Cell Genomics, Volume 2

## Supplemental information

## Benchmarking challenging small variants

### with linked and long reads

Justin Wagner, Nathan D. Olson, Lindsay Harris, Ziad Khan, Jesse Farek, Medhat Mahmoud, Ana Stankovic, Vladimir Kovacevic, Byunggil Yoo, Neil Miller, Jeffrey A. Rosenfeld, Bohan Ni, Samantha Zarate, Melanie Kirsche, Sergey Aganezov, Michael C. Schatz, Giuseppe Narzisi, Marta Byrska-Bishop, Wayne Clarke, Uday S. Evani, Charles Markello, Kishwar Shafin, Xin Zhou, Arend Sidow, Vikas Bansal, Peter Ebert, Tobias Marschall, Peter Lansdorp, Vincent Hanlon, Carl-Adam Mattsson, Alvaro Martinez Barrio, Ian T. Fiddes, Chunlin Xiao, Arkarachai Fungtammasan, Chen-Shan Chin, Aaron M. Wenger, William J. Rowell, Fritz J. Sedlazeck, Andrew Carroll, Marc Salit, and Justin M. Zook

# Supplementary Information: Benchmarking challenging small variants with linked and long reads

**Table S1**. **Coverage of each sample by linked-reads and long-reads, related to STAR Methods**. PacBio HiFi calculated from median depth in VCFs used in integration pipeline. 10x Genomics coverage estimates are from the sequencing provider. ONT coverage calculated from median of mosdepth 1000 bp windows in bam file (note that variants from ONT were not used in v4.2.1; it was only used to exclude regions with abnormal coverage).

|       | Reference | PacBio HiFi coverage | 10x coverage | ONT coverage |
|-------|-----------|----------------------|--------------|--------------|
| HG001 | GRCh37    | 68                   | 75           | 37           |
| HG001 | GRCh38    | 67                   | 75           | 37           |
| HG002 | GRCh37    | 54                   | 84           | 59           |
| HG002 | GRCh38    | 54                   | 84           | 59           |
| HG003 | GRCh37    | 62                   | 71           | 84           |
| HG003 | GRCh38    | 63                   | 71           | 85           |
| HG004 | GRCh37    | 60                   | 69           | 85           |
| HG004 | GRCh38    | 60                   | 69           | 85           |
| HG005 | GRCh37    | 47                   | 53           | 57           |
| HG005 | GRCh38    | 47                   | 53           | 59           |
| HG006 | GRCh37    | 67                   | 53           | 51           |
| HG006 | GRCh38    | 67                   | 53           | 51           |
| HG007 | GRCh37    | 56                   | 53           | 41           |
| HG007 | GRCh38    | 56                   | 53           | 41           |



**Figure S1**. New benchmark set includes more of the reference genome and more SNVs and indels, related to Figure 1. (A) Percent of the genomic region that is included by v3.3.2 and v4.2.1 of all non-gap, autosomal GRCh37 bases; MHC; low mappability regions and segmental duplications; and 159 difficult-to-map, medically-relevant genes described previously. (B) The number of unique SNVs by genomic context. Circle size indicates the total number of SNVs in the union of v3.3.2 and v4.2.1. Circles above the diagonal indicate there is a net gain of SNVs in the newer benchmark, and circles below the diagonal indicate a net loss of SNVs in the newer benchmark.

**Table S3. Errors previously identified in v3.3.2 now corrected in v4.2.1, related to Table 1.** Errors in v3.3.2 identified by PacBio Hifi that are corrected in v4.2.1, either matching PacBio HiFi callset or removed from benchmark regions.

