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SUMMARY
Genome-wide association studies have successfully discovered thousands of common variants associated
with human diseases and traits, but the landscape of rare variations in human disease has not been explored
at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate
the impact of rare coding variations across awide range of phenotypes to discover genes and allelic series rele-
vant to human health and disease. Here, we present results from systematic association analyses of 4,529 phe-
notypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence
data.Wefind that the discovery of genetic associations is tightly linked to frequency and is correlatedwithmet-
rics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and
release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant as-
sociation results.
INTRODUCTION

Coding variation has been the most readily interpretable class of

genomic variation since the development of the gene model and

mappingof thehumangenome.Assuch, it has facilitated themap-

ping and interpretation of variants with immediate clinical impor-

tance such as the American College of Medical Genetics action-

able variant list.1 More recently, exome sequencing has yielded

the discovery of specific causal variants for hundreds of rare dis-

eases, particularly dominant acting de novo variants for severe

diseases.2

As the sample sizes of exome sequencing datasets continue

to grow, so do the opportunities to identify associations between
Cell
This is an open access article und
rare variants and phenotypes (both complex traits and diseases).

In complex diseases, identifying causal genetic factors for a

given disease can provide direct insight into the potential for

therapeutic avenues. For instance, gain-of-function variants in

PCSK9 have been demonstrated to increase low-density lipo-

protein (LDL) levels and thus risk for cardiovascular disease.3

Accordingly, loss-of-function (LoF) variants are protective for

cardiovascular disease,4 and less than 15 years after the discov-

ery of this effect, therapeutic approaches to inhibit PCSK9 have

been brought to market.5

Deeply phenotyped biobanks present a unique opportunity to

simultaneously analyze multiple diseases and traits within a sin-

gle cohort, enabling the discovery of new disease genes with
Genomics 2, 100168, September 14, 2022 ª 2022 The Author(s). 1
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therapeutic potential at a large scale, such as the identification of

rare variants in ANGPTL7 that protect against glaucoma.6 The

UKBiobank is a collection of approximately 500,000 participants

with standardized, detailed phenotypic data7 on which genome-

wide association studies (GWASs) have been run extensively.

The UKB Exome Sequencing Consortium, a partnership be-

tween the UKB and 8 biopharma companies, generated exome

sequences for this cohort,8 and recent studies have used the

exome sequence data to explore various aspects of rare-variant

associations, including novel biological signals for type 2 dia-

betes9 and cardiometabolic traits,10 as well as cross-phenotype

analyses that identify new hits for a variety of traits.11–13 Here, we

describe results from a systematic, large-scale rare-variant as-

sociation analysis of 4,529 phenotypes, release these full sets

of summary statistics in a results browser, and explore the role

of natural selection and allele frequency on rare-variant

associations.

RESULTS

Generating high-quality exome data for rare-variant
associations
We built an end-to-end pipeline for read mapping, processing,

joint variant calling, quality control (QC), and mixed-model asso-

ciation analysis and applied this pipeline to 454,697 individuals

with exome sequence data from the UK Biobank. The read map-

ping and processing pipeline adopted the GATK Best Practices

pipeline (GRCh38), and the resulting variants (gVCF files) were

joint called using a scalable implementation in Hail (Figure S1).14

We processed a set of 4,529 phenotypes including 1,233 quan-

titative traits as well as 3,296 binary traits with at least 200 cases,

which included 725 disease endpoints based on Internal Classi-

fication of Diseases (ICD)-10 codes (Figure S2).

After performing QC in a similar but augmented (e.g., array

concordance; see Supplemental information) manner as for the

Genome Aggregation Database (gnomAD),15 we generated a

high-quality dataset of 450,953 individuals (Figures S3–S5;

Table S1) including related individuals. This included 394,841 indi-

viduals of European ancestry in which we find 23,880,790 high-

quality variants (Figure S6). For each of the 19,407 protein-coding

genes, we considered up to four functional annotation categories:

predicted LoF (pLoF), missense (including low-confidence pLoF

variantsand in-frame insertionsordeletions [indels]), synonymous,

and the combination pLoF or missense group, resulting in

8,074,878 variants and 75,767 groups for association testing

(i.e., one group per gene and functional annotation category).

Creating a high-quality set of rare-variant associations
We performed group tests using the mixed-model framework

SAIGE-GENE,16 which includes single-variant tests and gene-

based burden (mean), SKAT (variance), and SKAT-O (hybrid vari-

ance/mean) tests (Figure S7). In total, we performed up to

8,074,878 single-variant tests and 75,767 group tests for each

of 4,529 phenotypes (Figure 1). Additionally, we generated 314

heritable random phenotypes to test the asymptotic properties

of the mixed-model association testing framework (Figures S8

and S9) and to determine empirical p value thresholds for Type

I error control. Based on this analysis, for each phenotype, in
2 Cell Genomics 2, 100168, September 14, 2022
addition to QC criteria defined below, we consider genome-

wide p value thresholds of 2.5 3 10�7 for SKAT-O tests,

6.73 10�7 for burden tests, and 83 10�9 for single-variant tests

(see Supplemental information and Figure S10), corresponding

to approximately 0.05 expected false positives per phenotype.

We performed extensive QC on these summary statistics (Fig-

ure 1; Table S2), including a minimum of two variants per group

test, a minimum coverage of 203, and aminimum expected allele

count (frequency 3 n_cases) of 50 for the summary statistics,

respectively, as well as genomic control (lambda GC) for each

phenotype and each gene (Figures S11–S15). Further, we pruned

to a set of 3,819 high-quality independent phenotypes encom-

passing 677 continuous traits and 3,142 binary traits, including

708 ICD codes (Figures 1A and S16; Table S2). We confirmed

the robustness of our results by comparing them wiht a previous

large-scale study of height (Tables S3–S5; Figure S17) and red

blood cell phenotypes (Table S6), for which our analysis replicates

themajority of associationswith consistent direction of effect.17,18

We filtered to 263,696 variants, including 6,117 pLoF variants,

155,705 missense variants, and 101,874 synonymous variants

with at least one phenotype having an expected allele count

(cohort frequency 3 n_cases) over 50 (Figure 1B). For group

tests, we filter to a high-quality set of 54,647 gene tests with at

least 203 coverage (Figure S13) and at least one phenotype

with expected allele count R50 for pLoF (7,296 genes),

missense (15,943), synonymous (16,014), and pLoF or missense

(15,394) (Figure 1C).

Using these criteria, we identified a total of 68,623 and 6,403

associations meeting our p value threshold with a mean of 18.0

and 1.7 associations per phenotype for single-variant tests and

group tests, respectively (disease results shown in Figures 2A

and 2B). Comparing the group test results with single-variant as-

sociation test results, we find that single-variant tests identify

more significant associations than group tests, as these are

largely from common variants that are excluded from the group

tests. However, we also find 1,849 associations (on average 0.48

per phenotype) from group tests where no single-variant associ-

ation reached our p value threshold for any single variant in the

corresponding gene (Figure 2C). Further, most associations

arise from missense and synonymous variants, as expected

from their greater numbers in the exome, particularly from sin-

gle-variant associations. However, pLoF variants exhibit rela-

tively more associations in group tests, which is consistent

with these variants being individually rare but directionally

consistent, resulting in increased power in a group test (Fig-

ure 2D). In combined tests of pLoF and missense variants, we

find an additional 275 associations among burden tests (254

for SKAT-O) that are significant for the combined test but not

missense or pLoF tests alone.

Displaying rare-variant associations
The utility of human genetic variation datasets are substantially

enhanced when made accessible in the form of online portals

that enable non-technical domain experts toquickly browse, inter-

pret, and export results for downstream follow up.19We extended

our gnomAD browser toolkit to create the Genebass (gene-bio-

bank association summary statistics) browser (https://genebass.

org), a new, highly interactive tool for exploring large numbers of

https://genebass.org
https://genebass.org


Figure 1. Quality control (QC) of rare-variant association tests

(A–C) The number of phenotypes (A), variants (B), and groups (i.e., gene-annotation pairs; C) before and after QC.

(D and E) After QC, the number of variants (D) and genes (E) are broken down by annotation and frequency bin (alternate allele frequency [AF] for variants,

cumulative AF [CAF] for genes).
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gene-based phenome-wide association study (PheWAS) analysis

results. This resourceprovidesuserswithdirect access toall 4,529

phenotypes, servingup993,280,477gene-level association statis-

tics (across 19,407 genes, 4 annotation sets, and 3 burden tests)

and 28,158,190,538 single-variant association statistics across

8,074,878 exome variants. For completeness, the released data-

set includes all association statistics, including pre-QC data, but

weprovide functionality tofilter toonly thehighest quality datapre-

sented herein. Our web application features a unique layout and

navigational scheme for rapidly browsing phenome-wide associa-

tions by integrating results across genes and variants. Customiz-

able controls, plots, and tables enable flexible filtering and visual-

ization of phenotypes, genes, and variants of interest, results can

be exported for downstream analyses, and variant associations

across traits can be compared with inform pathways associated

with complex traits anddevelop therapeutic hypotheses (seeSup-

plemental information).

