     | p12     | p22      | 0.023817 | 0.001068 | 22.299  | 99854  | 20            | 5000 | 0.5        |
| p11     | p22     | p12      | -0.01037 | 0.000714 | -14.525 | 99854  | 20            | 5000 | 0.5        |
| p12     | p22     | p11      | 0.024908 | 0.001102 | 22.602  | 99854  | 20            | 5000 | 0.5        |
| p11     | p12     | p22      | 0.28244  | 0.006897 | 40.949  | 99891  | 4000          | 5000 | 0.1        |
| p11     | p22     | p12      | 0.179646 | 0.005119 | 35.094  | 99891  | 4000          | 5000 | 0.1        |
| p12     | p22     | p11      | 0.215134 | 0.005837 | 36.859  | 99891  | 4000          | 5000 | 0.1        |
| p11     | p12     | p22      | 0.228427 | 0.005949 | 38.395  | 99900  | 4000          | 5000 | 0.5        |
| p11     | p22     | p12      | 0.195271 | 0.005787 | 33.744  | 99900  | 4000          | 5000 | 0.5        |
| p12     | p22     | p11      | 0.261976 | 0.006775 | 38.669  | 99900  | 4000          | 5000 | 0.5        |
| p11     | p12     | p22      | 0.065659 | 0.001942 | 33.815  | 99892  | 400           | 5000 | 0.1        |
| p11     | p22     | p12      | 0.014488 | 0.001298 | 11.159  | 99892  | 400           | 5000 | 0.1        |
| p12     | p22     | p11      | 0.026666 | 0.00136  | 19.603  | 99892  | 400           | 5000 | 0.1        |
| p11     | p12     | ,<br>p22 | 0.044175 | 0.001623 | 27.217  | 99904  | 400           | 5000 | 0.5        |
| p11     | p22     | p12      | 0.00746  | 0.001238 | 6.025   | 99904  | 400           | 5000 | 0.5        |
| p12     | p22     | p11      | 0.046705 | 0.001566 | 29.822  | 99904  | 400           | 5000 | 0.5        |
| p11     | p12     | p22      | 0.044242 | 0.001326 | 33.361  | 99930  | 50            | 5000 | 0.1        |
| p11     | p22     | p12      | 0.000727 | 0.000948 | 0.767   | 99930  | 50            | 5000 | 0.1        |
| p12     | p22     | p11      | 0.005957 | 0.00091  | 6.544   | 99930  | 50            | 5000 | 0.1        |
| p11     | p12     | p22      | 0.029183 | 0.001136 | 25.695  | 99890  | 50            | 5000 | 0.5        |
| p11     | p22     | p12      | -0.00956 | 0.00073  | -13.093 | 99890  | 50            | 5000 | 0.5        |
| p12     | p22     | p11      | 0.026841 | 0.001166 | 23.014  | 99890  | 50            | 5000 | 0.5        |
| p11     | p12     | p22      | 0.057012 | 0.001842 | 30.954  | 99903  | 600           | 5000 | 0.5        |
| p12     | p22     | p11      | 0.055573 | 0.001766 | 31.475  | 99903  | 600           | 5000 | 0.5        |