| Chromosome | Position    | Result                              | Region Type |
|------------|-------------|-------------------------------------|-------------|
| 4          | 11,468,804  | Outside v4.2.1 benchmark regions    |             |
| 5          | 42,740,225  | Outside v4.2.1 benchmark regions    | LINE:L1PA2  |
| 2          | 5,143,996   | Call matches in benchmark region    |             |
| 13         | 48,291,499  | Outside v4.2.1 benchmark regions    | LINE:L1PA3  |
| 8          | 5,930,728   | Outside v4.2.1 benchmark regions    |             |
| 15         | 41,943,823  | Outside v4.2.1 benchmark regions    |             |
| 6          | 9,737,425   | Outside v4.2.1 benchmark regions    |             |
| 7          | 157,385,671 | Reference call in benchmark regions |             |
| 17         | 32,064,214  | Outside v4.2.1 benchmark regions    |             |
| 1          | 94,256,825  | Call matches in benchmark region    | LINE:L1PA2  |
| 2          | 153,864,971 | Call matches in benchmark region    | LINE:L1HS   |
| 4          | 112,819,087 | Call matches in benchmark region    | LINE:L1HS   |
| 4          | 165,026,074 | Call matches in benchmark region    | LINE:L1PA2  |
| 11         | 23,338,682  | Call matches in benchmark region    | LINE:L1P1   |
| 1          | 35,034,071  | Call matches in benchmark region    | LINE:L1HS   |
| 3          | 79,181,734  | Call matches in benchmark region    | LINE:L1HS   |
| 4          | 94,532,444  | Call matches in benchmark region    | LINE:L1HS   |
| 8          | 46,873,565  | Outside v4.2.1 benchmark regions    |             |
| 9          | 22,350,168  | Call matches in benchmark region    | LINE:L1PA2  |
| 21         | 42,288,851  | Call matches in benchmark region    | LINE:L1PA2  |

**Table S5. Expanded inclusion of difficult, medically relevant genes, related to Figure 4.** Benchmark inclusion of 159 medically relevant genes totaling 10,009,480 bp in GRCh38 and 10,152,047 bp in GRCh37 on chromosomes 1-22 previously identified as difficult for short reads. bp included is the total number of bp included by each benchmark set and percent of bases included from the gene set.

| Benchmark Set | Reference | bp included     | SNVs   | INDELS |
|---------------|-----------|-----------------|--------|--------|
| v3.3.2        | GRCh38    | 5,362,837 (54%) | 6,242  | 943    |
| v4.2.1        | GRCh38    | 8,786,005 (88%) | 10,175 | 1,469  |
| v3.3.2        | GRCh37    | 5,283,743 (52%) | 6,364  | 997    |
| v4.2.1        | GRCh37    | 8,428,864 (83%) | 10,710 | 1,471  |

**Table S7. Curation of potential errors identified by Platinum Genomes, related to Figure 5**: Manual curation results of 10 random sites in HG002 v4.2.1 that match Category 1 SNVs in Platinum Genomes.

| Chromosome | Position  | Curation         | Notes                                                                                                                                                            |
|------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16         | 18288432  | Selfchain/segdup | Many variants on one HP CCS, in selfchain/segdup                                                                                                                 |
| 19         | 54726776  | Selfchain/segdup | Cluster of variants in 10x/Illumina nearby and CCS<br>has more variants on one HP than the other. In<br>high depth selfchain/segdup that is smaller than<br>10kb |
| 19         | 41379908  | Selfchain/segdup | Cluster of variants, in LINE:L1MA3. In depth 2 segdup and depth 2 selfchain                                                                                      |
| 8          | 11872949  | Selfchain/segdup | Potential SV in segdup, since CCS and ONT have clipped reads nearby. Cluster of CAT1 variants                                                                    |
| 15         | 20360478  | Possible CNV     | Likely CNV given CCS data and high coverage in ONT. Several CAT1 variants in the region.                                                                         |
| 8          | 7223157   | Selfchain/segdup | Cluster of CAT1 variants, in segdup and normal<br>coverage but in a cluster of variants on one HP CCS<br>and ONT, so may be more complex                         |
| 15         | 20453992  | Possible CNV     | Cluster of CAT1 variants, cluster of variants on one<br>HP CCS, and large change in coverage in CCS and<br>nearby SV                                             |
| 7          | 149749666 | Possible CNV     | Cluster of CAT1 variants. Large changes in coverage in region in CCS data but overall looks reasonable.                                                          |
| 15         | 20454464  | Possible CNV     | Many CAT1 variants in region, large change in CCS coverage in region, near what appears to be SV that is excluded from v4.2.1                                    |
| 12         | 74899879  | Possible CNV     | Somewhat elevated CCS coverage. In LINE:L1PA3.                                                                                                                   |



**Figure S2. Comparison of benchmark region sizes between GIAB versions and Platinum Genomes, related to Figure 5.** NG is the percent of the GRCh38 reference covered by benchmark regions at least as large as the Benchmark Region NG Size. This metric is analogous to Assembly NG50 except that benchmark region size is used in place of contig length. The contiguity of the benchmark improves in v4.2.1 compared to v3.3.2 and all versions of Platinum Genomes (PG).



Figure S3. Base pairs in genomic regions excluded for all input variant call sets, related to Table 2.