Frequency and selection affect the landscape of rare-
variant associations
The relationship between natural selection, allele frequency, ef-

fect size, and power for discovery is a major complexity in the

analysis and interpretation of association statistics, particularly

from rare variants. The power to detect association is propor-

tional to the variance explained of a bi-allelic variant.20 Specif-

ically, for a continuous trait, the variance explained of a bi-allelic

variant that is purely additive is 2pqa,2 where p is the allele fre-
quency, q = 1�p, and a is the allelic effect of the variant. Thus,

for a fixed effect size, a more common variant will capture

more variance and, by extension, show stronger association.

However, the process of negative selection will tend to

decrease the frequency of functional damaging variants, sug-

gesting that variants with large effect sizes are more likely to

be rare. Indeed, partitioned heritability analyses for common var-

iants support the presence of these countervailing forces, as

comparatively lower frequency variants have larger absolute ef-

fect sizes, but this growth in effect size is slower than the loss in

variance explained from their lower frequency.21 In evaluating

the landscape of rare-variant association, we observe a similar

pattern with increasing proportion of variants associated with

at least one phenotype as frequency increases (Figure 3A). How-

ever, within each frequency category, we observe the effect of

functional annotation, a known correlate for deleteriousness,

on the association statistics.

Comparing the number of associations by variant annotation in

each allele frequency category, we find that pLoF variants have a

larger number of associations thanmissense variants, followed by

synonymous variants for single-variant tests (Figure 3A) as well as

group tests (Figure 3B). For common variants (>1%), we observe

further increases in associations due to power, but with attenu-

ated associations for pLoF variants, likely due to an increased

rate of artifacts at common pLoF variants22 (Figure S18). Within

missense variants, variant deleteriousness as predicted by

PolyPhen223 is correlated with the number of associations
Cell Genomics 2, 100168, September 14, 2022 3



Figure 2. Rare-variant association testing is enhanced by

group tests

(A and B) For each ICD chapter, we show a Manhattan plot, depicting

the distribution of p values for all single-variant (A) and SKAT-O gene-

based (B) associations, where for each variant/gene, the minimum p

value across phenotypes within each category is shown.

(C and D) The number of gene-level associations per phenotype is

shown as a bar plot, broken down by trait type (left) and normalized

within each trait type (right), separated by phenotype category (C) or

functional annotation (D). The single-variant tests are grouped into

genes where at least one associated variant is necessary to be ‘‘signif-

icant by variant,’’ which is shown alongside group tests (‘‘significant by

gene’’) as well as genes where an association is found both for group

and single-variant tests.

4 Cell Genomics 2, 100168, September 14, 2022
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Figure 3. The influence of variant AF and functional annotation

in exome-association testing

(A and B) The proportion of single variants (A) and genes (B) with at least

one significant hit is shown broken down by AF (A) or CAF (B) category,

each shown below the plot, broken down by functional annotation.

(C and D) This metric is also plotted by the proportion expressed across

transcripts for splice variants (C) and ClinVar pathogenicity status (D). Er-

ror bars represent 95% confidence intervals.
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Figure 4. The effect of gene function on the landscape of rare-variant associations

The proportion of gene-annotation pairs with at least one association (SKAT-O p < 2.53 10�7) is shown for a number of gene categories, each compared with a

background set of genesmatched on CAF. Error bars represent 95% confidence intervals. Asterisks denote a significant difference between the background and

test sets (*p < 0.05 and **p < 0.001, respectively).
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meeting our p value threshold (Figure S18). For splice donor var-

iants, we find a correlation between the proportion expressed

across transcripts (pext)24 and the number of associations (Fig-

ure 3C). Additionally, the pathogenicity level of ClinVar variants

is correlated with phenotypic association (Figure 3D).

Gene function influences association statistics
We examined the phenotypic impact of gene categories previ-

ously known to have functional relevance and/or a role in dis-

ease. In particular, we find that 470 genes previously implicated

in developmental delay25 are more likely to be associated with
6 Cell Genomics 2, 100168, September 14, 2022
a phenotype in the UK Biobank (Fisher’s exact p = 6.6 3 10�4,

odds ratio [OR] = 6.16; Figure 4) than a frequency-matched

background set of genes. Further, we observe a correlation be-

tween selection against pLoFs in a gene and the phenotypic

impact of pLoFs in that gene: specifically, constrained genes

(i.e., those in the highest decile of LoF observed/expected up-

per bound fraction [LOEUF], a metric of LoF intolerance) are

more likely to be associated with a phenotype (6.38%) than a

frequency-matched set of genes (2.12%; Fisher’s exact p =

1.2 3 10-3, OR = 3.14; Figure 4). Similarly, genes with known

autosomal dominant and autosomal recessive diseases, as



Figure 5. Refined association between SCRIB and white-matter integrity of tapetum

The Genebass browser provides views of the full dataset, including all quality control metrics and association statistics.

(A) The summary of association information between pLoF variants in SCRIB with mean orientation dispersion (OD) index in tapetum on fractional anisotropy (FA)

skeleton (from diffusion magnetic resonance imaging [dMRI] data).

(B) A rare variant Manhattan plot of 8 rare pLoF variants is shown.

(C) Details for the component variants are shown in a table, including their functional consequence (CSQ), a detailed protein-coding annotation (HGVSp), and the

association p value and beta, as well as frequency information (AC, allele count; Hom, number of homozygotes; AN, allele number; AF, allele frequency). Each

component pLoF variant in scrib has a positive beta value, and in aggregate, these variants show an association at p = 6 3 10�15 (A).

(D) A Manhattan plot of a previous GWAS29 of FA averaged across brain regions (top), body of corpus callosum (middle), and splenium of corpus

callosum (bottom). Horizontal dashed line indicates a GWAS genome-wide significance threshold (5 3 10�8), and vertical line indicates the location of

SCRIB.
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well as genes with previously established hits in the GWAS cat-

alog and FDA-approved drug targets, show an increased

phenotypic impact of pLoFs and missense variants.

Biological insights from rare-variant association results
The biological information encapsulated in this dataset is

extremely high dimensional, and we release the full dataset of re-

sults for the benefit of the community. Here, we highlight a set of

known and putative associations as examples of the power of

this dataset. First, we recapitulate many known associations

from previous studies, including associations between PCSK9

and LDL cholesterol (pLoF burden p = 3.5 3 10�132), COL1A1

and bone density (pLoF burden p = 2 3 10�9),26 KLF1 and

several red blood cell traits (pLoF burden < 2 3 10�12),27 and

LRP5 (Wnt coreceptor) and bone density and osteoporosis phe-

notypes (pLoF burden < 5 3 10�7).28

We highlight biological signals identified in the exome dataset,

enabled by theGenebass browser. In particular, we find an asso-

ciation between pLoF of SCRIB and white matter integrity of

tapetum (Figure 5). Notably, this association is not significant
at any single pLoF variant, but when aggregated into a

SKAT-O or burden group test, the overall ablation of the tran-

script is associated at a p value of 63 10�15 (Figure 5A). This pro-

vides additional context to a signal observed in a recent GWAS

of white matter integrity29 averaged across regions of the brain,

as well as in the body of corpus callosum (Figure 5B). To our

knowledge, this gene has not been associated in previous

genome-wide association studies, although it is a constrained

gene (probability of loss-of-function intolerance; pLI = 0.93)

that shows evidence for neural tube defects in mice30 with ul-

tra-rare occurrences in humans.31

DISCUSSION

We have generated rare-variant association analysis summary

statistics for 4,529 phenotypes and made these data available

to the public via bulk data downloads as well as a public-facing

browser (https://genebass.org). We explore aspects of this

resource relating natural selection, allele frequency, and genetic

discovery, andwe highlight an association betweenSCRIB and a
Cell Genomics 2, 100168, September 14, 2022 7
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brain imaging trait. Future work will be needed to fully assess the

contribution of rare variants to the heritability of common dis-

eases, as well as the extent and role of pleiotropy among rare

variants.

Limitations of the study
There are a number of limitations to our analysis. Although we

performed extensive QC to improve the reliability of these re-

sults, the low frequency of pLoF variants and low prevalence

of diseases results in instability and low power for many of the

associations, even at the scale of ~400,000 individuals. Thus,

we urge caution in interpreting association results, particularly

for the rarest binary traits (prevalence <10�4) and ultra-rare var-

iants (frequency <10�4), as the behavior of the association tests

when the counts are small (the asymptotic properties) may not

bemet. For the rarest outcomes, increasing the number of cases

is essential to properly evaluate the impact of rare coding varia-

tion across genes. Alternatively, other statistical methods such

as Firth regression may be better suited to such traits. For

pLoF variants, the median cumulative allele frequency across

genes is approximately 1.5 3 10�4, suggesting that group tests

at current sample sizes are only powered to detect individual

gene effects for quantitative traits that capture at least 0.02%

of variance, as well as diseases and traits that have a high prev-

alence (well above 10%; Figure S10). These considerations are

underscored by the apparently poor asymptotic properties of

the mixed-model tests for rarer binary traits, as the lambda GC

for these tests decreases precipitously (Figure S9). Nonetheless,

global biological trends are apparent, such as the relative

ordering of functional impact (pLoF > missense > synonymous;

Figure 3), highlighting that the ability to accurately annotate var-

iants with the functional consequences on a gene is critical to

powering discovery in rare-variant analysis. Further, measures

of natural selection at the gene level continue to highlight that

certain classes of genes, such as LoF-intolerant genes, are

clearly enriched for phenotypic associations.