|   | n11     | n12          | n22        | 0 067947  | 0.002028 | 33 513  | 99899 | 800  | 5000  | 0.5 |
|---|---------|--------------|------------|-----------|----------|---------|-------|------|-------|-----|
|   | p11     | p12          | p22        | 0.007.947 | 0.002020 | 16 755  | 00800 | 800  | 5000  | 0.5 |
|   | pII     | pzz          | p12        | 0.030189  | 0.001802 | 16.755  | 99899 | 800  | 5000  | 0.5 |
|   | p12     | p22          | p11        | 0.065893  | 0.002191 | 30.075  | 99899 | 800  | 5000  | 0.5 |
|   | p11     | p12          | p22        | 0.035587  | 0.001191 | 29.876  | 99892 | 0    | 10000 | 0.1 |
|   | p11     | p22          | p12        | -0.00533  | 0.0008   | -6.66   | 99892 | 0    | 10000 | 0.1 |
|   | n12     | p22          | p==<br>n11 | 0.008644  | 0.000011 | 0 / 90  | 00802 | 0    | 10000 | 0.1 |
|   | p12     | p22          | pii        | 0.008044  | 0.000911 | 9.489   | 3363Z | 0    | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.035057  | 0.001195 | 29.343  | 99907 | 0    | 10000 | 0.5 |
|   | p11     | p22          | p12        | -0.01109  | 0.000647 | -17.134 | 99907 | 0    | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.01378   | 0.000909 | 15.156  | 99907 | 0    | 10000 | 0.5 |
|   | n11     | n12          | n22        | 0 072297  | 0 001967 | 36 761  | 99908 | 1000 | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.072237  | 0.001300 | 12 614  | 00008 | 1000 | 10000 | 0.1 |
|   | pII     | pzz          | p12        | 0.010511  | 0.001309 | 12.014  | 99908 | 1000 | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.029028  | 0.001419 | 20.452  | 99908 | 1000 | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.050944  | 0.001817 | 28.03   | 99891 | 1000 | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.012748  | 0.001269 | 10.046  | 99891 | 1000 | 10000 | 0.5 |
|   | n12     | n22          | n11        | 0.050667  | 0.001711 | 29 606  | 00801 | 1000 | 10000 | 0.5 |
|   | P12     | p22          | -22        | 0.030007  | 0.001711 | 25.000  | 00000 | 1000 | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.048481  | 0.001316 | 36.836  | 99880 | 100  | 10000 | 0.1 |
|   | p11     | p22          | p12        | -0.00164  | 0.000802 | -2.046  | 99880 | 100  | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.004818  | 0.000914 | 5.273   | 99880 | 100  | 10000 | 0.1 |
|   | n11     | n12          | n22        | 0.032551  | 0.001266 | 25.711  | 99890 | 100  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.002001  | 0.001200 | 0.620   | 00800 | 100  | 10000 | 0.5 |
|   | pm      | pzz          | piz        | -0.0076   | 0.000789 | -9.629  | 99890 | 100  | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.024314  | 0.001131 | 21.494  | 99890 | 100  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.059261  | 0.001934 | 30.642  | 99935 | 1500 | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.026509  | 0.001628 | 16.284  | 99935 | 1500 | 10000 | 0.5 |
|   | n12     | n22          | n11        | 0.062307  | 0.002046 | 30.46   | 00035 | 1500 | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.002307  | 0.002040 | 30.40   | 33333 | 1300 | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.092591  | 0.002483 | 37.288  | 99900 | 2000 | 10000 | 0.1 |
|   | p11     | p22          | p12        | 0.04759   | 0.001901 | 25.037  | 99900 | 2000 | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.053443  | 0.002177 | 24.545  | 99900 | 2000 | 10000 | 0.1 |
|   | n11     | n12          | n22        | 0.07855   | 0.002371 | 33,129  | 99916 | 2000 | 10000 | 0.5 |
|   | p       | p            | p==<br>p12 | 0.02702   | 0.001774 | 21 206  | 00016 | 2000 | 10000 | 0.5 |
|   | pII     | pzz          | piz        | 0.05795   | 0.001774 | 21.560  | 99910 | 2000 | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.074415  | 0.002507 | 29.68   | 99916 | 2000 | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.049647  | 0.001465 | 33.882  | 99889 | 200  | 10000 | 0.1 |
|   | p11     | p22          | p12        | -0.00176  | 0.000889 | -1.974  | 99889 | 200  | 10000 | 0.1 |
|   | n12     | n22          | n11        | 0.011252  | 0.001005 | 11 194  | 99889 | 200  | 10000 | 0.1 |
|   | p12     | p22          | -22        | 0.011232  | 0.001005 | 25.400  | 00000 | 200  | 10000 | 0.1 |
|   | pm      | piz          | pzz        | 0.030919  | 0.001217 | 25.406  | 99890 | 200  | 10000 | 0.5 |