Table S9. Problematic regions in GRCh38 v3.3.2 that were near or in the centromere, related to Table 2.

| GIAB Sample | Chromosome | Start    | End      | Region Type              |
|-------------|------------|----------|----------|--------------------------|
| HG002       | chr8       | 43637994 | 43672749 | Centromere               |
| HG002       | chr8       | 43603010 | 43637285 | Centromere               |
| HG002       | chr8       | 43831369 | 43864819 | Centromere               |
| HG002       | chr7       | 62742402 | 62800702 | q11.21 (near centromere) |
| HG002       | chr7       | 57925899 | 57969199 | p11.1 (centromere)       |
| HG002       | chr7       | 54317738 | 54350806 | p11.2                    |
| HG002       | chr7       | 62821943 | 62851720 | q11.21                   |
| HG002       | chr5       | 46337535 | 46371375 | Centromere               |
| HG002       | chr5       | 46009909 | 46041150 | Centromere               |
| HG002       | chr3       | 90613721 | 90676762 | Centromere               |
| HG002       | chr3       | 90268364 | 90303792 | Centromere               |
| HG002       | chr3       | 90445745 | 90478995 | Centromere               |
| HG002       | chr19      | 27523978 | 27570562 | Centromere               |
| HG002       | chr12      | 37624574 | 37664823 | Centromere               |
| HG002       | chr12      | 34536432 | 34575253 | Centromere               |
| HG002       | chr12      | 34483102 | 34520344 | Centromere               |
| HG002       | chr12      | 37342974 | 37379851 | Centromere               |
| HG002       | chr11      | 50785848 | 50821348 | p11.12 (near centromere) |
| HG002       | chr10      | 39052350 | 39083950 | Centromere               |
| HG002       | chr10      | 39116363 | 39147923 | Centromere               |
| HG003       | chr8       | 43601909 | 43637285 | Centromere               |
| HG003       | chr8       | 43637994 | 43672749 | Centromere               |
| HG003       | chr7       | 62742945 | 62800702 | q11.21 (near centromere) |
| HG003       | chr5       | 50193424 | 50229094 | Centromere               |
| HG003       | chr5       | 46337535 | 46371375 | Centromere               |
| HG003       | chr4       | 8843663  | 8892454  | p16.1                    |
| HG003       | chr3       | 90598264 | 90676761 | Centromere               |
| HG003       | chr3       | 90268364 | 90303792 | Centromere               |
| HG003       | chr3       | 90411794 | 90445037 | Centromere               |
| HG003       | chr3       | 90445745 | 90478939 | Centromere               |
| HG003       | chr22      | 22145576 | 22178716 | q11.22                   |

| HG003 | chr19 | 27523978 27577850 Centrom |           | Centromere               |
|-------|-------|---------------------------|-----------|--------------------------|
| HG003 | chr12 | 37624574 37664823 Centror |           | Centromere               |
| HG003 | chr12 | 34536383                  | 34575253  | Centromere               |
| HG003 | chr12 | 34482540                  | 34520344  | Centromere               |
| HG003 | chr12 | 37342974                  | 37379851  | Centromere               |
| HG003 | chr11 | 50772422                  | 50821348  | p11.12 (near centromere) |
| HG003 | chr10 | 39013337                  | 39083750  | Centromere               |
| HG003 | chr10 | 39116363                  | 39153579  | Centromere               |
| HG003 | chr10 | 39183589                  | 39216647  | Centromere               |
| HG004 | chr8  | 43637994                  | 43672749  | Centromere               |
| HG004 | chr8  | 43831342                  | 43864819  | Centromere               |
| HG004 | chr7  | 62742945                  | 62815024  | q11.21                   |
| HG004 | chr7  | 57925899                  | 57969199  | Centromere               |
| HG004 | chr5  | 46009909                  | 46041150  | Centromere               |
| HG004 | chr5  | 50193424                  | 50223736  | Centromere               |
| HG004 | chr4  | 144161988                 | 144192833 | q31.21                   |
| HG004 | chr3  | 90445745                  | 90478957  | Centromere               |
| HG004 | chr3  | 90507640                  | 90536550  | Centromere               |
| HG004 | chr2  | 88861923                  | 88891174  | p11.2                    |
| HG004 | chr19 | 27523978                  | 27559503  | Centromere               |
| HG004 | chr12 | 37263197                  | 37300537  | Centromere               |
| HG004 | chr12 | 37342828                  | 37379552  | Centromere               |
| HG004 | chr12 | 63767401                  | 63796912  | q14.2                    |
| HG004 | chr12 | 37815851                  | 37844396  | Centromere               |
| HG004 | chr12 | 34492116                  | 34520344  | Centromere               |
| HG004 | chr11 | 50772422                  | 50806467  | p11.12                   |
| HG004 | chr10 | 39120199                  | 39153579  | Centromere               |
| HG004 | chr10 | 39055460                  | 39087970  | Centromere               |
| HG004 | chr10 | 39183589                  | 39213934  | Centromere               |