Finally, these association analyses were only performed for in-

dividuals of European ancestry, the largest group in the dataset.

Notably, these analyses only interrogate a slice of human genetic

diversity, and expanding to additional ancestries has been

shown to increase power and resolution for genetic discov-

ery;32–34 however, as the sample sizes of non-European individ-

uals in the UK Biobank are very limited, these analyses would be

underpowered for most binary traits including many disease out-

comes. Concentrated efforts in building large biobanks with

diverse participants will be required to overcome these limita-

tions and provide more insight into the contribution of rare vari-

ants to common disease etiology.
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Hail 37 https://doi.org/10.5281/zenodo.4504325,

https://hail.is
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https://github.com/astheeggeggs/

PHESANT/tree/v0.2.1
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Konrad

Karczewski: konradk@broadinstitute.org.

Materials availability
This study did not generate new unique reagents.

Data and code availability
All processed exome data has been returned to UK Biobank and will be available through their access management systems. All

resulting summary statistic datasets are publicly available as bulk downloads and in a browser interface at https://genebass.org.

All original code has been deposited to Zenodo with DOIs as below and is publicly available as of the date of publication. Links are

listed in the key resources table.

Main pipeline and analysis code (ukb_exomes package): https://doi.org/10.5281/zenodo.6726324.

Supporting code (ukb_common package): https://doi.org/10.5281/zenodo.6726336.

PHESANT package for phenotype processing: https://doi.org/10.5281/zenodo.6795217.

Hail library for downstream analysis: https://doi.org/10.5281/zenodo.4504325.

Interval list for coverage assessment: https://doi.org/10.5281/ZENODO.6784346.

Gene lists for analysis (Figure 4): https://doi.org/10.5281/ZENODO.6724345.

Wemake the full dataset available in a browser framework (described below), as well as Hail formats, hosted on the Google Cloud

Platform. We provide one MatrixTable for each of the single-variant and gene-based tests, as well as Hail Tables with filtering

criteria for variants, genes, and phenotypes.

All code to reproduce the analyses herein is available on github: https://github.com/nealelab/ukb_exomes (https://doi.org/10.

5281/zenodo.6726324)35 and https://github.com/nealelab/ukb_common (https://doi.org/10.5281/zenodo.6726336).36 All quality

control and data analysis tasks were performed using Hail (versions between 0.2.49 and 0.2.62; https://doi.org/10.5281/zenodo.

4504325).37 Gene lists were downloaded from https://github.com/macarthur-lab/gene_lists (https://doi.org/10.5281/ZENODO.

6724345).38 Unless otherwise indicated, summarized analyses and plotting were performed in R 4.0.2, using tidyverse.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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METHOD DETAILS

Data processing
We re-processed CRAM files according to the GATK Best Practices, briefly, aligning reads using BWA-MEM 0.7.15.r1140 and pro-

cessing reads using Picard andGATK. For each sample, variants were called using the GenomeAnalysis Toolkit (GATK) 4.0.10.1 with

local realignment by HaplotypeCaller in gVCF mode, such that every position in the genome is assigned likelihoods for discovered

variants or for the reference. We then post-processed gVCF outputs, further compressing "blocks" of homozygous reference calls to

seven GQ bins: 0, 10, 20, 30, 40, 50, and 60. All analyses were performed on Google Cloud Platform.

Joint calling
Many technologies used to represent, store, and compute on genomic data do not scale efficiently to datasets of hundreds of thou-

sands of samples with whole exome or genome sequence data. The Hail project addresses these scaling limitations by developing

new technology to enable representation and analysis of cohorts with hundreds of thousands of samples. The project VCF (pVCF)

representation scales poorly, and one key innovation that allowed efficient analysis of such a large callset is the Scalable Variant

Call Representation (SVCR), which takes advantage of reference block compression to guarantee strictly linear asymptotic scaling

with the number of stored samples. The SVCR is a conceptual representation for the variant-level data on a sequenced cohort. In the

Hail library, we have developed an implementation of an efficient hierarchical merge algorithm to create a dataset in Hail conforming

to the SVCR representation from single-sample gVCFs, and a rudimentary set of functionality for working with this object as an anal-

ysis target.

Representation

Wewill briefly describe the representation of the SVCR andwhere it differs from a pVCF. First, the SVCR contains a row for each locus

defined in any input gVCF.While pVCF only includes a row for each variant site, the SVCRcontains rows formonomorphic sites where

reference blocks begin. The SVCR contains more loci than an equivalent pVCF because while pVCFs only contain loci with genomic

polymorphism, the SVCR contains loci where reference blocks begin but with no variation. This difference in locus cardinality shrinks

with increasing sample sizewhen rare variants are discovered atmost positions in the genome. The alleles field of the SVCRat a given

locus contains the set of all unique alternate alleles observed in any input gVCF for that locus (Figure S1).

An entry of the SVCRmatrix corresponding to locus L and sample S is dense (defined) if the gVCF for sample S has a line with locus

L, and is sparse (missing) otherwise. If defined, the entry includes a light transformation of all information from the gVCF for sample S

at locus L, with the two exceptions of the locus information (chromosome and position) and the alleles (reference and alternates). The

chromosome and position are necessarily the same as those constituting L, and instead of including alleles as strings, the SVCR has

an additional field, LA, or ‘‘local alleles’’, which is a list of integers. This list contains the indices in the list of all discovered alleles at the

current locus corresponding to alleles that were discovered in the GVCF for sample S. The final transformation is a rename of GT and

all fields that are ‘‘R-’’ or ‘‘A-’’ numbered, such as AD and PL, to LGT, LAD, LPL, etc. This rename reflects the change in meaning – the

alleles referred to by these fields are the ones defined in LA, rather than the full list of discovered alleles in the SVCR row.

It is important to note that the SVCR representation is a lossless transformation of gVCFs – the original gVCFs can be recreated by

reversing the transformations defined above.

Merge algorithm

We have proposed the SVCR as an efficient conceptual representation for efficiently storing cohort-level data sequencing data. We

now describe a hierarchical merge algorithm that lends itself to scalable construction of an SVCR.

First, each input gVCF is converted to a single-sample SVCR. This conversion involves trivial reorganizations and renames of fields

(GT to LGT, as described above). The result is an SVCR with the same number of rows as the gVCF and one column, where every

entry is defined.

Second, N SVCR are merged together into a new SVCR. First, an outer join on loci is executed for the N SVCRs, producing some

number of intermediate rows with a locus (the join key), the alleles for each input SVCR (which may be missing if an SVCR did not

contain that locus), and the entries associated with that locus for each SVCR. The merged alleles are computed by taking the set

of all unique alleles from all input SVCRmatrices, and sorting according to a deterministic string ordering function. Themerged entries

are computed by taking the full set of entries across join inputs, and updating one field: the values of each LA (local alleles) field must

be recomputed to refer to the new, merged alternate alleles.

The Hail framework features a concrete implementation of this hierarchical merge algorithm, repeating the second step in rounds

until a single SVCR remains. In practice, this algorithm defaults to a value of 100 for the branch factor parameter, N, which performs

well empirically and allows for the creation of a million-sample dataset in three rounds of merging.

Dense matrix analysis

The significant scaling advantages of the SVCR representation are not without cost. The sparsity prevents random access to refer-

ence block information at any specific variant, because most of the reference blocks spanning that variant will have been defined at

earlier loci. Analyses that require access to reference block metadata (such as GQ or DP) can be implemented following a "densifi-

cation" pass that carries forward an array of genotype values, one for each sample, corresponding to themost recent reference block

entry on the same chromosome. The reference blocks in this array can be used to fill sparse entries for each locus in the SVCR (as

long as a candidate reference block spans the locus of interest). The necessary dense analysis target can thus be realized at low cost
e2 Cell Genomics 2, 100168, September 14, 2022
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on the fly during analysis pipelines, then discarded. It is not necessary to save the densematrix to durable storage, which would incur

prohibitive cost.

Phenotype data processing
To automate the curation and harmonization of the large collection of variable scalings, encodings, and follow-up responses in a

coherent manner, we created a modified version of the PHEnome Scan ANalysis Tool (PHESANT), available at https://github.

com/astheeggeggs/PHESANT (https://doi.org/10.5281/zenodo.6795217).39 Unlike the original implementation,40 our version does

not perform association analyses, but simply generates a collection of re-coded phenotypes. An outline of the PHESANT pipeline

and our chosen filters are displayed in Figure S2. We manually curated the collection of phenotypes for study, which we filter to

as part of the pipeline. Re-codings of variables, and inherent orderings of ordinal categorical variables, are defined in the data-coding

file, which is available in our GitHub repository.

In addition to the inverse-rank normalization applied to the collection of continuous phenotypes, we also retain the raw version of

the continuous phenotype, with no transformation applied to the data (though re-codings of the data to guard against spurious results

are retained). Following all of these alterations and additions, we run this modified version of PHESANT on the phenotypes in our UK

Biobank application using a 200Gb RAM virtual machine on the Google Cloud Platform.

