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SUMMARY
The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging
genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines
and submitted 64 variant call sets for one ormore sequencing technologies (Illumina, PacBio HiFi, andOxford
Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small var-
iants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions
included numerous innovative methods, with graph-based and machine learning methods scoring best for
short-read and long-read datasets, respectively. With machine learning approaches, combining multiple
sequencing technologies performedparticularly well. Recent developments in sequencing and variant calling
have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of
previously unknown clinically relevant variants.
INTRODUCTION

PrecisionFDA began in 2015 as a research effort to support the

US Food andDrug Administration’s (FDA’s) regulatory standards

development in genomics and has since expanded to support all

areas of omics. The platform provides access to on-demand
This is an open access article und
high-performance computing instances, a community of experts,

a library of publicly available tools, support for custom tool devel-

opment, a challenge framework, and virtual shared spaceswhere

FDA scientists and reviewers collaborate with external partners.

The precisionFDA challenge framework is one of the platform’s

most outward-facing features. The framework enables the
Cell Genomics 2, 100129, May 11, 2022 ª 2022 The Author(s). 1
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hosting of biological data challenges in a public-facing environ-

ment, with available resources for submission testing and valida-

tion. PrecisionFDA challenges, and challenges led by other

groups like DREAM (http://dreamchallenges.org.)1–3 and Critical

Assessment of Genome Interpretation,4,5 focus experts around

the world on common problems in areas of evolving science,

such as genomics, proteomics, and artificial intelligence.

The first Genome In A Bottle (GIAB)-precisionFDA Truth Chal-

lenge took place in 2016, and asked participants to call small var-

iants from short reads for two GIAB samples.6 Benchmarks for

HG001 (also called NA12878) were previously published, but no

benchmarks for HG002 were publicly available at the time. This

made it the first blinded germline variant-calling challenge, and

the public results have been used as a point of comparison for

new variant-calling methods.7 There was no clear evidence of

over-fitting methods to HG001, but performance was only as-

sessedon relatively easy genomic regions accessible to the short

reads used to form the v3.2 GIAB benchmark sets.6

Since the first challenge, GIAB expanded the benchmarks

beyond the easy regions of the genome and improved bench-

marking methods.With the advent of accurate small-variant call-

ing from long reads using machine learning (ML),8,9 GIAB has

developed newbenchmarks that covermore challenging regions

of the genome,10,11 including challenging genes that are clinically

important.12 This new small-variant benchmark (v4.2) includes

SNVs and insertions or deletions (INDELs) <49bp, integrates pre-

viously used short-read variant calls with new variant calls from

10XGenomics-linked reads andPacBioHiFi long reads, expand-

ing the benchmark set to include 92% of the autosomes in

GRCh38. This new benchmark includes difficult-to-map genes

like PMS2 and uses a local phased assembly to include highly

variable genes in the major histocompatibility complex (MHC).

In collaboration with theGlobal Alliance for Genomics andHealth

(GA4GH), the GIAB team defined best practices for small-variant

benchmarking.13 These best practices provide criteria for per-

forming sophisticated variant comparisons that account for

variant representation differences along with a standardized set

of performance metrics. To improve insight into strengths and
2 Cell Genomics 2, 100129, May 11, 2022
weaknesses of methods, for this work we developed new strati-

fications by genomic context (e.g., low complexity or segmental

duplications). The stratified benchmarking results allow users to

identify genomic regions where a particular variant-calling

method performs well and where to focus optimization efforts.

In light of recent advances in genome sequencing, variant call-

ing, and the GIAB benchmark set, we conducted a follow-up

truth challenge from May to June 2020. The Truth Challenge

V2 (https://precision.fda.gov/challenges/10) occurred when the

v4.1 benchmark was available for HG002, but only v3.3.2 bench-

mark was available for HG003 and HG004. In addition to making

short-read datasets available (at a lower 353 coverage than the

first Truth Challenge), this challenge included long reads from

two technologies to assess performance across a variety of

data types. This challenge made use of the robust benchmark

tools and stratifications (files with genomic coordinates for

different genomic context) developed by the GA4GH Bench-

marking Team and GIAB to assess performance in particularly

difficult regions like segmental duplications and the MHC.13–15

With 64 submissions across the three technologies, the results

from this challenge provide a new baseline for performance to

inspire ongoing advances in variant calling, particularly for chal-

lenging genomic regions.

RESULTS

Participants were tasked with generating variant calls as Variant

Call Format (VCF) files using data from one or multiple

sequencing technologies for the GIAB Ashkenazi Jewish trio,

available through the precisionFDA platform (Figure 1).

Sequencing data were provided as FASTQ files from three

technologies (Illumina, Pacific Biosciences [PacBio] HiFi, and

Oxford Nanopore Technologies [ONT]) for the three human sam-

ples. The read length and coverage of the sequencing datasets

were selected based on the characteristics of datasets used in

practice and manufacturer recommendations (Table 1). Partici-

pants used these FASTQ files to generate variant calls against

the GRCh38 version of the human reference genome.

http://dreamchallenges.org
https://precision.fda.gov/challenges/10
mailto:nolson@nist.gov
mailto:justin.zook@nist.gov
https://doi.org/10.1016/j.xgen.2022.100129


Figure 1. Truth challenge V2 structure

Participants were provided sequencing reads (FASTQ files) from Illumina, PacBio HiFi, and ONT for the GIAB Ashkenazi trio (HG002, HG003, and HG004). Par-

ticipants uploaded VCF files for each individual before the end of the challenge, and then the new benchmarks for HG003 and HG004 were made public.
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Twenty teams participated in the challenge with a total of 64

submissions, with multiple submissions from several teams.

Fifteen of the 20 teams (53 of 64 submissions) volunteered to

contribute to this manuscript by providing detailed methods of

the pipelines they used for the challenge. The results presented

here only include teams that opted to be part of this manuscript,

including all the challenge winners (Figure 2A, Table S1). Thirteen

of the submitted variant call sets (from teams that contributed to

this manuscript) were generated using two or more sequencing

technologies, Illumina, PacBio HiFi, and ONT Ultralong (see

methods for datasets descriptions). For single-technology sub-

missions, Illumina was the most common (21 out of 40), followed

by PacBio (16), andONT (3). PacBio was used in all 13 of themul-

tiple-technology submissions, Illumina was used in all but one,

and five submissions used data from all three technologies. Sub-

missions used a variety of variant-calling methods, with most

variant callers using deep-learning methods. The best-perform-

ing short-read submissions used statistical variant-calling algo-

rithms with a graph reference rather than a standard linear refer-

ence (e.g., see DRAGEN and Seven Bridges methods in the

supplemental materials). Notably, a majority of submissions

used deep-learning-based variant-calling methods (Figure 2A).