|   | p11     | p22          | p12        | -0.00833  | 0.000789 | -10.563 | 99896 | 200  | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.029959  | 0.001219 | 24.578  | 99896 | 200  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.043921  | 0.001403 | 31.296  | 99876 | 20   | 10000 | 0.1 |
|   | n11     | n22          | n12        | -0.00138  | 0.000786 | -1 752  | 99876 | 20   | 10000 | 0.1 |
|   | pII     | p22          | p12        | -0.00138  | 0.000780 | -1.752  | 99870 | 20   | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.003757  | 0.000871 | 4.315   | 99876 | 20   | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.0265    | 0.00113  | 23.447  | 99876 | 20   | 10000 | 0.5 |
|   | p11     | p22          | p12        | -0.01021  | 0.000747 | -13.676 | 99876 | 20   | 10000 | 0.5 |
|   | n12     | n22          | n11        | 0.025515  | 0.001108 | 23.03   | 99876 | 20   | 10000 | 0.5 |
|   | P12     | p22          | -22        | 0.023313  | 0.001100 | 25.05   | 00000 | 20   | 10000 | 0.5 |
|   | pII     | piz          | p22        | 0.031371  | 0.001243 | 25.246  | 99902 | 300  | 10000 | 0.5 |
|   | p11     | p22          | p12        | -0.00239  | 0.000959 | -2.495  | 99902 | 300  | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.035788  | 0.001405 | 25.466  | 99902 | 300  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.143337  | 0.00369  | 38.849  | 99915 | 4000 | 10000 | 0.1 |
|   | n11     | n22          | n12        | 0 00/003  | 0.002925 | 32 168  | 00015 | 4000 | 10000 | 0.1 |
|   | p11<br> | p22          | p12        | 0.004000  | 0.002020 | 32.100  | 00015 | 4000 | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.097219  | 0.002922 | 33.273  | 99915 | 4000 | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.116101  | 0.003349 | 34.666  | 99928 | 4000 | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.089398  | 0.002838 | 31.503  | 99928 | 4000 | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.116472  | 0.00343  | 33.953  | 99928 | 4000 | 10000 | 0.5 |
|   | n11     | n12          | n22        | 0.051512  | 0.001513 | 34 041  | 00017 | 400  | 10000 | 0.1 |
|   | P11<br> | p12          | μ22<br>#12 | 0.001012  | 0.001313 | 2 0 5 6 | 00017 | 400  | 10000 | 0.1 |
|   | p11     | p22          | p12        | 0.002789  | 0.000943 | 2.956   | 99917 | 400  | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.017653  | 0.001218 | 14.495  | 99917 | 400  | 10000 | 0.1 |
|   | p11     | p12          | p22        | 0.03642   | 0.001433 | 25.419  | 99895 | 400  | 10000 | 0.5 |
|   | n11     | n22          | n12        | -0.00245  | 0.000907 | -2.696  | 99895 | 400  | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.002105  | 0.001222 | 2.000   | 00805 | 400  | 10000 | 0.5 |
|   | hts     | μ22          | htt        | 0.032103  | 0.001222 | 20.20   | 22022 | 400  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.046766  | 0.00137  | 34.129  | 99902 | 50   | 10000 | 0.1 |
|   | p11     | p22          | p12        | -0.00022  | 0.000862 | -0.255  | 99902 | 50   | 10000 | 0.1 |
|   | p12     | p22          | p11        | 0.00421   | 0.000894 | 4.708   | 99902 | 50   | 10000 | 0.1 |
|   | n11     | n12          | ,<br>n22   | 0 02328   | 0 00113  | 20 822  | 99862 | 50   | 10000 | 0.5 |
|   | P11     | ~22<br>h17   | -12        | 0.02330   | 0.00113  | 10.072  | 00002 | 50   | 10000 | 0.5 |
|   | p11     | p22          | p12        | -0.01097  | 0.000/2/ | -12.088 | 99862 | 50   | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.025282  | 0.001039 | 24.324  | 99862 | 50   | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.040283  | 0.001483 | 27.162  | 99905 | 600  | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.002717  | 0.00101  | 2.69    | 99905 | 600  | 10000 | 0.5 |
|   | n17     | n22          | n11        | 0.044755  | 0 001527 | 20 201  | 00005 | £00  | 10000 | 0.5 |
|   | P12     | μ <u>2</u> 2 | -22<br>h11 | 0.044/33  | 0.001327 | 23.301  | 23303 | 000  | 10000 | 0.5 |
|   | p11     | p12          | p22        | 0.044156  | 0.00164/ | 26.808  | 99920 | 800  | 10000 | 0.5 |
|   | p11     | p22          | p12        | 0.011301  | 0.001248 | 9.056   | 99920 | 800  | 10000 | 0.5 |
|   | p12     | p22          | p11        | 0.047187  | 0.001688 | 27.952  | 99920 | 800  | 10000 | 0.5 |
| - |         |              | ÷          |           |          |         |       |      |       |     |