Upon applying the PHESANT pipeline to our selected collection of phenotypes, a small subset of categorical variables remain that

should be sex-specific but are not excluded from the both-sexes collection of phenotypes. We manually identified this collection of

sex-specific phenotypes and removed them from the both-sex phenotypes before subsequent analysis.

We loaded all phenotype data into aHail MatrixTable using a custom processing script (https://github.com/Nealelab/ukb_exomes/

blob/master/hail/load_phenotype_data.py [https://doi.org/10.5281/zenodo.6726324]35). Briefly, we parsed the PHESANT output,

extracted ICD codes from the ‘‘first occurrence’’ data (which were run as binarized outcomes), parsed some custom phenotypes

and covariates, and combined these into a phenotype MatrixTable. The MatrixTable is keyed by trait type (continuous, categorical,

and ICD code), phenocode, sex, coding (for categorical traits), andmodifier (raw vs inverse-rank normalized for continuous traits). For

this supplement, we use the descriptors ‘‘categorical’’ and ‘‘binary’’ interchangeably when describing phenotypes.

Genotype, sample, and variant quality-control summary
We performed quality control (QC) in a similar fashion to the approach used for the Genome Aggregation Database (gnomAD).15

Notably, however, we included a number of additional metrics, including concordance between arrays and exomes and interval QC.

Concordance between arrays and exomes
We confirmed that all 453,644 samples with available array data had a high proportion of variant concordance between their exome

and array data. We filtered the UK Biobank array data to autosomal regions and lifted the data to genome build GRCh38 prior to

examining concordance. The minimum proportion concordance of non-reference sample genotypes was 0.96 (mean 0.995).

Interval QC
We performed quality controls on intervals targeted by the exome capture before applying sample hard filters. In this interval QC, we

investigated how much padding to add around the UK Biobank capture intervals and whether to check coverage across standard

Broad exome calling intervals (available on Google Cloud Platform at gs://gcp-public-data–broad-references/hg38/v0/exome_cal-

ling_regions.v1.interval_list [https://doi.org/10.5281/ZENODO.6784346]41) as well. We determined that padding more than 50 base

pairs into the intron added too much noise and reduced sample call rate and coverage significantly. We also discovered that adding

calling intervals unique to the Broad’s set of exome targets also reduced call rate and coverage. Therefore, we decided to keep var-

iants only within the 50 base pair padded UK Biobank intervals. For sample QC, we also decided to filter to intervals where 85% of

samples had a mean coverage of at least 20X (Figure S3).

Sample QC
Sex imputation

WeusedHail’s impute_sexmethod to infer sex using common (allele frequency >0.1%), non-pseudoautosomal, biallelic single nucle-

otide variants (SNVs) on chromosome X.We then computed non-pseudoautosomal chromosome X and chromosome Y coverage for

each sample and normalized these values using sample-specific coverage across chromosome 20.We then checked the distribution

of chromosome X and Y ploidies for XX and XY karyotypes to determine each karyotype’s ploidy cutoffs (upper cutoff for single X:

1.55, lower cutoff for double X: 1.6, upper cutoff for double X: 2.15, lower cutoff for triple X: 2.2, lower cutoff for single Y: 0.06, upper

cutoff for single Y: 1.3, lower cutoff for double Y: 1.4). The adjusted ploidy cutoffs helped us add additional granularity to the inferred

sex, differentiating between X0, XX, XXX, XY, XXY, XYY, and XXYY karyotypes (Figure S4).

Hard filters

We applied three hard filters post-interval QC to the samples: sex imputation filters (removing any samples that were not inferred as

XX or XY), a call rate filter (cutoff: 0.99), and a coverage filter (mean coverage cutoff 20X). We excluded hard-filtered samples from

platformPCA, relatedness inference, ancestry imputation, and outlier detection so that these low quality samples would not influence

our downstream results.
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Platform inference

Although we do not expect there to be noticeable technical artifacts given that the samples were run on the same platform, we ran a

principal component analysis (PCA) on the per-individual per-interval call rate matrix, as previously described,15 to make sure there

were no significant clusters. Our platform PCA picked up a few clusters and showed some differences between the different sample

batches on PCs three and 4 (Figure S5). After some investigation, we discovered that the PC4 separated samples due to a common

CNV (chr12:9531541-9531809). As PC3 showed some separation by batch, we decided to use batch status as a proxy for platform in

further sample QC and a covariate for association analysis.

Relatedness inference

We used Hail’s pc_relatemethod to infer relatedness on SNVs that are autosomal, bi-allelic, common (allele frequency >0.1%), high

call rate (>99%), and LD-pruned with a cutoff of r2 = 0.1. We then used the maximal_independent_set method in Hail to keep the

largest set of unrelated samples (samples without second degree or closer relationships; kinship >0.1), prioritizing samples with

greater mean depth. The related samples that were not in the maximal independent set were flagged.

Themajority of the samples removed during sample QCwere samples inferred to have a second-degree or closer relationship with

other samples in the dataset. This finding is not unexpected, as previous studies have shown that the UK Biobank data contains a

large number (approximately 30% at third-degree or greater) of related samples.7

Ancestry imputation

We used a hybrid method to infer ancestry for sample QC. We projected the UK Biobank data onto the gnomAD population principal

components (PCs) and then used a random forest classifier trained on gnomAD ancestry labels to assign ancestry to the UK Biobank

samples. We observed that many samples labeled as African using this method were flagged as outliers by our downstream popu-

lation-stratified outlier detection method. This seemed to be due to the fact that one cluster of samples labeled as African appeared

highly admixed. To account for this, we ran a PCA on the UK Biobank samples and applied a clustering method (HDBSCAN). We

found that this clustering method split the African labeled samples into additional clusters and reduced the number of samples

flagged as outliers while also recapturing most of the same global population clusters observed in gnomAD.

As a result, we chose to assign ancestry using a hybrid of the projection onto gnomAD PCs and the UK Biobank specific PCA clus-

tering: for any sample that was assigned to a cluster using the UK Biobank PCA, the sample was given that cluster as their ancestry

assignment to preserve the sub-structure observed using clustering. Any sample that was not assigned to a cluster was given the

label from the initial (gnomAD) PCA projection and random forest classification.

We obtained ancestry labels from the Pan-UK Biobank project (UK Biobank Return 2442) after completing sample QC, and these

labels were used in all downstream analyses.

Outlier detection

We flagged any sample falling outside 4median absolute deviations (MADs) from themedian of any of the followingmetrics (stratified

by population and tranche as a proxy for platform), which were calculated using hail’s sample_qc method:

d Number of deletions.

d Number of insertions.

d Number of SNVs.

d Insertion: deletion ratio.

d Transition: transversion (TiTv) ratio.

d Heterozygous: homozygous ratio.

The final counts of samples is shown in Table S1.

Variant QC
Variant filtering consisted of a combination of a random forest (RF) classifier and hard filters. We used the following training sets as

true positives for training the random forest model:

d Omni – SNVs present on the Omni 2.5 genotyping array and found in 1000 Genomes data.

d Mills – Indels present in the Mills and Devine data.42

d Transmitted singletons – Variants found in only two individuals, which were a parent-offspring pair.

d Sibling singletons – Variants found in only two individuals, which were a sibling pair.

d Common (AF > 0.1%) and concordant (>90% non-reference concordance) array variants.

For the false positive training set in the random forest model, we used variants that fail traditional GATK hard filters: QUAL by depth

(QD) < 2, strand bias estimated using Fisher’s exact test (FS) > 60, or root mean square mapping quality (MQ) < 30. We balanced the

number of variants in the true positive and false positive training sets by randomly downsampling the false positive training set to the

same number of variants found in the true positive training set. RF training was performed on only variants that fall within intervals that

pass interval QC (described above; intervals where >85% of samples have a mean coverage >20X).

We used the following allele and site annotations as features in the random forest model (RF feature importance shown in

Figure S6):
e4 Cell Genomics 2, 100168, September 14, 2022
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d Allele type – SNV, indel.

d Number of alleles – Total number of alleles present at the site.

d Variant type – SNV, indel, multi-SNV, multi-indel, mixed.

d Mixed site – Whether more than one allele type is present at the site.

d Spanning deletion – Whether there is a spanning deletion (STAR_AC > 0) that overlaps the site.

d Quality by depth – Sum of the non-reference genotype likelihoods divided by the sum of the depth in all carriers of that allele.

d Read position RankSum – Rank-Sum Test for relative positioning of reference versus alternate alleles within reads.

d Mapping quality RankSum – Rank-Sum Test for mapping qualities of reference versus alternate reads.

d Strand bias odds ratio – Symmetric Odds Ratio test of 2x2 contingency table to detect strand bias.

d Max probability of allele balance – Highest p-value for sampling the observed allele balance under a binomial model with p = 0.5

(maximum across heterozygotes).

RF probability cutoffs for calling a variant PASS were chosen to maximize sensitivity and specificity based on criteria such as the

number of de novomutations found in the 224 trios in the dataset and precision-recall curves (Figure S6B) in two truth samples present

in our data (NA12878 and a pseudo-diploid sample (syndip); syndip was sequenced at Broad, not with the UK Biobank cohort). Final

thresholds were RF true positive probability of 0.061 (approximately 90% of SNVs in well-covered intervals) for single nucleotide var-

iants and 0.064 (approximately 75%of indels inwell-covered intervals) for indels. Finally, we also excluded variantswith two hard filters:

d Excess heterozygotes defined by an inbreeding coefficient < �0.3.

d Variants where no sample had a high quality genotype (see Genotype QC below).