This was particularly true for long-read-only submissions, with

18 out of 20 using deep-learning-based methods.

Submissions were evaluated based on the harmonic mean of

the parents’ F1 scores for combined SNVs and INDELs. In all
benchmark regions, the top-performing submissions combined

all technologies, followed by PacBio HiFi, Illumina, and ONT,

with PacBio HiFi submissions having the best single-technology

performance in each category (Figures 2B and 2C, Table 2). In

contrast to all benchmark regions, submissions based on ONT

performed better than Illumina in difficult-to-map regions despite

ONT’s higher indel error rate. In fact, ONT-based variant calls

had slightly higher F1 scores in difficult-to-map regions than in

all benchmark regions, because the benchmark for difficult-to-

map regions excludes homopolymers longer than 10 bp that

are called by PCR-free short reads in easy-to-map regions.

The best-performing short-read call sets (DRAGEN and Seven

Bridges) were statistical methods that utilized graph-based

approaches, and the best-performing long-read call sets

were deep-learning-based methods (DeepVariant + PEPPER,

NanoCaller, Sentieon, and Roche). Performance varied substan-

tially across stratifications, with the best-performing multi-tech-

nology call sets having similar overall performance, although

with error rates that varied by a factor of 10 in the MHC. While

F1 scores are similar for SNVs versus INDELs for the best-per-

forming Illumina submissions, long-read and multi-technology

submissions generally had higher F1 scores for SNVs than

INDELs. ONT-based submissions had the largest decrease in

performance for INDELs relative to SNVs. Submission perfor-

mance for all categories (genomic regions) is provided in

Table S1 with additional supplemental figures summarizing
Cell Genomics 2, 100129, May 11, 2022 3



Table 1. Sequencing dataset characteristics

Technology GIAB ID

Read

length (bp)

Number of

reads Coverage

Illumina HG002 23151 415,086,209 35

HG003 23151 419,192,650 35

HG004 23151 420,312,085 35

PacBio HiFi HG002 12,885 8,449,287 36

HG003 14,763 7,288,357 35

HG004 15,102 7,089,316 35

ONT HG002 50,380 19,328,993 47

HG003 44,617 23,954,632 85

HG004 48,060 29,319,334 85

For read length, N50 was used to summarize PacBio and ONT

read lengths; coverage was median coverage across autosomal

chromosomes.
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submission performance for precision (Figure S3), recall (Fig-

ure S4), and by INDEL size (Figure S5); all metrics were calcu-

lated as the harmonic mean of the parents’ scores.

Challenge highlights innovations in characterizing
clinically important MHC locus
For example, recent research suggests human leukocyte anti-

gen (HLA) types encoded in the MHC genes play a role in coro-

navirus disease 2019 (COVID-19) severity.16 The MHC is a highly

polymorphic �5 Mb region of the genome that is particularly

challenging for short-readmethods (Figure 3). Despite difficulties

associated with variant calling in this region, the Illumina graph-

based pipeline developed by Seven Bridges17 performed espe-

cially well in MHC (F1: 0.992). The Seven Bridges GRAF pipeline

used in the Truth Challenge V2 utilizes a pan-genome graph that

captures the genetic diversity of many populations around the

world, resulting in a graph reference that accurately represents

the highly polymorphic nature of the MHC region, enabling

improved read alignment and variant-calling performance. The

MHC region is more easily resolved with long-read-based

methods as these are more likely to map in this region of high

variability. The ONT-NanoCaller Medaka (F1: 0.941) ensemble

submission performed well on MHC, particularly for SNVs (F1:

0.992), and is the only method that performed as well in MHC

as in all genomic benchmarking regions for SNVs. In general,

submissions utilizing long-read sequencing data performed bet-

ter than those only using short-read data. The difference in per-

formance between the MHC and all benchmark regions is larger

for SNVs than for INDELs, and PEPPER-DV appears to have

improved INDEL accuracy in the MHC, possibly because

the MHC benchmark excludes some difficult homopolymers

included in the all benchmark regions.

Comparing performance for unblinded and semi-blinded
samples reveals possible over-fitting of some methods
The challenge used semi-blinded samples primarily to minimize

gross over-fitting of variant-calling methods to the unblinded

sample. To assess potential evidence for over-fitting ofmethods,

we explored differences in performance between the unblinded

son (HG002) and semi-blinded parents’ genomes (HG003 and
4 Cell Genomics 2, 100129, May 11, 2022
HG004). As a metric for over-fitting, we used the error-rate ratio,

defined as the ratio of 1-F1 for the parents to the son (Equation

1), such that error-rate ratios greater than one would mean that

the error rate for the semi-blinded parentswas higher than the er-

ror rate for the unblinded son. These error-rate ratios are likely

due to a combination of factors, including differences in the

sequence dataset characteristics between the three genomes,

differences in the benchmark sets, and differences in partici-

pants’ use of HG002 for model training and parameter optimiza-

tion. The error-rate ratio was generally larger for call sets using

PacBio or multiple technologies with deep learning and other

MLmethods comparedwith short-read technologies (Figure 4A).

In particular, the best-performing callers had higher error-rate ra-

tios and all used PacBio or multiple technologies with deep-

learning or random forest ML methods (Figure 4B). The smaller

error-rate ratios for most Illumina call sets (median 1.06, range

0.98–4.38) may relate to the maturity of short-read variant calling

compared with variant calling from long reads with ML-based

variant callers. For the ONT-only variant call sets, the error-rate

ratio was less than 1, as the parents had higher F1 scores

compared with the unblinded son (HG002). This counter-intuitive

result may be caused by the parents’ ONT datasets having

higher coverage (853) than the son’s (473) because ONT was

not down-sampled like Illumina and PacBio (Table 1, Figure S1).

The degree to which the ML models were over-fitted to the

training genome (HG002) and datasets, as well as the impact

of any over-fitting on variant-calling accuracy, warrants future

investigation but highlights the importance of transparently

describing the training and testing process, including which

samples and chromosomes are used. This is particularly true

given the higher degree of potential over-fitting in the best-per-

forming long-read call sets. Note that the parents do not repre-

sent fully blinded, orthogonal samples, since HG002 shares

variants with at least one of the parents, and previous bench-

marks were available for the easier regions of the parents’ ge-

nomes. These results highlight the need for multiple benchmark

sets, sequencing datasets, and the value of established data

types and variant-calling pipelines.