**Table S5. Data underlying figure 6f.** Data underlying main figure 6f, showing ROHstatistics (froh and nroh), calculated with the software Darwindow, for in-silico populations, simulated with the software SLIM2, which a t=0 experience a population size decrease. See main text for more details.

| ngen                        | froh                                     | nroh                                 | ne                                   |
|-----------------------------|------------------------------------------|--------------------------------------|--------------------------------------|
| 0                           | 0.034                                    | 9                                    | 50                                   |
| 20                          | 0.179                                    | 10.8                                 | 50                                   |
| 50                          | 0.446                                    | 17.4                                 | 50                                   |
| 100                         | 0.597                                    | 23.4                                 | 50                                   |
| 200                         | 0.84                                     | 18.2                                 | 50                                   |
| 500                         | 0.991                                    | 4.4                                  | 50                                   |
| 1000                        | 0.998                                    | 3.8                                  | 50                                   |
| 1500                        | 0.994                                    | 4.8                                  | 50                                   |
| 2000                        | 1                                        | 3.2                                  | 50                                   |
| 4000                        | 0.995                                    | 4.8                                  | 50                                   |
| 8000                        | 1                                        | 2                                    | 50                                   |
| 12000                       | 1                                        | 2.6                                  | 50                                   |
| 0                           | 0.031                                    | 8.8                                  | 100                                  |
| 20                          | 0.077                                    | 10                                   | 100                                  |
| 50                          | 0.223                                    | 13.2                                 | 100                                  |
| 100                         | 0.39                                     | 19.6                                 | 100                                  |
| 200                         | 0.582                                    | 35.8                                 | 100                                  |
| 500                         | 0.916                                    | 20.2                                 | 100                                  |
| 1000                        | 0.943                                    | 23.2                                 | 100                                  |
| 1500                        | 0.956                                    | 21.4                                 | 100                                  |
| 2000                        | 0.973                                    | 14                                   | 100                                  |
| 4000                        | 0.969                                    | 17                                   | 100                                  |
| 8000                        | 0.967                                    | 16.8                                 | 100                                  |
| 12000                       | 0.967                                    | 16                                   | 100                                  |
| 0                           | 0.007                                    | 84                                   | 200                                  |
| 20                          | 0.025                                    | 10.4                                 | 200                                  |
| 50                          | 0.157                                    | 12.6                                 | 200                                  |
| 100                         | 0.155                                    | 12.0                                 | 200                                  |
| 200                         | 0.133                                    | 32.0                                 | 200                                  |
| 500                         | 0.275                                    | 56.2                                 | 200                                  |
| 1000                        | 0.005                                    | 45.2                                 | 200                                  |
| 1500                        | 0.867                                    | 49.2                                 | 200                                  |
| 2000                        | 0.886                                    | 37.4                                 | 200                                  |
| 4000                        | 0.000                                    | 45 2                                 | 200                                  |
| 8000                        | 0.87                                     | 47                                   | 200                                  |
| 12000                       | 0.07                                     | 40.4                                 | 200                                  |
| 0                           | 0.055                                    | 10.7                                 | 500                                  |
| 20                          | 0.033                                    | 0.2                                  | 500                                  |
| 50                          | 0.044                                    | 9.2                                  | 500                                  |
| 100                         | 0.042                                    | ј. <del>4</del><br>1 <i>1</i> Л      | 500                                  |
| 200                         | 0.115                                    | 23                                   | 500                                  |
| 500                         | 0.105                                    | 17.2                                 | 500                                  |
| 1000                        | 0.275                                    | 71.6                                 | 500                                  |
| 1500                        | 0.417                                    | 71.0                                 | 500                                  |
| 2000                        | 0.451                                    | 20 S                                 | 500                                  |
| 4000                        | 0.51                                     | 86.4                                 | 500                                  |
| 4000<br>8000                | 0.535                                    | 00.4<br>00                           | 500                                  |
| 12000                       | 0.540                                    | 0/ /                                 | 500                                  |
| 0                           | 0.312                                    | 7 Q                                  | 1000                                 |
| 20                          | 0.022                                    | 7.0<br>0.6                           | 1000                                 |
| 50                          | 0.033                                    | 0.0<br>11 G                          | 1000                                 |
| 100                         | 0.045                                    | 12 /                                 | 1000                                 |
| 200                         | 0.058                                    | 12.4                                 | 1000                                 |
| 200                         | 0 102                                    | 16 /                                 | 1/1/1/1                              |
| 500                         | 0.103                                    | 16.4                                 | 1000                                 |
| 500                         | 0.103<br>0.114                           | 16.4<br>24.6                         | 1000<br>1000                         |
| 500<br>1000                 | 0.103<br>0.114<br>0.153                  | 16.4<br>24.6<br>43.2                 | 1000<br>1000<br>1000                 |
| 500<br>1000<br>1500         | 0.103<br>0.114<br>0.153<br>0.216         | 16.4<br>24.6<br>43.2<br>52.6         | 1000<br>1000<br>1000<br>1000         |
| 500<br>1000<br>1500<br>2000 | 0.103<br>0.114<br>0.153<br>0.216<br>0.21 | 16.4<br>24.6<br>43.2<br>52.6<br>55.2 | 1000<br>1000<br>1000<br>1000<br>1000 |