Genotype QC
We filtered genotypes based on the previously defined ‘‘adj’’ criteria, with a modification for haploid calls on chrX and chrY for XY

individuals. Specifically, we filtered to genotypes where depthR 10 (5 for haploid calls), genotype qualityR 20, and minor allele bal-

ance >0.2 for all alternate alleles for heterozygous genotypes.

Annotations
Variants were annotated using VEP v95 as implemented in Hail using the default parameters for GRCh38 (including LOFTEE15).

For downstream analyses, variants were grouped by Ensembl Gene ID and functional impact as follows:

d pLoF: High-confidence LoF variants (as indicated by LOFTEE), including stop-gained, essential splice, and frameshift variants,

filtered according to a set of first principles as described at https://github.com/konradjk/loftee.15

d missense|LC: Missense variants are grouped with in-frame insertions and deletions, as well as low-confidence LoF variants

(filtered out by LOFTEE). The latter have a frequency spectrum consistent with missense variation,15 and affect a set of amino

acids in a similar fashion (e.g. a frameshift in the final exon).

d synonymous: All synonymous variants in the gene.

Scaling association testing using Hail Batch
To perform the association analysis using SAIGE-GENE, we developed a new scientific compute scheduler, Hail Batch. Hail Batch is

a cloud-based, serverless, multi-tenant platform as a service (PaaS). To use Hail Batch, users construct a computational graph of

jobs to be executed, called a batch, using a Python client library (or manually). The batch is then submitted to Hail Batch via a

REST API. TheHail Batch scheduler bothmanages pools of worker virtual machines (VMs) onwhich to schedule user jobs and sched-

ules jobs on those workers. Hail Batch includes a Web UI for monitoring batches and viewing individual job logs. The documentation

can be found here: https://hail.is/docs/batch/index.html (https://doi.org/10.5281/zenodo.4504325).37 Hail Batch is fully open source

and is contained in the Hail project monorepo which can be found here: https://github.com/hail-is/hail/tree/main/batch (https://doi.

org/10.5281/zenodo.4504325).37

Motivation

We built Hail Batch because we wanted a serverless solution with zero operational overhead for users. Based on our experience

building Hail Query on Apache Spark, even with cloud platform managed services for running Spark like Google Dataproc, config-

uring, provisioning andmanaging compute clusters is a significant operational burden each user must bear (and scales with the num-

ber of users). In addition, by operating a multi-tenant compute cluster, we increase the utilization of resources amongst all users. The

benefits are especially pronounced when users are working on iterative analyses (as opposed to batch processing) where they might

need time to assess a result before moving on to subsequent analyses.

Bioinformatic tools come in a variety of forms, from standalone binaries and command line tools like GATK and SAIGE, to Python

and R packages, to cloud-native analytics tools like Hail Query. We wanted a scheduling infrastructure that would support building

data processing pipelines across all these tool modalities. Hail Batch currently supports executing containerized command line tools

and serialized Python functions, as well as a Hail Batch based backend for Hail Query which executes JVM bytecode.

Finally, we wanted to support low scheduling overhead at a large scale so that users could decompose pipelines based on natural

biological or data considerations rather than computational constraints. For example, runningmillions of relatively fast statistical tests
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(seconds or more) for permutation testing requires small scheduling overhead to be effective. The association analysis described

here naturally decomposed into a job per megabase per phenotype, for a total of approximately 18 million jobs.

We follow the principle that the systems we build today should themselves become building blocks of the systems we build

tomorrow just as the association pipelines described herein build on Hail Batch. Therefore, we wanted a system that had a native

program programmatic interface so it could be used by other systems. For example, the Hail team’s continuous integration (CI) sys-

tem runs tests and deployments using Hail Batch. A system like Hail Batch can also serve as the underlying execution engine for an

incremental joint caller service.

User interface

Hail Batch provides a Python library to construct and execute batches. A simple example is shown in Figure S7. Rather than focus on

the Python interface, which is described in detail in the documentation, we will focus on the main conceptual pieces of a Hail Batch

computational graph.

A batch is the unit of submitted work. A batch primarily consists of (1) user-defined attributes, and (2) an ordered list of N jobs. The

user-defined attributes are for searching and identifying batches. Jobs are the individual units of scheduling and can depend on pre-

vious jobs to form a directed acyclic graph (DAG) representing the full computational pipeline. The main parts of the job description

are: (1) user-defined attributes, (2) dependencies, (3) inputs and outputs, (4) compute resources, and (5) executor configuration. Jobs

do not run until all of their dependencies have completed. There are mechanisms for cancellation and controlling whether jobs run if

their dependencies failed or were canceled. Compute resources (CPU, memory, disk and machine type) describe resources needed

to schedule the job, which will be provisioned by the autoscaler as needed. We refer to the reader to the documentation for more

details.

During the submission and execution of a batch, jobs pass through the following states: pending (dependencies are not complete),

ready (dependencies are complete and the job is ready to be scheduled), creating (the job is provisioning resources for custom

resource configurations), running (the job has been scheduled), and the terminal states: error (the executor failed to run the job),

canceled, failed (the job execution failed), or successful. The REST API and Web UI allow users to monitor running and historical

batches and view individual job logs.

There are currently two backends for executing a batch: (1) a local backend that runs jobs locally and (2) a service backend that

submits jobs to the Hail Batch service. Currently, the Hail Batch service supports the Google Cloud Platform.

Implementation

Hail Batch is written in Python and makes extensive use of asyncio. Its deployment consists of three parts: (1) the front-end batch

service, (2) batch-driver service, and (3) a MySQL database instance. The batch service serves the Web UI and user-facing REST

API queries. It is stateless and autoscales based on incoming traffic. The batch-driver runs the job scheduler, the autoscaler which

provisions worker VMs, and the adminWeb interface. Job and batch configuration state is stored inMySQL and job logs are stored in

Google Storage. Hail Batch relies on a Hail PaaS auth service for session ID based authentication. The Hail PaaS services are de-

ployed in Kubernetes and the autoscaler uses the Google Compute Engine (GCE) directly to provision workers. Hail Batch deploy-

ment is controlled by the ci (continuous integration) service. We also maintain Terra-form scripts for bootstrap and disaster recovery

of Hail PaaS installations.

The autoscaler in the driver service is organized in terms of instance pools. There are two types of instance pools, shared and pri-

vate. There are three shared pools for the three main GCP machine types. Shared pools autoscale based on the pool size and the

number of ready jobs that run in that pool. Batch pools can scale down to zero, but we also support a minimum size so small jobs can

be dispatched immediately without waiting to spin up resources. Shared pool workers schedule jobs across all users and resource

utilization is higher because instance startup and shutdown is generally amortized over many jobs. By default, preemptible n1-stan-

dard-16 machines are used, but jobs that use special machine types or require non-preemptible instances can run in a private pool

which provisions a VM per job.

In addition to autoscaling, the Hail Batch scheduler implements a fair share algorithm across users to provide a responsive expe-

rience. Jobs are scheduled per user, in reverse order of the amount of resources already allocated. If there are not enough ready jobs

to saturate a user’s allocation, the unused allocation is made available to the remaining users. This means new jobs submitted by a

user to an active cluster will scale up quickly to the user’s share and all users enjoy a more responsive experience when the system is

actively used.

We make a few remarks on the scheduler performance. The scheduler is able to schedule �80 jobs/s. The maximum cluster size

the scheduler can support is a function of the expected job length. The maximum cluster size is (average job length in second) * 80.

Therefore, for the 15–30mSAIGE jobs used in the association analysis here, the scheduler is theoretically (and was practically) able to

saturate a �100K core pool of workers.

Hail Batch currently supports two executors on worker VMs: Docker and the Java Virtual Machine (JVM). The JVM executor is used

by the Hail Query service. The Docker executor includes the details necessary to run a docker container: image, environment vari-

ables, command line, etc. Jobs run on the worker VMs in three steps: input, main and output. The input and output steps are respon-

sible for copying between object storage and the local filesystem. For copying, we developed a pluggable Python asyncio filesystem

abstraction and high-performance parallel copy management engine which supports local files, Google Cloud Storage, S3 and

HTTP(S) (read-only). The main step executes the user’s code.
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Association testing and quality control
Association testing framework

We performed association testing on the quality-controlled genotype data using SAIGE-GENE,43 following the recommendations by

the authors. We computed a genetic relatedness matrix (GRM) using a dataset sampled from allele frequency categories from the

genotype MatrixTable considering only autosomal variants with a minimum call rate of 95%, including approximately 2,000 variants

from each of Allele Count (AC) 1-5, AC 6-10, and AC 11-20; and approximately 10,000 variants from each of: AC 20-AF 0.1%, AF 0.1-

1%, AF 1-10%, AF > 10%. These variants were LD-pruned to r2 = 0.1, and exported into PLINK format. We computed a sparse GRM

using step0 of SAIGE-GENE using the default parameters, with 2,000markers used for the kinship matrix, and a relatedness cutoff of