Improved benchmark sets and stratifications reveal
innovations in sequencing technologies and variant
calling since the 2016 challenge
Since the first Truth Challenge held in 2016, variant calling,

sequencing, and GIAB benchmark sets have substantially

improved. The SNV error rates of the Truth Challenge V1 win-

ners increase by as much as 10-fold when benchmarked

against the new V4.2 benchmark set, compared with the

V3.2 benchmark set used to evaluate the first truth challenge

(Figure 4C). The V4.2 benchmark set covers 7% more of the

genome than V3.2 (92% compared with 85% for HG002 on

GRCh38), most importantly enabling robust performance

assessment in difficult-to-map regions and the MHC.10 The

performance difference is more significant for SNVs

compared with INDELs because the overall INDEL error rate

is higher. Despite the higher coverage (503) Illumina data

used in the first challenge, several Illumina-only submissions

from the V2 challenge performed better than the V1 challenge

winners (Figure 4C). This result highlights significant
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Table 2. Summary of challenge top performers

Technology Genomic region Participant

Performance metrics F1 Rank

F1 Recall Precision All Diff MHC

MULTI alla Sentieon 0.999 0.999 0.999 1 4 1

MULTI alla Roche Sequencing Solutions 0.999 0.999 0.999 1 1 7

MULTI alla The Genomics Team in Google Health 0.999 0.999 0.999 1 2 4

MULTI diff Roche Sequencing Solutions 0.994 0.992 0.996 1 1 7

MULTI MHC Sentieon 0.998 0.998 0.998 1 4 1

ILLUMINA all DRAGEN 0.997 0.996 0.998 1 1 5

ILLUMINA diff DRAGEN 0.969 0.961 0.978 1 1 5

ILLUMINA MHC Seven Bridges Genomics 0.992 0.989 0.996 6 9 1

PACBIO all The Genomics Team in Google Health 0.998 0.998 0.998 1 2 4

PACBIO diff Sentieon 0.993 0.991 0.994 4 1 1

PACBIO MHC Sentieon 0.995 0.993 0.997 4 1 1

ONT all The UCSC CGL and Google Health 0.965 0.947 0.984 1 1 2

ONT diff The UCSC CGL and Google Health 0.983 0.976 0.988 1 1 2

ONT MHC Wang Genomics Lab 0.972 0.964 0.980 3 3 1

One winner was selected for each technology/genomic region combination, and multiple winners were awarded in the case of ties. Winners were

selected based on submission’s F1 score for the semi-blinded samples, HG003 and HG004 (harmonic mean of the parents’ F1 scores for combined

SNVs and INDELs). Overall submission rank for all three genomic categories indicates submission overall performance: all, all benchmark regions; diff,

difficult-to-map regions.
aTie.
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improvements in variant caller performance for short reads.

Furthermore, advances in sequencing technologies have led

to even higher accuracy, particularly in difficult-to-map re-

gions. Improvements to the benchmarking set have allowed

more accurate variant benchmarking and, in turn, facilitated

advances in variant-calling methods, particularly deep-

learning-based methods, which depend on the benchmark

set for model training.
Updated stratifications enable comparison of method
strengths
As an example of the utility of stratifying performance in a more

detailed way by genomic context with the updated stratifica-

tions, we compared the ONT PEPPER-DeepVariant (ONT-PDV)

submission with the Illumina DeepVariant (Ill-DV) submission

(Figure 5). The ONT-PDV submission has comparable overall

performance with the Ill-DV submission for SNVs, providing an

F1 of 99.64% and 99.57%, respectively, but performance

differs >100-fold in some genomic contexts. Ill-DV SNV calls

were more accurate in homopolymers and tandem repeats

shorter than 200 bp in length. In contrast, ONT-PDV consistently

had higher performance for segmental duplications, large tan-

dem repeats, L1H, and other regions that are difficult to map

with short reads. Due to the currently higher INDEL error rate

for ONT R9.4 reads, Ill-DV INDEL variant calls are more accurate
(B and C) Overall performance (B) and submission rank (C) varied by technology

nologies (MULTI) outperformed single-technology submissions for all three genom

three genomic stratifications evaluated. Submission counts across technologies a

Individual submission performance. Data points represent submission performan

MHC), and lines connect submissions. Category top performers are indicated by d

with axes labels and ticks indicating F1 percentage values.
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for nearly every genomic context, and the F1 for INDELs in all

benchmark regions was 99.59% for Ill-DV compared with

72.54% for ONT-PDV. This type of analysis can help determine

the appropriatemethod for a desired application and understand

how the strengths and limitations of technologies could be lever-

aged when combining technologies. High-performing multi-

technology submissions successfully incorporated call sets

frommultiple technologies by leveraging the additional coverage

and complementary strengths of different technologies.
DISCUSSION

Publicgenomicscommunitychallenges, suchas theprecisionFDA

Truth Challenges described here, provide a public baseline for in-

dependent performanceevaluationat a point in timeagainstwhich

future methods can be compared. It is important to recognize the

advancements and limitations of the benchmarks used in these

challenges. For example, the GIAB V3.2 benchmark set used to

evaluate the first precisionFDA Truth Challenge submissions only

included the easier regions of the genome (https://precision.fda.

gov/challenges/truth/results), excluding most segmental duplica-

tions and difficult-to-map regions, as well as the highly polymor-

phic MHC. This is shown by the fact that, when the first Truth

Challenge winners were benchmarked against the new V4.2

benchmark set, which included more difficult regions of the
and stratification (log scale). Generally, submissions that used multiple tech-

ic context categories. (B) A histogram of F1 percentage (higher is better) for the

re indicated by light gray bars and individual technologies by colored bars. (C)

ce for the three stratifications (difficult-to-map regions, all benchmark regions,

iamonds with Ws and labeled with team names. F1 is plotted on a phred scale

https://precision.fda.gov/challenges/truth/results
https://precision.fda.gov/challenges/truth/results
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ticks indicating F1 percentage values. Points above

the diagonal black line perform better in MHC rela-

tive to all benchmark regions or the difficult-to-map

regions. Submissions with the largest difference in

performance between MHC and difficult-to-map or

all benchmark regions for each subplot are labeled.

Seven Bridges is a graph-based short-read variant

caller. ONT ensemble is an ensemble of ONT variant

callers; NanoCaller, Clair, andMedaka. PEPPER-DV

is the ONT PEPPER-DeepVariant haplotype-aware

ML variant-calling pipeline.
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genome, the performance metrics decreased as much as 10-fold

(Figure 4A). It is important to note that these challenges are not just

to compare and inspire newmethods but to give the research and

clinical sequencing community insight into what is currently

possible in terms of accuracy and which methods might be appli-

cable to the experiment in mind.

Public community challenges further help drive the methods

development. A number of ground-breaking mapping +

variant-calling pipelines were developed, optimized, and made

available as part of this challenge. For example, the new exper-

imental DRAGEN method used graph-based mapping and

improved statistical variant-calling approaches to call variants

in segmental duplications and other regions previously that
were difficult to map with short reads.