Table S10. Changes made to the benchmark formation process from v4alpha to v4.2.1, related to STAR Methods. The Genome in a Bottle Consortium has an iterative evaluation process to ensure new benchmarks are useful for assessing performance across diverse sequencing technologies and variant calling methods. The first version using PacBio HiFi and 10x Genomics data was v4alpha. In particular, GIAB found that some regions contained unreliable calls across technologies, and these regions were excluded from subsequent releases. In addition, the PacBio HiFi data changed during releases as new data were collected, and the 10x Genomics data remained constant at ~84x coverage.

| Difficult Region Description                                             | Method Excluded From                                                                          |  |  |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| All candidate structural variant regions from the Son-Mother-Father Trio | All methods                                                                                   |  |  |  |  |  |
| All tandem repeats < 51bp in length                                      | All methods except GATK from Illumina PCR-free, Complete Genomics, and PacBio CCS DeepVariant |  |  |  |  |  |
| All tandem repeats > 51bp and < 200bp in length                          | All methods except GATK from Illumina PCR-free and <b>PacBio CCS</b> DeepVariant              |  |  |  |  |  |
| All tandem repeats > 200bp in length                                     | All methods except PacBio CCS DeepVariant                                                     |  |  |  |  |  |
| Perfect or imperfect homopolymers > 10bp                                 | All methods except GATK from Illumina PCR-free                                                |  |  |  |  |  |
| Segmental duplications from Eichler et al.                               | All methods except 10X Genomics and PacBio CCS                                                |  |  |  |  |  |
| Segmental duplications > 10Kbp from self-chain mapping                   | All methods except 10X Genomics and PacBio CCS                                                |  |  |  |  |  |
| Regions homologous to contigs in hs37d5 decoy                            | All methods except 10X Genomics and PacBio CCS                                                |  |  |  |  |  |
| Difficult to map regions for short reads                                 | All methods except 10X Genomics and PacBio CCS                                                |  |  |  |  |  |
| Homopolymer > 6bp in length                                              | All methods except GATK from Illumina PCR-free and Complete<br>Genomics                       |  |  |  |  |  |

**The v4alpha release** used PacBio Sequel I HiFi ~15 kb reads at ~28x coverage, with the difficult regions below (Bold entries changed from v3.3.2):

**The v4beta release** used PacBio Sequel I HiFi ~15 kb reads at ~28x coverage. Additionally, v4beta used additional tandem repeat files from UCSC, excluded the entire tandem repeat if any part was not in the benchmark BED, and changed the difficult regions below:

| Difficult Region Description                                                                      | Method Excluded From |
|---------------------------------------------------------------------------------------------------|----------------------|
| v0.6 SV Benchmark                                                                                 | All methods          |
| Regions that are collapsed and expanded from GRCh37/38<br>Primary Assembly Alignments (corrected) | All methods          |
| Diploid assemblies exhibit more than 2 contigs aligned > 10kb                                     | All methods          |
| Intersected short and long read based copy number > 2.5<br>(updated)                              | All Methods          |

| Segmental duplications > 10Kb, Identity > 99%, Count > 5 | All methods                                                        |
|----------------------------------------------------------|--------------------------------------------------------------------|
| mrCaNaVar duplications > 10kb (052119)                   | All methods except 10X Genomics and PacBio CCS                     |
| Outliers from long read coverage                         | All Methods                                                        |
| LINE:L1Hs > 500                                          | All methods except Illumina MatePair, 10X Genomics, and PacBio CCS |
| All Tandem Repeats > 10kb in length                      | All methods                                                        |

**The v4.0 release** used PacBio Sequel II HiFi ~11 kb reads at ~32x coverage, updated to DeepVariant v0.8, and kept the same exclusion regions as v4beta