0.125. We further created a ‘‘gene map’’ file for each megabase, which included information about the variants to be analyzed

together in each group test. We included 3 groups: pLoF variants, including only those annotated as high-confidence

by LOFTEE; missense-like variants, including missense variants and variants annotated as low-confidence by LOFTEE; and

synonymous variants. The script for pre-processing is available at https://github.com/Nealelab/ukb_exomes/blob/master/hail/

pre_process_saige_data.py (https://doi.org/10.5281/zenodo.6726324).35

The remainder of the process was parallelized using Hail Batch (Figure S7). For each megabase of the genome, we exported a

BGEN from the genotype MatrixTable with all variants that lie in genes that have a starting coordinate within that megabase. For

each phenotype, we exported a flat file from the phenotype MatrixTable with the covariates used for analysis: age, sex, age,2 and

20 principal components, aswell as interaction terms of age * sex and age2 * sex. The phenotype data were combinedwith the sparse

GRM computed above to fit a null model (without genotypes) using step1 of SAIGE-GENE with the default parameters and the co-

variates described above. Finally, we ran the genotype tests using the BGEN from each megabase, and the null model from each

phenotype using step2 of SAIGE-GENE with the default parameters, plus maxMAFforGroupTest = 0.01, maxMAF = 0.5, LOCO =

FALSE, and IsSingleVarinGroupTest = TRUE. The results across all megabases were loaded into two Hail Tables for each phenotype,

for the group tests and single variant tests. The pipeline is available at https://github.com/Nealelab/ukb_exomes/blob/master/

saige_exomes.py (https://doi.org/10.5281/zenodo.6726324)35 with helper scripts that can be found at https://github.com/

Nealelab/ukb_common/blob/master/utils/saige_pipeline.py (https://doi.org/10.5281/zenodo.6726336).36

We combined the phenotype-level Hail Tables into a Hail MatrixTable using a hierarchical merge, along with phenotype metadata

from SAIGE, resulting in one MatrixTable for the group tests and one for the single variant tests. We computed lambda GC values for

each phenotype and gene (see below) using the hl.methods.statgen._lambda_gc_agg aggregator in Hail. These datasets are publicly

released and serve the browser framework described below.

Random phenotype analysis

To test the asymptotic properties of our tests, we simulated 314 random normally distributed phenotypes in the 300K callset of this

resourcewith a range of heritabilities using the sparseMVNpackage in R,44 using the genetic relatednessmatrix generated by SAIGE.

From these normal distributions, we simulated continuous phenotypes, as well as binary phenotypes with varying prevalences from

10�4 to 50%, with heritability of 1. We further generated a series of phenotypes of varying heritabilities (0.1, 0.2, 0.5) by introducing an

additional noise component (rnorm) and weighting by the square root of the desired heritability. We performed association testing on

these phenotypes and computed lambda GC values as above, and here, we show the qq-plots for the single-variant and group

(SKAT-O and Burden) tests (Figure S8).

In order to visualize the behavior of the tests across frequency strata in the association data, we compute the cumulative allele

frequency (CAF) for each gene by aggregating the allele frequencies of variants of the same annotation group within each gene.

We summarize the lambda GC metric for each trait for variants with a CAF category, which is shown in Figure S9. Notably, in

Figures S8 and S9, we can see increased instability of the QQ-plot and lambda values for rarer variants especially for rarer outcomes,

suggesting the need for an allele frequency threshold for large-scale analyses. This is consistent with the minimum frequency and

prevalence required to achieve statistical significance at this sample size (Figure S10).

To compute an effective number of tests and thus a p-value threshold for each phenotype, we performed association testing be-

tween the genotype data and each of these phenotypes. The most significant p-value for each of the simulated continuous pheno-

types is an estimator for the inverse of the effective number of tests: the median of this value across all simulated continuous phe-

notypes was 5 3 10�6 for SKAT-O tests, 1.3 3 10�5 for burden tests, and 1.6 3 10�7 for single-variant tests. Thus, for downstream

analyses, we computed the experiment-wise significance threshold as 0.05 *p, or: 2.53 10�7 for SKAT-O tests, 6.73 10�7 for burden

tests, and 8 3 10�9 for single-variant tests.

Expected allele count filters

Using the CAF for each gene and number of cases (n_cases) of the phenotypes, we then defined an element-level filter, the expected

allele count, as CAF 3 n_cases (for continuous traits, this is the CAF 3 the number of individuals with a defined value). For each

phenotype in each group test (SKAT-O, SKAT, and Burden test), we filtered the test results to genes from each of the expected

AC intervals: [0, 5], (5, 50], (50, 500], (500, 5000], (5000, 50,000], and (50,000,N) and computed lambda GC values for each pheno-

type within each bin. Lambda GC values for categorical phenotypes converge to around 1 as expected AC increases (Figure S11).

Lambda GC values for continuous phenotypes are not significantly affected by the change of expected AC. A smaller number of

cases and lower level of expected AC results in less stable values of lambda. Because of the highly deflated pattern of lambda

GC values observed in genes with expected AC from 0 to 50, we filtered out summary statistics with expected AC < 50. For the
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variant-level results, we defined the expected AC as MAF 3 n_cases and computed lambda GC across different intervals. We

observed a similar deflated pattern at low levels of expected AC and filtered out summary statistics with expected AC < 50.

Test calibration filtering

Removing summary statistics with expected AC < 50 results in improved lambda GC values (Figure S12). Further, we filtered asso-

ciation statistics with standard errors (SE) of 0, as these were the result of a bug in the version of SAIGE-GENE used herein (which has

since been corrected).

Finally, due to the large number of phenotypes available, we devised a metric for the calibration of individual genes, a lambda GC

for each gene across phenotypes. Formost genes, thismetric is well-behaved for synonymous variants (95% range). However, it also

marks outliers for removal, and appears to be correlated withmean sequencing coverage (Figure S13). Thus, we removed genes with

coverage <20 as well as genes that have a synonymous lambda GC < 0.75.

After applying the above filters, we recompute lambdaGC for each phenotype (Figure S14) and gene (Figure S15). For downstream

analyses, we filter to phenotypes with lambda GC at least 0.75.

Independent phenotypes

For large-scale analyses, we pruned to a set of relatively uncorrelated phenotypes. Using the UKB phenotypeMatrixTable, we gener-

ated a pairwise correlation table using a matrix multiplication of the table and its transpose (Figure S16A), and filtered the table to

phenotype pairs with correlations (r2) over 0.5.We then applied themaximal_independent_set function in Hail to the remaining pheno-

type pairs with a tie-breaker function preferring phenotypes with more cases, resulting in a set of 640 related phenotypes to remove

from the dataset (Figure S16B). A summary of the final QC steps is shown in Table S2.

Comparison to known hits

We compared the significant associations with height discovered from our results with the 91 height-associated variants

(p < 23 10�7) and 10 height-associated genes (p < 53 10�7) discovered in GIANT.17 Among the 91 rare/low-frequency variants asso-

ciated with adult height in GIANT, 50 of the variants were found to be associated with height at p < 8 3 10�9, and 78 variants were

found to be associated with height at p < 0.05 in UK Biobank (Tables S3 and S4). Among the 10 genes associated with height in

GIANT, FLNB (pLoF, missense|LC), NOX4 (missense|LC), OSGIN1 (missense|LC), and UGGT2 (pLoF) are found associated with

height at p < 2.5 3 10�7 (SKAT-O) or p < 6.7 3 10�7 (Burden), and all genes were found at nominal significance (p < 0.05) for either

missense or pLoF variants (Table S5).

We compared the effect sizes from our single-variant test results to those of GIANT. Among 1,330 ExomeChip variants with

p-value < 23 10�7 in the GIANT European-ancestry meta-analysis, 496 variants are tested in the UK Biobank data. The effect sizes

of this group of shared variants are consistent between the two datasets, with a slight attenuation in results fromUKBiobank, consis-

tent with a degree of winner’s curse (Figure S17).

Finally, we compared associations for 7 red blood cell phenotypes discovered in our results with 20 associations (p < 5 3 10�9)

between missense variants and red blood cell phenotypes discovered by TOPMed18 and find that 19 out of 20 are replicated at

p < 0.05 with 9 of these associated at p < 8 3 10�9 (Table S6).

Analysis of summary statistics

We performed all downstream analyses in Hail using the single-variant and group-test MatrixTables as described above. For these

analyses, we assess the proportion of genes or variants that reach our p-value threshold for at least one trait. Notably, when simply

computing this metric across functional classes, seemingly paradoxically, we observe that the proportion of associations does not

correlate with the expected deleteriousness of the variants (pLoF, followed bymissense, followed by synonymous) for gene-based or

single-variant tests (Figure S18).

However, considering the observation that functional pLoF variants tend to be rare, and thus, have lower power for genetic dis-

covery, we performed a series of analyses incorporating the frequency of variants and found that the former observation is due to

Simpson’s paradox. First, when separating genes by frequency strata, we observe the expected pattern where pLoFs variant groups

have the highest proportion associated within each frequency group (Figure 3B). For high CAF genes and common variants (>1%),

this trend is no longer apparent, likely complicated by the presence of artifacts for common pLoF variants (Figure S19). Second, we

compare gene sets by a sampling methodology to match the CAF of gene sets to a background distribution (Figure 4 and below).