DRAGEN’s graph-based mapping method

used alt-aware mapping for population

haplotypes stitched into the reference

with known alignments, effectively estab-

lishing alternate graph paths that reads

could seed-map and align to. This reduced

mapping ambiguity because reads con-

taining population variants were attracted

to the specific regionswhere those variants

were observed.

The Seven Bridges GRAF pipeline uses

a genome graph reference to map

sequencing reads and uses these to geno-

type the sample considering the read

mappings and the variant information in

the graph reference. The variant calls pre-

sented in this challenge are generated us-

ing the publicly available Seven Bridges

Pan-Genome GRAF Reference, con-

structed by augmenting the GRCh38

reference assembly with high-confidence

variants selected from public data-

bases18–21 and also the haplotype se-

quences included as alternate contigs in

the GRCh38 assembly relocated to their

canonical positions as edges in the graph.

This graph reference includes short vari-

ants as well as structural variation repre-
senting sequence diversity in the human genome (graph con-

tains insertions of up to 9,500 base pairs, deletions spanning

580,000 base pairs, and nucleotide polymorphism spanning

4,000 base pairs). The sequence variation leads to better read

mappings and variant call results, especially in highly polymor-

phic regions like the 4,970,558-base-pair MHCwhere the graph

contains 71,740 nucleotide polymorphisms and 10,771

INDELs.

For the long-read methods, innovative ML-based methods

were developed for this challenge. The PEPPER-DeepVariant

used new approaches for selecting candidate variants and

called genotypes accurately for small variants despite the rela-

tively high error rate in raw ONT reads. Several newMLmethods
Cell Genomics 2, 100129, May 11, 2022 7
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enabled highly accurate variant calling from the new PacBio HiFi

technology. While different sequencing technologies have

different strengths, robust integration of data from different tech-

nologies is challenging. Several submissions used new ap-

proaches to integrate multiple technologies and leverage the in-
8 Cell Genomics 2, 100129, May 11, 2022
dependent technology-specific information as well as additional

coverage from the combining data to perform better than any in-

dividual technology.

Along with the new benchmark set and sequencing data

types, we used new genomic stratifications to evaluate
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submission performance in different contexts, highlighting

methods that performed best in particularly challenging regions.

For example, the Seven Bridges GRAF Illumina and NanoCaller

ONT submissions performed particularly well in the MHC, and

the Sentieon PacBio HiFi submission performed particularly

well in both the MHC and difficult-to-map regions. These sub-

missions might have been overlooked if the performance was

not stratified by context. The new stratifications presented

here represent a valuable resource to the community for use in

evaluating and optimizing variant-calling methods. Stratifying

performance by genomic context can be valuable in at least

three ways: (1) assessing the strengths and weaknesses of a

method for different genome contexts and variant types, which

is, for example, critical in clinical validation of bioinformatics

methods;22 (2) aiding in understanding which variants are not as-

sessed by the benchmark; and (3) aiding in selecting the technol-

ogy and bioinformatics methods that are best suited for the

genomic regions of interest, e.g., MHC.

Deep learning and ML have advanced variant calling, particu-

larly by enabling faster adoption of new sequencing tech-

nologies. In this context, care should be taken to evaluate

over-training and be transparent about the data used for training,

tuning, and testing. Based on results from this challenge, there is

likely at least some over-fitting to training samples. Over-training

can occur both to the individual (HG002) and to the properties of

the sequencing runs that are used for training. Non-ML methods

can also overfit, because coding and parameter selection will be

guided by performance on the development set. For example,

short-read variant callers that use information from long-read

sequencing datasets may perform better for samples or popula-

tions included in the long-read data. Similarly, methods using

graph references may perform better for samples or populations

used in constructing the graph. Having clear provenance of

training samples including multiple ethnicities and regions is

important for the field. These results alsohighlight the importance

of developing additional genomically diverse benchmark sets.

This challenge spurred the development and public dissemi-

nation of a diverse set of newbioinformaticsmethods formultiple

technologies. It provides a public resource for capturing method

performance at a point in time, against which futuremethods can

be compared. New versions of thesemethods and newmethods

will continue to improve upon the methods presented here. For

example, immediately after the challenge, two different partici-

pants combined the strengths of a new mapping method for

long reads from one submission (winnowmap) with a new

variant-calling method from another submission (PEPPER-

DeepVariant) to get improved results (Figure S6).23 The GIAB

benchmarks help enable the ongoing improvements, and

GIAB/GA4GH benchmarking tools enable identification of

strengths and weaknesses of any method in stratified genome

contexts. The new variant-calling methods presented in this

challenge can help improve future versions of benchmarks that

will be critical as variant-calling methods and sequencing tech-
Figure 5. Comparison of ONT PEPPER-DeepVariant variant call set pe

F1 is plotted on a phred scale with axis labels and ticks indicating F1 percent

where ONT PEPPER-DeepVariant submission performance metric was higher tha

category.
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nologies continue to improve, thus driving the advancement of

research and clinical sequencing.

Limitations of the study
Study limitations fall into two categories: those due to challenge

design and limitations with voluntary participation challenges in

general. For the challenge design limitations, using only samples

from related individuals that share many variants resulted in chal-

lenge submissions being evaluated using semi-blinded rather

than fully blinded samples. Ideally, the blinded samples would

be unrelated to the unblinded sample and represent multiple an-

cestries. We timed this challenge to occur immediately after the

release of the HG002 benchmark, and GIAB developed similar

benchmarks for HG003 andHG004 during the challenge because

they were the only samples for which all needed data were avail-

able. Due to the time it takes to generate benchmarks for each in-

dividual,wedidnotwant todelay thechallengeayearormoreuntil

we had benchmarks for the GIAB Han Chinese trio. Additionally,

limited diversity in theGIABsamples prevented us fromusing fully

blinded samples from multiple ancestries. (The National Institute

of Standards and Technology (NIST) and the Genome in a Bottle

Consortium recognize the importance of benchmarks for multiple

ancestries and it is something that GIAB is actively working on to

increase thediversity of theGIABsamples tounderstandpotential

effects of ancestryonaccuracy.) Anotherpractical limitationof the

challenge was differences in the sequence data characteristics

between individuals, particularly for the PacBio HiFi and ONT da-

tasets. TheONTdatasets hadsignificantly higher coverage for the

semi-blinded samples than the unblinded sample and semi-

blinded samples. While the PacBio HiFi datasets were down-

sampled to the same depth, therewere differences in read-length

distributions and quality scores between samples that

confounded our outlier analyses. The two final limitations are

related to voluntary participation challenges in general. While we

strived tomakeouranalysisof thechallenge resultsas transparent

and reproducible as possible, including making all the participant

submission data publicly available, many of the participant

methods are not easily reproducible and challenge submission

method descriptions are inconsistent. Having fully reproducible

methods for every submission would significantly increase the

value of the challenge to the community. To increase challenge

participation, particularly for experimental methods under active

development, we did not make reproducible methods a require-

ment, and, while we did ask participants to provide method de-

scriptions, they were rarely provided with the level of detail

required for a peer-reviewed methods publications. Future chal-

lenges could set a higher threshold for participation regarding

methods description and incentives for providing reproducible

methods, although this would likely be at the cost of decreased

challenge participation. Furthermore, to ensure the top submis-

sions are reproducible, precisionFDA developers could work

with challenge winners to implement their methods as apps on

the precisionFDA platform. Finally, the lack of a formal
rformance with Illumina DeepVariant by genomic context