**The v4.1 release** used PacBio Sequel II HiFi ~15 kb and ~20 kb reads at ~52x coverage. The diploid assembly-based MHC benchmark was used for the MHC region in v4.1. We also added the difficult regions below:

| Difficult Region Description                                                                       | Method Excluded From |
|----------------------------------------------------------------------------------------------------|----------------------|
| Potential copy number variation including CCS and ONT outlier and CCS, ONT, mrCanavar intersection | All methods          |
| UDJ                                                                                                | All methods          |
| Inversions                                                                                         | All methods          |

**The v4.2 release** is the first for HG003 and HG004, and it used hifiasm to perform the assembly of PacBio HiFi reads in the MHC, and used dipcall with this assembly to call variants, including in segmental duplications that were previously not assembled properly. Since it represents complex variants as individual SNVs and indels, dipcall helps improve partial credit in some cases for variants that are only partially called correctly by the query callset. We also excluded entire homopolymers and tandem repeats in the MHC if they were not completely covered by the benchmark bed. Since calls were made for HG003 and HG004 in addition to HG002, we also performed a trio Mendelian analysis and excluded Mendelian violations from the benchmark regions for all individuals (except putative de novo variants in HG002 were not excluded from the benchmark regions).

**The v4.2.1 release** is for HG002, HG003, and HG004 on both GRCh37 and GRCh38. We now use the same MHC hifiasm approach for HG002 as with HG003 and HG004. We exclude SVs from a pbsv call set from HG003 and HG004 in addition to the GIAB v0.6 SV benchmark. A final update is that we exclude the KIR region because of highly variable copy number.

Table S11. Sequencing technology, mapping or assembler method, and variant caller that was used to generate each evaluation call set, related to Figure 5. The names used in Figure 5 are in the fourth column.

| Sequencing<br>Technology             | Variant Caller | Mapper/Assembler              | Figure 5 Name         |
|--------------------------------------|----------------|-------------------------------|-----------------------|
| PacBio HiFi                          | DeepVariant    | minimap2                      | PB DV-mm2             |
| PacBio HiFi                          | GATK4          | minimap2                      | PB GATK4-mm2          |
| PacBio HiFi                          | Clair          | minimap2                      | PB Clair-mm2          |
| PacBio HiFi                          | DV             | Duplomap                      | PB DV-Duplomap        |
| PacBio HiFi                          | dipcall        | WHDenovo                      | PB Dipcall-WHDenovo   |
| Illumina PCR-Free<br>TruSeq 2x250bp  | Dragen         | Dragen                        | III Dragen            |
| Illumina PCR-Free<br>TruSeq 2x250bp  | Dragen         | VG                            | III Dragen-VG         |
| Illumina PCR-Free<br>HiSeq 2x150bp   | SevenBridges   | SevenBridges Graph<br>Aligner | III SevenBridges GRAF |
| Illumina PCR-Free<br>HiSeq 2x150bp   | xAtlas         | NovoAlign                     | III xAtlas            |
| Illumina PCR-Free<br>NovaSeq 2x250bp | GATK           | BWA                           | III GATK-BWA          |
| 10x Genomics                         | LongRanger     | LongRanger                    | 10x LongRanger        |
| 10x Genomics                         | paftools       | Aquila                        | 10x paftools-Aquila   |
| ONT                                  | Clair          | minimap2                      | ONT Clair-mm2         |
| ONT                                  | Clair          | NGMLR                         | ONT Clair-ngmlr       |



**Figure S4. Error in benchmark due to large duplication in HG002, related to Figure 5.** The benchmark and callset both make calls in this region where there is likely a large duplication in HG002 compared to GRCh38 that was not detected by our exclusion criteria. This specific example is a FP SNP in PacBio HiFi Duplomap DV where the benchmark region indicates a reference call at this location.



#### Figure S5: Genomic regions included by input variant callset, related to STAR Methods.

Genomic regions are excluded based on the biases of each technology that decrease reliability of variants in particular regions. Included regions are indicated by dark grey. Illumina PCR-Free includes both the high coverage HiSeq 300x and 2x250 HiSeq datasets. The PacBio HiFi dataset consists of 4 SMRT Cells of 15 kb libraries and 2 SMRT Cells of 20 kb libraries.