Gene-set analyses

We considered the SKAT-O association results for 470 genes previously implicated in developmental delay25 and compared the

number of associations discovered for these genes with the remaining genes in the dataset. To match the background distribution

on frequency, we binned genes by their cumulative allele frequency into equal-spaced groups with widths of 0.01, and then matched

genes from the remaining set to the distribution of the 470 genes according to their CAF intervals. For each of the three annotation

categories (pLoF, missense|LC, and synonymous), we randomly sampled 1,000 matched sets of 470 genes from the remaining set

with replacement and computed the mean number of associations and the proportion of genes with at least one association meeting

our p-value threshold for each set. By comparing the distribution of the mean and proportion of the 1,000 samples with those of the

470 genes by annotation groups, we found that genes that are implicated in developmental delay are more likely to be associated

through a pLoF mechanism with phenotypes in the UK Biobank (p = 6.6 3 10�4, OR = 6.16; Figure 4).

Similar to the developmental delay genes, we compared 3,582 (1,701 unique genes) constrained gene-annotation pairs from our

dataset with the remaining unconstrained genes on their number of associations discovered from SKAT-O results. We obtained

LOEUF values for the genes from gnomAD (v2.1.1) and defined constrained genes as those in the highest decile of LOEUF
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(oe_lof_upper_decile = 0). We then matched the unconstrained genes to the constrained genes by CAF intervals with widths of 0.01

and randomly sampled 1,000 unconstrained gene-sets that have sample sizes and CAF distributions comparable to the constrained

gene-set for each annotation category with replacement. Finally, we compared the mean number of associations and the proportion

of genes with at least one association meeting our p-value threshold of the constrained set with the distribution of the 1,000 uncon-

strained samples. We found that constrained genes are more likely to be associated with a phenotype in UK Biobank than the un-

constrained genes, for pLoF variants (p = 1.2 3 10�3, OR = 3.14; Figure 4).

We repeat this analysis for a number of gene sets, including autosomal recessive, autosomal dominant, FDA approved drug tar-

gets, and GWAS catalog genes, as described in https://github.com/macarthur-lab/gene_lists (https://doi.org/10.5281/ZENODO.

6724345).38

PolyPhen2 predicted variants

We compared the proportion of variants with at least one association meeting our p-value threshold across the three PolyPhen2 pre-

diction groups (probably damaging, possibly damaging, and benign; Figure S20). We binned variants by their minor allele frequency

(MAF) into equal-spaced bins with width of 0.01. Using variants from each one of the three groups as reference, we matched the

remaining two groups to the reference group by their MAF bins. Relative relationships of the proportion among the three groups

are similar when using different reference groups. We then split the variants into allele frequency categories and compared the pro-

portion among different PolyPhen2 prediction groups.We conducted a pairwise proportion test between each pair of groups for each

allele frequency interval and observed a significant difference between benign and probably damaging for all three intervals, possibly

and probably damaging for allele frequency interval (0.01%, 0.1%] , and benign and possibly damaging for allele frequency interval

(0.01%, 0.1%] and (0.1%, 1%]. No significant group difference is observed for allele frequencies above 10%.

ClinVar variants

We obtained pathogenicity of variants from the ClinVar table in gnomAD reference data and then defined pathogenic and likely path-

ogenic variants as P/LP, benign and likely benign variants as B/LB.We divided theminor allele frequency (MAF) of variants into equal-

spaced bins with widths of 0.01 and then matched variants from B/LB and Uncertain significance group to the 864 P/LP variants

respectively by their MAF bins. For each of the categories, we randomly sampled 1,000 sets matched to the P/LP variant subset

with replacement and computed the mean number of associations and the proportion of variants with at least one association

meeting our p-value threshold for each set. By comparing the distributions of the mean and proportion of the 1,000 samples with

the P/LP group, we found that pathogenic variants are more likely to be associated with a phenotype in the UK Biobank (Figure 3).

Data browser
Web-based tools like PheWeb have been highly useful in the data processing and dissemination of several recent large-scale bio-

bank genetic studies.45,46 PheWeb is well-suited for viewing associations from genotyping data along large genomic regions, where

the signal is frequently driven by non-coding regulatory variants rather than variation in protein coding sequences. New web-based

tools are needed for visualizing association studies in the context of gene-based analyses. Toward this goal, we previously extended

on our gnomAD browser toolkit15 to create a suite of portals for displaying gene analysis results from psychiatric exome association

studies for schizophrenia,47 autism,48 bipolar disorder,49 and epilepsy.50 In this study, we extend our exome browser toolkit to sup-

port visualization of biobank-scale PheWAS results. We developed new layouts, navigational mechanisms, plots, and controls that

enable users to visualize and compare gene and variant associations across thousands of phenotypes.

Navigation and workflow

The browser interface features a novel split-screen design for rapidly inspecting gene-based PheWAS results (Figure S21). The left

hand side displays the global results index, which displays all hits for a given gene, phenotype, or variant (Figure S21A). The results

index displays PheWASplots orManhattan plots depending onwhich navigational button is selected in the top bar (Figure S21B). The

results pane can be condensed, expanded, or hidden entirely by clicking the presets buttons or by dragging the central dotted line left

or right. Clicking on one of the arrow buttons in the phenotype table will update the right hand side of the PAGEwith a detailed view of

the selected gene-phenotype relationship (Figure S21C). The status bar will update accordingly to reflect the gene, phenotype,

variant, or burden dataset that is currently selected (Figure S21D). Most data are served by a Hail backend, with significant associ-

ations cached for speed. Pages load quickly (<1 s) if the phenotype-gene or phenotype-variant association p-value pair is below the

cache threshold (10�4 for genes, 10�6 for variants) or�4 s if above the cache threshold. Partitioning the PAGE in this way allows users

to quickly inspect many associations without losing a sense of context, and either half can be easily hidden to create more screen

room for information of interest.

Exploring associations by gene

When the ‘‘gene PheWAS’’ results pane is active, the results index displays all phenotypes associated with a particular gene in

PheWAS plot and tabular formats (Figure S21C). The phenotype control panel (Figure S21E) enables users to specify which of the

three burden tests (Burden, SKAT, SKAT-O) or mutational class (pLoF, missense, synonymous) test statistics to display. Phenotypes

can be filtered by keywords such as phenotype description or trait type (continuous, categorical, or ICD10). The results can also be

filtered by p-value or beta using minimum and/or maximum thresholds. Note that for genes, the beta statistic is always derived from

the burden test (SKAT and SKAT-O do not produce beta statistics). The PheWAS plot is colored and grouped by UK biobank show-

case category; the category control section can be used to traverse the showcase tree and filter the phenotype list to those belonging
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to specific categories. The PheWASplot can be configured to showp-values on either log or double log scales. Users can expand the

plot to focus on p-values only, betas-only, or view p-values and betas simultaneously.

The gene burden statistics table summarizes burden results across all mutational classes and tests (Figure S21F). The gene plot

displays single variants mapped to genomic coordinates along the gene exons. Variant -log10p values are shown on the Y axis (Fig-

ure S21G). The plot transitions from a single log scale to a double log scale 2/3 along the plot height to prevent variants with extremely

low p-values from dominating the plot, allowing users to focus on novel rare variant associations near the significance threshold. Var-

iants are depicted as circles, with the circle radii log-scaled by allele frequency in the non-Finnish European population. By default,

variants are colored by their most severe VEP consequence across transcripts. If the selected phenotype is categorical, two addi-

tional case/control variant tracks display variant positions with radii log-scaled to allele frequencies in cases and controls, respec-

tively. If the selected phenotype is continuous, variant radii will be log-scaled by allele frequency among individuals measured for the

trait.

The single variant analysis control panel is used to configure data displayed related to single variants (Figure S21I). Checkboxes

enable users to filter variants to those included in the gene burden analysis. Variants are filterable by identifier or annotation using the

search box. Users can focus on particular parts of the allele frequency spectrum by dragging the allele frequency filter slider. Detailed

summary statistics for all exome variants are available in a table below the plot (Figure S21H). Users can specify which columns to

display using the column selection checkboxes, or they can choose one of the column group presets. Each preset will select a partic-

ular set of columns that make sense to compare side-by-side (e.g., allele counts, frequencies, population counts, and columns best

suited for categorical or continuous trait types).

Exploring associations by phenotype

When the ‘‘gene Manhattan’’ results pane is active, the results index displays all gene associations with a selected phenotype. The

results are displayed in Manhattan plot, QQ plot, and tabular format (Figure S22). The three burden test types are displayed as col-

umns, and the burden set (pLoF, missense|LC, or synonymous) can be selected with the ‘‘Burden set’’ segmented control. Clicking

on a gene name will navigate to the gene PheWAS view, and clicking on the ‘‘details’’ arrow will update the right hand side without

leaving the geneManhattan view.When the ‘‘variant Manhattan’’ results pane is active, the left hand side results index takes a similar

format as the gene Manhattan but displays single variant association p-values instead of gene test statistics. Single variant results

can be filtered by consequence category (pLoF, missense, synonymous, and other). Clicking a variant IDwill navigate to that variant’s

PheWAS view, and clicking the ‘‘details’’ arrow will keep the single variant Manhattan view active.