age values. Points above and below the diagonal line indicate stratifications

n the Illumina DeepVariant submission. The points are colored by stratification
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experimental design limited our ability to make conclusive state-

ments attributing differences in variant-calling performance to

specific algorithmic characteristics andmethods. A formal exper-

imental design would significantly limit challenge participation, in

turn, potentially resulting in lack of participation by developers of

novel and cutting-edge methods. Challenges are designed to

encourage innovativemethods andprovide a point of comparison

for ongoing improvements, so generally do not give enduring con-

clusionsabout relativestrengthsofmethodsexceptat thatpoint in

time.However, such challenges provide a rich dataset for hypoth-

esis-generating exploratory analysis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

PacBio HiFi/CCS Sequel II Wagner et al.10 SRA: SRX7083054 to SRA: SRX7083057,

SRA: SRX8136474 to SRA: SRX8136477,

SRA: SRX8137018 to SRA: SRX8137021

Challenge sequencing datasets https://doi.org/10.18434/mds2-2336

Experimental models: Cell lines

Son of Ashkenazi Jewish ancestry (HG002) NIST Office of Reference Materials;

Coriell/NIGMS; PGP

NIST RM8391/RM8392; GM24385;

RRID:CVCL_1C78

Father of Ashkenazi Jewish ancestry

(HG003)

NIST Office of Reference Materials;

Coriell/NIGMS; PGP

NIST RM8392; GM24149;

RRID:CVCL_1C54

Mother of Ashkenazi Jewish ancestry

(HG004)

NIST Office of Reference Materials;

Coriell/NIGMS; PGP

NIST RM8392; GM24143;

RRID:CVCL_1C48

Software and algorithms

hap.py https://github.com/Illumina/hap.py

seqtk https://github.com/lh3/seqtk

Code used to analyze challenge results and

benchmarking results files

This paper https://github.com/usnistgov/

giab-pFDA-2nd-challenge

https://doi.org/10.5281/zenodo.6384789

Other

Sequence data, analyses, and resources

related to the NIST Genome in a Bottle

Consortium samples in this manuscript

This paper https://www.nist.gov/programs-projects/

genome-bottle

GIAB stratifications used for benchmarking This paper https://doi.org/10.18434/mds2-2499, also

available at https://ftp-trace.ncbi.nlm.nih.

gov/ReferenceSamples/giab/release/

genome-stratifications/v2.0/ code to

generate stratifications available at https://

github.com/genome-in-a-bottle/

genome-stratifications/releases/tag/v2.0
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Justin Zook

(justin.zook@nist.gov).

Materials availability
DNA extracted from a single large batch of cells for the three genomes (son - HG002, father – HG003, andmother - HG004) is publicly

available in National Institute of Standards and Technology Reference Materials 8391 (HG002) and 8392 (HG002-HG004), which are

available at https://www.nist.gov/srm. DNA for HG002, HG003, and HG004 were extracted from publicly available cell lines

GM24385 (RRID:CVCL_1C78), GM24149 (RRID:CVCL_1C54), and GM24143 (RRID:CVCL_1C48) at the Coriell Institute for Medical

Research National Institute for General Medical Sciences cell line repository. The Genome in a Bottle Consortium selected these ge-

nomes for characterization as they are a trio from the Personal Genome Project that has a broader consent permitting commercial

redistribution and recontacting participants for further sample collection.

Data and code availability
d Sequencing data are available on the precisionFDA platform and SRA, see Challenge methods and Challenge sequencing da-

tasets for additional information and the Key resources table for SRA accession numbers. Input sequencing data, participant

submitted VCFs, and benchmarking results are available at https://doi.org/10.18434/mds2-2336. Genome stratifications are
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publicly available on the NIST Data Repository doi: https://doi.org/10.18434/M32190 and on the NCBI ftp site https://ftp-trace.

ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/

d Code used to analyze challenge results presented in the manuscript and benchmarking results files are available at https://

github.com/usnistgov/giab-pFDA-2nd-challenge and archived under doi: https://doi.org/10.5281/zenodo.6384789. The

code and stratification evaluation results are in https://github.com/genome-in-a-bottle/genome-stratifications/releases/tag/

v2.0 and the NIST Data Repository https://doi.org/10.18434/M32190.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Challenge methods
The samples were sequenced under similar sequencing conditions and instruments across the three genomes. For the Illumina data-

set, 2x151 bp high coverage PCR-free library was sequenced on the NovaSeq 6000 System.24 The datasets were downsampled to

35X based on recommended coverage used in variant calling. The full 50X datasets were downsampled to 35X using seqtk (https://

github.com/lh3/seqtk) and the following command seqtk sample -s100 {fastq} 0.752733763. For PacBio HiFi, we used the library size

and coverage recommended at the time by PacBio for variant calling, �35 3 15 kb libraries. For HG002, 4 SMRT Cells were

sequenced using the Sequel II System with 2.0 chemistry. Consensus basecalling was performed using the ‘‘Circular Consensus

Sequencing’’ analysis in SMRT Link v8.0, ccs version 4.0.0. Data from the 15 kb library SMRT Cells were merged and downsampled

to 35X. The combined flowcell FASTQs were downsampled using seqtk (v1.3r106, https://github.com/lh3/seqtk) to a median

coverage across chromosomes 1 to 22 of 35X. Coverage was verified bymapping reads to GRCh38 usingminimap225 and coverage

was calculated with mosdepth v0.2.926 using a window size of 10 kb. The PacBio HiFi data are available on SRA under the following

BioProjects; HG002 - PRJNA586863, HG003 - PRJNA626365, and HG004 - PRJNA626366. The ONT dataset was generated using

the unshearedDNA library prepmethods described in,27 and consisted of pooled sequencing data from three PromethIONR9.4 flow-

cells. Basecalling was performed using Guppy Version 3.6 (https://community.nanoporetech.com). Data from three ONT

PromethION flow cells were used for each of the 3 genomes, but the resulting coverage was substantially higher for the parents

(85X) than the child (47X) with similar read length distributions (Figure S2).