|   | 12000 | 0.252 | 68  | 1000 |
|---|-------|-------|-----|------|
|   | 0     | 0.03  | 8.2 | 5000 |
|   | 20    | 0.021 | 7.6 | 5000 |
|   | 50    | 0.02  | 7.8 | 5000 |
|   | 100   | 0.025 | 8.8 | 5000 |
|   | 200   | 0.044 | 5   | 5000 |
|   | 500   | 0.024 | 6.8 | 5000 |
|   | 1000  | 0.029 | 8.4 | 5000 |
|   | 1500  | 0.029 | 8.4 | 5000 |
|   | 2000  | 0.037 | 11  | 5000 |
|   | 4000  | 0.039 | 8.8 | 5000 |
|   | 8000  | 0.039 | 8.8 | 5000 |
|   | 12000 | 0.039 | 8.8 | 5000 |
| - |       |       |     |      |
|   |       |       |     |      |







**Fig. S1B. Distribution of read depth across sites along the nuclear genome.** Shown is the distribution of read depth per site per individual for a randomly thinned dataset. Numbers represent the number of individuals per populations. Dashed, solid and dotted lines indicate genomes with a mean depth of respectively <7, 7-12, and >12. (Not shown are samples from the populations 'Aleutian' and 'Kodiak'. Samples from 'Sakhalin' and 'Hokkaido' (1x) are grouped within the population 'JapanIsles', and the populations 'ABCcoast1' and 'ABCcoast' are grouped together.)



**Fig. S1C. Distance matrix underlying dendrogram.** Allele sharing distances between individuals, underlying bioNJ dendrogram for autosomal SNP dataset (presented in main Figure 1f), with distances divided in either 9 or 20 bins. Not shown are polar bear and black bear individuals.



**Fig. S1D. PCoA-plot showing genetic structure in central and eastern Eurasia.** Biplot showing the first two of principal coordinate analyses (PCoA) based on allele sharing distances for the subset of central and eastern Eurasian samples, except for Hokkaido. From the three related 'CentreRus' individuals, only one is included in the analysis.