|             | LINEs   | C4A    | C4B    | Cyp21A2 | Cyp2D6  | DMBT1   | HSPG2   | PMS2    | STRC    | TnxA    | TnxB    |
|-------------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
|             |         |        |        |         |         |         |         |         |         |         |         |
| Buffer (5X) | 1X      | 1X     | 1X     | 1X      | 1X      | 1X      | 1X      | 1X      | 1X      | 1X      | 1X      |
| dNTP        |         |        |        |         |         |         |         |         |         |         |         |
| (250uM      |         |        |        |         |         |         |         |         |         |         |         |
| each)       | 250uM   | 400uM  | 400uM  | 250uM   | 0.3mM   | 400uM   | 200uM   | 400uM   | 400uM   | 250uM   | 250uM   |
| Forward     |         |        |        |         |         |         |         |         |         |         |         |
| Primer      | 0.25uM  | 0.5uM  | 0.5uM  | 10uM    | 0.5uM   | 0.4uM   | 0.3uM   | 0.2uM   | 0.4uM   | 10uM    | 10uM    |
| Reverse     |         |        |        |         |         |         |         |         |         |         |         |
| Primer      | 0.25uM  | 0.5uM  | 0.5uM  | 10uM    | 0.5uM   | 0.4uM   | 0.3uM   | 0.2uM   | 0.4uM   | 10uM    | 10uM    |
| Polymerase  |         |        |        |         |         |         |         |         |         |         |         |
| (1.25       |         |        |        |         |         |         |         |         |         |         |         |
| units/uL)   | 1.25 U  | 1.25 U | 1.25 U | 1.25 U  | 1.25 U  | 2.5 U   | 0.5 U   | 1.25 U  | 2 U     | 0.5 U   | 0.5 U   |
| DNA         | 300ng   | 100ng  | 100ng  | 250ng   | 1uL     | 2uL     | 300ng   | 100ng   | 300ng   | 250ng   | 250ng   |
|             |         | То     | То     |         |         |         |         |         |         |         |         |
| Water       | To 50uL | 50uL   | 50uL   | To 30uL | To 25uL | To 50uL | To 50uL | To 25uL | To 50uL | To 30uL | To 30uL |

Table S14. Long Range PCR Components, related to STAR Methods

## Table S15. Long Range PCR Conditions, related to STAR Methods

| Gene    | PCR Conditions                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------|
| LINEs   | 30 cycles of 98°C for 10 seconds, 60°C for 15 seconds, and 68°C for 8 minutes.                         |
|         | 98°C for 2 minutes; followed by 40 cycles of 98°C for 45 seconds, 66°C for 60 seconds, and 72°C for 9  |
| C4A     | minutes, with a final extension step of 72°C for 10 minutes.                                           |
|         | 98°C for 2 minutes; followed by 8 cycles of 94°C for 45 seconds, 64°C for 60 seconds, with a decrease  |
|         | of 0.5°C per cycle, and 72°C for 9 minutes; followed by 30 cycles of 94°C for 45 seconds, 59°C for 60  |
|         | seconds, and 72°C for 9 minutes, with an increase of 10 seconds per cycle, with a final extension step |
| C4B     | of 72°C for 15 minutes                                                                                 |
|         |                                                                                                        |
| Cyp21A2 |                                                                                                        |
| TnxA    | 94°C for 4 minutes; followed by 12 cycles of 94°C for 30 seconds, 62°C for 40 seconds, and 68°C for 5  |
| TnxB    | minutes; followed by 16 cycles of 94°C for 30 seconds, and 68°C for 5 minutes.                         |
|         | 96°C for 30 seconds; followed by 30 cycles of 94°C for 15 seconds, 68°C for 30 seconds, and 68°C for   |
| Cyp2D6  | 7 minutes, with a final extension step of 68°C for 30 minutes.                                         |
|         | 94°C for 1 minute; followed by 30 cycles of 98°C for 10 seconds, and 68°C for 15 minutes, with a final |
| DMBT1   | extension step of 72°C for 10 minutes.                                                                 |
| HSPG2   | 30 cycles of 98°C for 10 seconds, 60°C for 15 seconds, and 68°C for 10 minutes.                        |
|         | 94°C for 1 minute; followed by 35 cycles of 94°C for 10 seconds, and 65°C for 30 seconds, and 68°C     |
| PMS2    | for 15 minutes, with a final extension step of 72°C for 10 minutes.                                    |
|         | 93°C for 3 minutes; followed by 38 cycles of 93°C for 15 seconds, 64°C for 30 seconds, and 68°C for    |
| STRC    | 17 minutes, with a final extension step of $68^{\circ}$ C for 5 minutes.                               |