Challenge sequencing datasets
Links to FASTQ files provided to challenge participants on the precisionFDA platform. A free precisionFDA account is required for file

access.

The sequence data are also available from the NIST data repository DOI doi: https://doi.org/10.18434/mds2-2336.

HG002 (NA24385)
C Illumina
B precisionFDA:

- HG002.novaseq.pcr-free.35x.R1.fastq.gz

- HG002.novaseq.pcr-free.35x.R2.fastq.gz

B data.nist.gov:

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG002.novaseq.pcr-free.35x.R1.fastq.gz

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG002.novaseq.pcr-free.35x.R2.fastq.gz

C PacBio HiFi

B precisionFDA: HG002_35x_PacBio_14kb-15kb.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG002_35x_PacBio_14kb-15kb.

fastq.gz

B SRA:
Cell G
- Bioproject: BioProject: PRJNA586863

- Accessions: SRA: SRX7083054, SRA: SRX7083055, SRA: SRX7083056, and SRA: SRX7083057
C Oxford Nanopore

B precisionFDA: HG002_GM24385_1_2_3_Guppy_3.6.0_prom.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG002_GM24385_1_2_3_Guppy_

3.6.0_prom.fastq.gz

HG003 (NA24149)
C Illumina
B precisionFDA:

- HG003.novaseq.pcr-free.35x.R1.fastq.gz

- HG003.novaseq.pcr-free.35x.R2.fastq.gz
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https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG002_35x_PacBio_14kb-15kb.fastq.gz
http://HG002_GM24385_1_2_3_Guppy_3.6.0_prom.fastq.gz
https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG002_GM24385_1_2_3_Guppy_3.6.0_prom.fastq.gz
https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG002_GM24385_1_2_3_Guppy_3.6.0_prom.fastq.gz
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B data.nist.gov:

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG003.novaseq.pcr-free.35x.R1.fastq.gz

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG003.novaseq.pcr-free.35x.R2.fastq.gz

C PacBio HiFi

B precisionFDA: HG003_35x_PacBio_14kb-15kb.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG003_35x_PacBio_14kb-15kb.

fastq.gz

B SRA
- Bioproject Accession: BioProject: PRJNA626365

- SRA Accessions: SRA: SRX8136474, SRA: SRX8136475, SRA: SRX8136476, and SRA: SRX8136477
C Oxford Nanopore

B precisionFDA: HG003_GM24149_1_2_3_Guppy_3.6.0_prom.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG003_GM24149_1_2_3_Guppy_

3.6.0_prom.fastq.gz

HG004 (NA24143)
C Illumina
B precisionFDA:

- HG004.novaseq.pcr-free.35x.R1.fastq.gz

- HG004.novaseq.pcr-free.35x.R2.fastq.gz

B data.nist.gov:

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG004.novaseq.pcr-free.35x.R1.fastq.gz

- https://opendata.nist.gov/pdrsrv/mds2-2336/input_fastqs/HG004.novaseq.pcr-free.35x.R2.fastq.gz

C PacBio HiFi

B precisionFDA: HG004_35x_PacBio_14kb-15kb.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG004_35x_PacBio_14kb-15kb.

fastq.gz

B SRA
- Bioproject Accession: BioProject: PRJNA626366

- SRA Accessions: SRA: SRX8137018, SRA: SRX8137019, SRA: SRX8137020, and SRA: SRX8137021
C Oxford Nanopore

B precisionFDA: HG004_GM24143_1_2_3_Guppy_3.6.0_prom.fastq.gz

B data.nist.gov: https://nist-midas.s3.amazonaws.com/pdrsrv/mds2-2336/input_fastqs/HG004_GM24143_1_2_3_Guppy_

3.6.0_prom.fastq.gz

METHOD DETAILS

Challenge submission methods
Participant-provided variant calling methods are included as Table S2. Fifteen of the twenty participants, including all the challenge

winners, providedmethods to bemade publicly available for thismanuscript, a requirement for co-authorship. A randomunique iden-

tifier was generated for every submission. For participants intending to remain anonymous, the unique identifier was used as the

participant and submission names in the methods description.

Challenge submission evaluation
The HG002 V4.1 benchmark set was unblinded and available to participants for model training and methods development. We used

the semi-blinded HG003 and HG004 V4.2 benchmark sets to evaluate performance. The V4.1 and V4.2 benchmark sets are the latest

versions of the GIAB small variant benchmark set, which utilize long- and linked-read sequencing data to expand the benchmark set

into difficult regions of the genome.10 Prior to submission, participants could benchmark their HG002 variant callsets using the pre-

cisionFDA comparator tool (https://precision.fda.gov/apps/app-F5YXbp80PBYFP059656gYxXQ-1, a free precisionFDA account is

required for access). The comparator tool is an implementation of the GA4GH small variant benchmarking tool hap.py (https://github.

com/Illumina/hap.py)13 with vcfeval14 on the precisionFDA platform. The same comparator tool was used to evaluate submission

performance against the HG003 and HG004 V4.2 benchmark sets. To evaluate performance for different genomic contexts, the

V2.0 genome stratifications were used (https://data.nist.gov/od/id/mds2-2190), see Genome stratifications section for a description

of the different stratifications. Submissions were evaluated using the geometric mean of the HG003 and HG004 combined SNVs and

INDELs F1 scores (Equation 1).We use the error rate ratio (ERR), defined as the ratio of 1-F1 for the parents (HG003 andHG004) to the

son (HG002) to evaluate potential overturning.
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F1 = 23 ðRecall3PrecisionÞ=ðRecall + PrecisionÞ
F1parents =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1HG003 3F1HG004

p

ERR = ð1 � F1parentsÞ
�ð1 � F1HG002Þ

(Equation 1)

To better understand how improvements in variant calling methods, sequencing technologies, and benchmark sets affect perfor-

mance metrics, we benchmarked the first challenge winners against the updated benchmark. For the first challenge, participants

submitted variant calls for HG001 and HG002 against GRCh37 using Illumina short-read sequencing data, 2x150 bp 50X coverage

(higher than themore commonly used 35X in the V2 Challenge). We benchmarked the winners of the first challenge (https://precision.

fda.gov/challenges/truth/results) against the V4.2 HG002 GRCh37 benchmark set. The performance metrics for the V3.2 benchmark

set were obtained from the precisionFDA challenge website.