**Fig. S1E. Relatedness between individuals.** Boxplot showing relatedness between individuals, measured with the king-robust score, for all possible sample comparisons within populations. A score close to 0.5 is indicative of kinship. The populations 'NorthScand', 'ABCbc' and 'polar' contain a few related individuals, of which one resulting from duplex sequencing, All three 'CentreRus' individuals (one sequenced for another study and obtained from NCBI SRA) are related.



**Fig. S2A. PCoA-plot showing genetic structure in western Eurasia.** Biplot showing the first two of principal coordinate analyses (PCoA) based on allele sharing distances for the subset of western Eurasian samples.



Fig. S2B. Hierarchical clustering (OLS algorithm) of Euclidean distances for autosomal dataset, and residual heatmap showing discrepancy between path lengths in dendrogram (fitted model) and actual genetic distance in underlying distance matrix (observations). Samples from the Middle East ('TurkeyMartin', 'IranGudrun' and 'Georgia') are clustered together with samples from Europe, and as a result they appear more distant from the Himalaya sample (and polar bears and black bears) then they actually are (as indicated by the heatmap).

The advantage of decoupling the Middle East samples from the Himalaya sample, is that indirectly allows polar bears to cluster more closely with North American brown bears. This greatly reduces the observed discrepancy for these population pairs between true genetic distances and path lengths in the bioNJ dendrogram (see main figure 1E-F). The reason that the discrepancy is not fully eliminated is that, relative to other eastern Eurasian bears, Amur and Hokkaido bears prefer to cluster closer to polar bears, pulling polar bears away from North American bears.

The clustering of bears Kodiak and Aleutian bears also causes unsolvable tension. Due to their insular isolation, Kodiak Island bears have not exchanged migrants with other North American populations. However, the sister population of coastal bears in southwestern Alaska ('Aleutian') was involved in gene flow events, causing them wanting to cluster one the hand with Kodiak bears, but on the other hand with other North American populations. This also explains why Kamchatkan bears, which likely derive from the same Beringian population, are attracted towards Kodiak and Aleutian bears.



Fig. S2C. Hierarchical clustering residuals: discrepancy between path lengths in hierarchical structuring dendrograms (model) and actual genetic distance in underlying distance matrix (observations) for polar bear and brown bear comparisons. When polar bears are clustered with brown bears from Himalaya and the Middle East (inset, main figure 1F), the path lengths suggested by the dendrogram are overestimates of the actual genetic distances to eastern Eurasian and especially North American and Hokkaido brown bears.



**Fig. S2D. Microsatellite dataset bioNJ tree.** Biological neighbour joining tree based on allele sharing distance for a dataset of >3000 tetranucleotide microsatellites. Not included are individuals with more than 70% missing data. The observed dendrogram is roughly similar to the SNP-based dendrogram (Fig. 1F).



**Fig. S3A. Mitogenome maximum likelihood phylogeny.** Maximum likelihood phylogeny, generated with the software IQtree, using as input a whole mitogenome alignment (15194 bp) of 135 brown bear individuals. The phylogeny has been linearised using the chronoMPL function of the R package 'ape'. Genetic distances are converted into TMCRA estimates assuming a mutation rate of 1.9\*10<sup>-8</sup> per site per year. The clustering agrees with previously published results, and separates out mt-DNA haplotype clusters 1b (Europe), 1a (Iberia and southern Scandinavia), 2a (ABC bears), 2b (polar bears), 3a (Eurasia, Alaska and central Hokkaido), 3b (Canada and southern Hokkaido) and 4 (North American westcoast and eastern Hokkaido). The TMCRA estimates indicate deep divergence times between all major MT haplotype clades, predating the Last Glacial Period, implying that incomplete lineage sorting must have contributed to the current geographical distribution of these haplotypes.



**Fig. S3B. Mitogenome maximum likelihood phylogeny (mtDNA-clade 3a).** Unrooted maximum likelihood phylogeny, generated with the software IQtree, using as input a whole mitogenome alignment (15194 bp) of 135 brown bear individuals. Shown is a subset of individuals carrying haplotype 3a.



## A flow chart describing the key steps of the species distribution models.

Fig. S4A. Climate suitability modelling workflow.





**Fig. S4B. Climate suitability modelling.** Present-day brown bear climatic suitability inferred by climate suitability modelling.