Genome stratifications
The V2.0 genome stratifications are an update to the GA4GH genomic stratifications utilized by hap.py.13 The V2.0 stratifications are

a pared down set of stratifications with improved strata for complex regions, such as tandem repeats and segmental duplications, as

well as new genome-specific stratifications for suspected copy number variants (CNVs) and known errors in the reference genome

(see table below). The GRCh38 V2.0 stratifications includes 127 stratifications. The code and description of methods used to

generate the stratifications and stratification evaluation results are available at https://github.com/genome-in-a-bottle/

genome-stratifications/releases/tag/v2.0.
Summary table of the V2.0 GIAB genome stratifications

Stratification

Group Description # Strats

Example

Stratifications Useful for

FunctionalRegions Coding regions 2 CDS, not in CDS Evaluating performance in coding

regions more likely to be functional

GC-content Various ranges of GC-content 14 GC < 25%; 30% < GC

< 55%

identifying GC bias in variant calling

performance

Low Complexity 22 evaluating performance in locally

repetitive, difficult to sequence

contexts

Homopolymers Identification of homopolymers

by length

4 Homopolymers >101 bp;

imperfect homopolymers

>10 bp

evaluating performance in

homopolymers, where systematic

sequencing errors and complex

variants frequently occur

Simple Repeats Di, tri, and quad-nucleotide

repeats of different lengths

9 Di-nucleotide repeats 11–50 bp;

di-nucleotide repeats >200 bp

evaluating performance in exact

Short Tandem Repeats where

systematic sequencing errors

and complex variants frequently

occur, and variant calls are

challenging if the read length is

insufficient to traverse the entire

repeat

Tandem Repeats Tandem repeats of different

lengths

5 Tandem repeats between 51

and 200 bp; tandem

repeats >10 kb

evaluating performance in exact

Short Tandem Repeats and

Variable Number Tandem Repeats

where systematic sequencing

errors and complex variants

frequently occur, and variant

calls are challenging if the read

length is insufficient to traverse

the entire repeat

Other Difficult Various difficult regions of

the genome

6 MHC; VDJ evaluating performance in or

excluding regions where variants

are difficult to call and represent

due to limitations of the reference

genome (e.g. gaps or errors) or

being highly polymorphic in the

population (MHC).

(Continued on next page)
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Continued

Stratification

Group Description # Strats

Example

Stratifications Useful for

Segmental

Duplications

Segmental duplications defined

using multiple methods and

limited to segdups >10kb

9 Segdups >10 kb; selfChain Regions with multiple similar

copies in the reference, making

them challenging to map and

assemble.

Genome

Specific

Difficult regions of the genome

specific to one or more of

the GIAB genomes. Including

but not limited to complex

variants, copy number variants,

and structural variants.

65 CNVs, complex variants evaluating performance in or

excluding regions in each GIAB

reference sample where small

variants can be challenging to

call (e.g., complex variants) or

represent (e.g., CNVs and SVs)

The updated stratification set includes the union of multiple stratifications as well as ‘‘not in’’ stratifications, which are useful in evaluating performance

outside specific difficult genomic contexts.
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The Global Alliance for Genomics and Health (GA4GH) Benchmarking Team and the Genome in a Bottle (GIAB) Consortium v2.0

stratification BED files are intended as standard resource of BED files for use in stratifying true positive, false positive, and false nega-

tive variant calls. Non-overlapping complement regions for some stratifications are also provided, as ‘‘notin’’ files. All stratifications

that utilize the GRCh38 reference use the reference without decoy or ALT loci (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/

405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.

gz, link checked 08/31/2020). The stratification BED files can be accessed from the NIST Public Data Repository, https://data.nist.

gov/od/id/mds2-2190. Code used to generate the stratifications is available at https://github.com/genome-in-a-bottle/

genome-stratifications. Genome annotation files from UCSC were used for a number of stratifications. The GRCh38 stratifications

used the UCSC annotation database for the Dec. 2013 GRCh38 human genome assembly, Genome Reference Consortium Human

Reference 38GCA_000001405.15 TheGRCh37 stratifications used the UCSC annotation database for the Feb. 2009 assembly of the

human genome, Genome Reference

Consortium Human Reference 37 GCA_000001405.1.

Functional regions
Two Functional Region stratifications were created to stratify variants inside and outside of coding regions. The coding regions were

extracted from the RefSeq GFF file (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/

GCF_000001405.39_GRCh38.p13_genomic.gff.gz, link checked 08/31/2020).

GC content
Fourteen GC content stratifications were created to stratify variants into different ranges of GC content. Using the seqtk algorithm

(https://github.com/lh3/seqtk, link checked 08/31/20) with the GRCh38 reference, >=x bp regions with >y% or < y% GC were iden-

tified. The output was further processed to generate 100 bp ranges of GC with an additional 50 bp slop on either side.28

Note that after adding 50 bp slop, 274,889 bp overlap between gc30 and gc65, or 0.05% of gc30 and 0.5% of gc65, or 0.07% of

gc30 and 0.5% of gc65. The BED files with different GC ranges are almost exclusive of each other, but not completely.

We chose to stratify regions with <30% or >55% GC because these regions had decreased coverage or higher error rates for at

least one of the technologies in,28 and we added 55–60 and 60–65 because we found increased error rates in these tranches in

exploratory work.

Genome-specific
For eachGIAB genome, Genome-Specific stratifications were created to identify variants in difficult regions due to potentially difficult

variation in the NIST/GIAB sample, including (1) regions containing putative compound heterozygous variants, (2) regions containing

multiple variants within 50 bp of each other, (3) regions with potential structural variation and copy number variation. GRCh37 strat-

ifications were generated using vcflib vcfgeno2haplo and Unix commands to identify complex and compound variants in v3.3.2

benchmark VCF files from GIAB 6 for all samples, as well as Platinum Genomes,29 and Real Time Genomics 30 for HG001/

NA12878. To generate GRCh38 Genome Specific stratifications, the GRCh37 Genome Specific complex/compound/SVs BED files

were remapped to GRCh38 using the NCBI Remapping Service (https://www.ncbi.nlm.nih.gov/genome/tools/remap). Non-overlap-

ping complement regions for some stratifications are also provided, as ‘‘notin’’ files.

Functional technically difficult
The Functional Technically Difficult stratification is used in stratifying variants by different functional, or potentially functional, regions

that are also likely to be technically difficult to sequence. A list of GRCh37 difficult-to-sequence promoters, ‘‘bad promoters’’, was
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generated from 30 supplementary file 13059_2012_3110_MOESM1_ESM.TXT (link checked 08/31/2020). The GRCh37 bad pro-

moter-derived BED file was then remapped to GRCh38 using the NCBI remapping service (https://www.ncbi.nlm.nih.gov/

genome/tools/remap).

Low complexity
Twenty-two Low Complexity stratifications were created to identify variants in difficult regions due to different types and sizes of low

complexity sequence (e.g., homopolymers, STRs, VNTRs, other locally repetitive sequences). To capture the full spectrum of re-

peats, we used a python script to extract Simple_repeats and Low_complexity repeats form the UCSC RepeatMasker-generated

file (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz, date accessed 07/22/2019)31 and UCSC TRF-gener-

ated file (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz, date accessed 07/22/2019).32

Other difficult
We provide nine stratifications for GRCh37 and six stratifications for GRCh38 representing additional difficult regions that do not fall

into the other stratification groups. These regions include: (1) the VDJ recombination components on chromosomes 2, 14, and 22; (2)

the MHC on chromosome 6; (3) L1Hs greater than 500 base pairs; (4) reference assembly contigs smaller than 500 kb; and (5) gaps in

the reference assembly with 15 kb slop. In addition, we used alignments of GRCh38 to GRCh37 to identify regions that were

expanded or collapsed between reference assembly releases. For GRCh37, we provide regions with alignments of either none or

more than one GRCh38 contig. We also provide regions where the hs37d5 decoy sequences align to GRCh37 indicating

potentially duplicated regions. We describe the identification of these regions while generating the new small variant benchmark

in.10 We generated files containing the L1H subset of LINEs greater than 500 base pairs starting with the rmsk.txt.gz file

from UCSC (https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz) and (http://hgdownload.cse.ucsc.edu/

goldenPath/hg38/database/rmsk.txt.gz) then identify entries with ‘‘L1H’’ and select those greater than 500 base pairs long.

Segmental duplications
Nine Segmental Duplication stratificationswere generated to identify whether variants are in segmental duplications or in regionswith

non-trivial self-chain alignments. Non-trivial self-chains are regions where one part of the genome aligns to another due to similarity in

sequence, e.g., due to genomic duplication events. Segmental Duplications from UCSC (hgdownload.cse.ucsc.edu/goldenPath/

hg38/database/genomicSuperDups.txt.gz, link checked 08/31/20) were processed to generate stratifications of all segmental dupli-

cations, segmental duplications greater than 10 kb, and regions >10 kb covered by more than 5 segmental duplications with >99%

identity.33,34 For stratifications that represent non-trivial alignments of the genome reference to itself, excluding ALT loci, the UCSC

chainSelf (hgdownload.cse.ucsc.edu/goldenPath/hg38/database/chainSelf.txt.gz, link checked 08/31/20) and chainSelfLink

(hgdownload.cse.ucsc.edu/goldenPath/hg38/database/chainSelfLink.txt.gz, link checked 08/31/20) were used. Together these files

were used to produce stratifications for all chainSelf regions and regions greater than 10 kb.

Mappability
Four Mappability stratifications were created to stratify variant calls based on genomic region short read mappability. Regions with

low mappability for different read lengths and error rates were generated using the GEM mappability program35 and BEDOPS

genomic analysis tools.36 Two sets of parameters were used representing low (-m 2 -e 1 -l 100) and high stringency (-m 0 -e 0 -l

250) short read mappability.

Union
Four Union stratifications were created to identify whether variants are in, or not in, different general types of difficult regions or in any

type of difficult region or complex variant. The all difficult stratification regions, is the union of all tandem repeats, all homopolymers

>6 bp, all imperfect homopolymers >10 bp, all difficult to map regions, all segmental duplications, GC <25% or >65%, "Bad Pro-

moters", and "OtherDifficultregions". Additionally stratifications are provided for the union of all difficult to map regions and all

segmental duplications. For all stratifications, a ‘‘notin’’ non-overlapping complement is provided as ‘‘easy’’ regions for stratification.

QUANTIFICATION AND STATISTICAL ANALYSIS

The input benchmarking results and code used to perform the analyses presented in this manuscript are available (https://github.

com/usnistgov/giab-pFDA-2nd-challenge). The statistical programming language R was used for data analysis. Rmarkdown was

used to generate individual results.37 Packages in the Tidyverse were used for data manipulation and plotting, specifically ggplot,

tidyr, and dplyr.38
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Figure S1: Read length and sequence quality score distributions for the three PacBio HiFi 
datasets. Sequence data metrics were calculated using FastQQ. Related to Table 1. 

 

Figure S2: Read length distribution for the three ONT PromethION datasets. Related to Table 1. 

 



 
Figure S3: Precision performance (A) and submission rank (B) varied by technology and 
stratification(log scale). Precision is plotted on a phred scale with axes labels and ticks indicating 
Precision % values. Generally, submissions that used multiple technologies (MULTI) outperformed single 
technology submissions for all three genomic context categories. Panel A shows a Histogram of Precision 
% (higher is better) for the three genomic stratifications evaluated. Submission counts across 
technologies are indicated by light gray bars and individual technologies by colored bars. Panel B shows 
individual submission performance. Data points represent submission performance for the three 
stratifications (difficult-to-map regions, all benchmark regions, MHC), and lines connect submissions. 
Category top performers are indicated by diamonds with "W”s and labeled with Team names. Related to 
Figure 2.  



 
Figure S4: Recall performance (A) and submission rank (B) varied by technology and 
stratification(log scale). Recall is plotted on a phred scale with axes labels and ticks indicating Recall % 
values. Generally, submissions that used multiple technologies (MULTI) outperformed single technology 
submissions for all three genomic context categories. Panel A shows a Histogram of Recall % (higher is 
better) for the three genomic stratifications evaluated. Submission counts across technologies are 
indicated by light gray bars and individual technologies by colored bars. Panel B shows individual 
submission performance. Data points represent submission performance for the three stratifications 
(difficult-to-map regions, all benchmark regions, MHC), and lines connect submissions. Category top 
performers are indicated by diamonds with "W”s and labeled with Team names. Related to Figure 2. 
 
 



 
Figure S5: Variant calling performance by INDEL size varied by technology (log scale). Submission 
variant calling performance by INDEL size bins, with deletions indicated by negative bp size. Metric 
values are the geometric mean for HG003 and HG004 (the semi-blinded trio parents) with lines 
connecting submissions. F1 is plotted on a phred scale with axes labels and ticks indicating F1 % values. 
Related to Figure 2. 



 

Figure S6: Comparison of submitted version of the ONT PEPPER-DeepVariant variant callset 
performance to an updated version. Performance metrics are plotted on a phred scale with axes labels 
and ticks indicating metric % values. After the challenge ended a new mapping algorithm for long read 
data, winnowmap, was released. Winnowmap uses weighted minimizers to improve read mapping in 
repetitive genomic regions (https://doi.org/10.1093/bioinformatics/btaa435). The updated variant callset 
utilizes this new read mapping algorithm in its pipeline. Points above and below the diagonal line indicate 
stratifications where the updated callset performance metric was higher than the challenge submission. 
The points are colored by stratification category. Related to Figure 5. 
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