**Fig. S5A. Admixtools f3-statistics.** Genome-wide mean f3-score a.) calculated on a sliding window-basis per 50kb window and summarized as the overall mean of all windows combined (top/middle; note different scales of y-axis) and b.) calculated over a subset of 40K SNPs (bottom). Shown are all possible population triplets (X;Y,Z). (Note that from these boxplots it cannot be inferred which population pairs are the putative ancestral populations.) Negative f3-scores indicate that allele frequencies in population X are intermediate of allele frequencies in population Y and Z, which is suggestive of ongoing or past admixture. Both datasets indicate that negative f3-scores are found only for population triplets in which Yakutia and Alaska represent the putatively admixed population X. The window-based mean was calculated over all windows excluding windows with a f3-score below -5 or above 5.



**Fig. S5B. Admixtools f3-statistics.** Genome-wide mean f3-score for each population triplet (X;Y,Z), calculated on a sliding window-basis per 50kb window, with on the x-axis the proportion with a f3-score below 0, and on the y-axis the standard deviation of this proportion across chromosomes. Colours denote population X. Approximately 50% of the windows of all population triplets (MidScand; SouthScand, Z) have negative f3-values, with, for unknown reasons, relatively high variation of these proportion across chromosomes. The dashed vertical line represents the arbitrary cut-off value used when generating main Fig. 4B.



**Fig. S5C. Treemix maximum likelihood phylogenies, with varying number (0-8) of migration edges.** Treemix admixture graphs for 80K SNP dataset, with varying number of migration edges.



**Fig. S6A. Determination of optimal K using cross-entropy score criterion.** Shown are minimal cross-entropy scores, generated with the function 'snmf' of the R package LEA, obtained for 50 independent runs. Based on the 'elbow method', according to which the optimal K is the start point of a plateau, the optimal K-value is 6 or 7, both for the X-chromosomal and autosomal dataset.



Fig. S6B. Admixture plots, generated with R package LEA, for autosomal dataset.



Fig. S6C. Admixture plots, generated with R package LEA, for X-chromosomal dataset (males only).



Fig. S6D. Admixture plots, generated with Admixture software, for autosomal dataset.



**Fig S7A. Genome-wide heterozygosity (He): Darwindow vs bcftools.** Comparison between genome-wide heterozygosity values estimated with Darwindow (x-axis) and with bcftools stats -s – (y-axis). Each dot represents a sample. The diagonal indicates x=y. Prior to the heterozygosity calculations, indels have been removed using the command 'zgrep -v 'INDEL' data.vcf.gz | gzip > data.noindels.vcf.gz'.



**Fig S7B. Genome-wide heterozygosity (He) before and after exclusion of ROHs.** Genome-wide sample specific heterozygosity estimates (proportion of heterozygous sites) measured over all sites (left) and measured over sites which do not overlap with regions in the genome marked as run of homozygosity (right).



**Fig S8. Heterozygosity (He) levels within ROHs.** Consistent with expectations, short ROHs have slightly higher heterozygosity levels (because shorter ROHs derive from a more distant-in-time inbreeding event, and therefore had more time to accumulate mutations). Mean He-levels are above expected levels (2ut), suggesting genotype errors. Boxplots shows the distribution of values for all samples combined. The dots show the values observed for three erratic samples (unknown cause).







Fig. S10A. Heterozygosity as a function of read depth, when inferring sample genotypes <u>NOT</u> considering information from other samples.

Shown are heterozygosity values for sites binned based on sequencing depth. Dashed, solid and dotted curves indicate genomes with a mean depth of respectively <7, 7-12, and >12. Dashed vertical lines represent the masking cut-off: sites below a read depth of 3 have been setting missing for the respective sample. The numbers below the population names represent the number of individuals per populations. The high heterozygosity value at high read depths (depth > 15) are due to paralogous loci. (Not shown are samples from the populations 'Aleutian' and 'Kodiak'. Samples from 'Sakhalin' and 'Hokkaido' (1x) are grouped within the population 'JapanIsles', and the populations 'ABCcoast1' and 'ABCcoast' are grouped together.)



**Fig. S10B.** Heterozygosity as a function of read depth, when inferring sample genotypes considering information from other samples in <u>same population</u>. Idem as S2A.



**Fig. S10C.** Heterozygosity as a function of read depth, when inferring sample genotypes considering information from <u>all</u> other samples in dataset. Idem as S2A.



**Fig. S11. Genome wide heterozygosity as a function of SnpGap setting.** SnpGap, a setting of the bcftools call function, indicates the distance (in bp) between indels and heterozygous sites which are masked. Each line represents a single sample. If heterozygous sites occur in above average frequency close to indels, then we would not expect the near-linear relationships observed in the data. Therefore, we decided to set SnpGap to 0. (Not shown are samples from the populations 'Aleutian' and 'Kodiak'. Samples from 'Sakhalin' and 'Hokkaido' (1x) are grouped within the population 'JapanIsles', and the populations 'ABCcoast1' and 'ABCcoast' are grouped together.)



**Fig. S12A. Overall depth per site.** Distribution of overall depth per site (summed over samples) for a randomly thinned dataset. The red solid lines indicate the filter settings (min and max read depth per site).



**Fig. S12B. Identification of pseudo-autosomal region (PAR).** Scatterplot depicting overall sequencing depth (all samples combined) across the X chromosome. The pseudo-autosomal (PAR) region (on lefthand side of red line) was identified based on sequencing depth, and removed from subsequent analyses. Assuming a mean depth of 10x, and given a dataset of 94 males and 41 females, the expected overall site depth is (135\*10 =) 1350 for (pseudo-)autosomal regions, and (94\*5 + 41\*10 =) 880 for the majority of the X-chromosome.



**Fig. S13A. Microsatellite (VNTR) genotyping from short read sequencing data.** Screen shot showing raw sequencing reads in a region contain the tetranucleotide repeat 'ATCT'. Highlighted in red are all occurrences of 'ATCT'.



**Fig. S13B. Microsatellite (VNTR) genotyping from short read sequencing data.** Screen shot showing processed reads. Single occurrences of 'ATCT' have been masked with 'KKKK'. Reads with truncated microsatellites have been discarded. The underscores highlight the retained microsatellites.



**Fig. S13C. Microsatellite (VNTR) genotyping from short read sequencing data.** Histograms of observed repeat lengths for one particular microsatellite locus and a random subset of individuals. Individuals with two bars with a minimum height (i.e., read depth) of 3 or higher were assumed to be heterozygous.



**Fig. S14A. Accuracy of hierarchical clustering methods.** Heatmaps showing parsimony scores and the difference in pathlength and genetic distance for dendrograms generated using combinations of distance metrics and clustering methods, applied to the autosomal SNP dataset. Lower scores (dark orange) indicate better performance. Based on the path length criterion, dendrograms generated with the Ward method (and to a less extent UPGMA and BME) and Hamming's genetic distance (bitwise.dist) perform poorly for this specific dataset. The best score are obtained with combinations involving Euclidean genetic distance and the OLS and bionj clustering method.



**Fig. S14B.** Accuracy of hierarchical clustering methods, for X-chromosomal data. Heatmap showing difference in pathlength and genetic distance for dendrograms generated using combinations of distance metrics and clustering methods, applied to the X-chromosomal SNP dataset. Lower scores (dark orange) indicate better performance. Based on the path length criterion, dendrograms generated with the Ward method (and to a less extent UPGMA and BME) and Hamming's genetic distance (bitwise.dist) perform poorly for this specific dataset. The best score is obtained with combinations involving Euclidean genetic distance.



**Fig. S15A. Haploblock detection.** Linkage disequilibrium estimates for a randomly chosen 1 Mb region for the full dataset of 135 bears, containing 1843 SNPs with a minor allele frequency of 0.2 or higher. The black lines in this overview, generated with the software LDBlockShow, delineate the regions which are identified as haploblocks.



**Fig. S15B. Number of variable (i.e., polymorphic) sites per haploblock.** Red line indicates number of haplotypes (2x 135 diploid individuals = 270 haplotypes in total).