Comparing single-variant associations across phenotypes

For a more comprehensive view of all variant-level associations for a gene in a single view, we developed functionality for exploring

many phenotypes simultaneously on the gene PAGE (Figure S23). This feature aims to help users gain insight into pleiotropic patterns

of variation across all high-scoring traits for a gene. Each row in the PheWAS table has a checkbox that, when checked, will overlay

the phenotype in the gene plot (Figure S23A). The ‘‘select top’’ button will load all phenotypes below the 10�4 p-value threshold; the

‘‘clear selected’’ button will unselect all phenotypes and return to the single phenotype view (Figure S23B). When selected, pheno-

types are assigned randomly generated colors to make them easier to distinguish in the plot and table (Figure S23C). Many tens or

hundreds of phenotypes can be loaded simultaneously; however, an automatic p-value threshold will be applied when there are too

many variants to display and the user will be warned in the single variant control panel.

By default, the variant table is configured to the ‘‘long’’ table format; when multiple phenotypes are selected, each variant-pheno-

type association will appear as a row in the variant table such that the variant table now contains duplicate entries for each variant. To

make rows unique and to see comparison of association statistics across traits in a single row, the table can be set to ‘‘wide’’ format

(Figure S24A). The phenotype pivots to the columns, creating a sort of genotype-phenotype matrix (Figure S24B). The column se-

lection controls will affect both the long and wide table formats. When examiningmany phenotypes at once, users can click the ‘‘filter

to selected’’ button on the phenotype section to simplify the PheWAS plot by only showing the selected phenotypes; this effectively

serves as a legend for coloring-by-trait functionality (Figure S24C).

Hover interactions are especially useful when comparing multiple phenotypes; hovering over variants or phenotypes with the

mouse will emphasize the relevant variants and bring them to the foreground (Figure S24D). The transparency slider sets the opacity

level for non-hovered variants, helping the user tune the multi-phenotype plot such that hovered selections can stand out better

(Figure S24E).

For categorical traits in particular, it is useful to get a visual sense of how case/control variant positions and allele frequencies differ

across the gene. The ‘‘show case/control tracks’’ checkbox will fold out case/control tracks for all traits currently selected (Fig-

ure S25A). Continuous traits will be displayed in a single track and the allele frequency for individuals measured for the trait will

be displayed. By viewing the case/control counts in the study (Figure S25B), alongside the case/control allele counts for variants

in the variant table (Figure S25C) and the plots (Figure S25D) users can very quickly compare burden results across phenotypes,

genes, and individual variants to get a sense of which specific variants may be driving gene burden signals. When the per-phenotype

tracks are expended, it can be useful to use the ‘‘Color by’’ switch to look for trends and variants across genomic coordinate, trait,

consequences, association p-value, effect size, and zygosity (Figure S26).

Single variant results

When a variant is clicked on the single variant Manhattan plot or on the gene PAGE, the PAGEwill focus on the selected variant, and a

PheWAS displays all associations with that variant (Figure S27). Similar to the gene PheWAS PAGE, multiple phenotypes can be
e10 Cell Genomics 2, 100168, September 14, 2022
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selected and loaded at once. In the variant view, the table rows show statistics for the selected variant, and the columns show values

across selected phenotypes. The variant position is displayed along the genomic coordinate. Clicking the ‘‘unselect’’ button will re-

turn to the gene PAGE. In this way, users can easily flip back and forth between single variants and the gene context.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using SAIGE-GENE 0.44.2, R 4.0.2, and Hail 0.2.49-0.2.62. All methodological details can be

found in the Method details, and all statistical tests are named as they are used.

ADDITIONAL RESOURCES

All resulting summary statistics are publicly available as bulk downloads and in a browser interface at https://genebass.org.
Cell Genomics 2, 100168, September 14, 2022 e11
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Fig. S1 | Scalable Variant Call Representation (SVCR) created from two gVCF inputs.
Panels a and b display information contained in gVCFs for two distinct samples in a small
genomic window. Panel c represents the merged SVCR, which contains all loci present in either
a or b. There is no entry for Sample2 at chr1:3331 because Sample2’s gVCF does not contain
the locus chr1:3331. The GT field has been renamed to LGT (local GT), and the LA (local
alleles) field has been added to record the original alleles in each gVCF, which is important at
chr1:3350, a locus where both input samples have a variant call. Related to STAR Methods.



Fig. S2 | Phenotype curation pipeline. Raw phenotype data (gray outlined boxes) are passed to
PHESANT, and a collection of filters (blue boxes) are applied. The thresholds shown here are
the defaults in our modified version of PHESANT that can be altered in our code as desired
using the flags displayed in parentheses. Grey filled boxes display the criteria for removal, and
yellow filled boxes show the category of the variable after the rules in the blue boxes have been
enforced. Related to STAR Methods.



Fig. S3 | Histogram showing the percentage of samples meeting 20X mean coverage for each
exome capture interval. Related to STAR Methods.



Fig. S4 | Normalized chromosome X ploidy plotted against normalized chromosome Y ploidy
and colored by sex karyotype. XY samples are spread out in terms of their normalized
chromosome Y coverage. This long tail of samples is likely due to mosaic loss of chromosome
Y. Related to STAR Methods.



Fig. S5 | Platform inference using missingness PCA. PC3 vs PC4 colored by batch. Note that
the batch names indicate the additional samples added from that batch. Thus, ‘100K’ refers to
data tranche 1, ‘150K’ refers to samples added in tranche 1.5 (the first 50K samples released to
the public), ‘200K’ refers to samples added in tranche 2, ‘300K’ refers to samples added in
tranche 3, and '455K' refers to samples added in tranche 4. The separation in PC4 is driven by a
common copy number variant. Related to STAR Methods.



Fig. S6 | Variant QC (A): A summary of the features used in the random forests model and their
relative importance in the model generated. (B): Precision and recall curves for the random
forest classifier using two truth samples present in our data (NA12878 and syndip). The
highlighted points at 90 for SNVs and 75 for indels indicate the cutoffs used for variant filtering.
Related to STAR Methods.



Fig. S7 | Hail Batch schematic for SAIGE association analysis. An example batch (the SAIGE
pipeline used in this manuscript) is shown here. Related to STAR Methods.



Fig. S8 | QQ-plots of randomly generated heritable (heritability = 100%) phenotypes for
single-variant tests (left) and for group tests (SKAT-O, middle; and burden tests, right). The
increasing prevalence of each binary phenotype is indicated by the label on the right (1e-4 to
0.5), followed by continuous traits. Related to STAR Methods.



Fig. S9 | Lambda GC by cumulative allele frequency (CAF) by heritability. The heritability of the
phenotypes are shown by the label on the right. Related to STAR Methods.



Fig. S10 | Power for rare variant associations. The minimum p-value possible from a protective
mechanism with an odds ratio = 0: here, we compute the p-value of a chi-squared test of the
case where the variant is absent from cases, while controls have a frequency as plotted. For the
color-scale, a second logarithm is applied to p values below 10-10. Related to STAR Methods.



Fig. S11 | Lambda GC for each phenotype vs case count, split by expected AC interval for
SKAT-O, SKAT and burden tests. Related to STAR Methods.



Fig. S12 | Lambda GC for each phenotype vs case count for SKAT-O, SKAT and burden tests,
before and after filtering out summary statistics with expected AC < 50, number of variants
tested < 2, and coverage < 20. Related to STAR Methods.



Fig. S13 | Coverage vs gene-based lambda GC, for SKAT-O (A) and burden tests (B). Related
to STAR Methods.



Fig. S14 | Lambda GC for each phenotype. A density plot of the distribution of lambda GC
values for each phenotype is shown, broken down by trait type, test type, and set of variants
used in the lambda calculation. Related to STAR Methods.



Fig. S15 | Lambda GC for each gene. A density plot of the distribution of lambda GC values for
each gene is shown, broken down by test type and set of variants used in the lambda
calculation. Related to STAR Methods.



Fig. S16 | Independence of phenotypes. (A): A histogram of the number of phenotype pairs by
correlation (r2). (B): The number of phenotypes that would be removed by the maximum
independent set method, by r2 threshold. Related to STAR Methods.



Fig. S17 | Comparison of effect sizes between UK Biobank and GIANT for height. The y = x line
is shown for reference. Related to STAR Methods.



Fig. S18 | The proportion of genes (A) and variants (B) associated with at least one trait, broken
down by functional class. Related to Figure 3 and STAR Methods.



Fig. S19 | The proportion of variants (A) and genes (B) with at least one phenotype reaching our
p-value threshold is shown broken down by allele frequency category (A) or cumulative allele
frequency category (B) and by functional category. For common variants, missense variants
show a higher proportion of associations than synonymous variants, but pLoF variants do not
show a higher proportion as might be expected, likely due to artifacts at common pLoF variants.
Related to Figure 3 and STAR Methods.



Fig. S20 | The proportion of variants with at least one association is shown broken down by
PolyPhen2 annotation group and allele frequency category. * and ** indicate a significant group
difference by chi-square test at p < 0.05 and p < 0.001, respectively. No significant difference is
observed for allele frequencies above 10%. Related to Figure 3 and STAR Methods.



Fig. S21 | Overview of the UKBB exome gene browser interface. The left hand side of the page
provides access to all associations with a given gene, variant, or phenotype. The right hand side
is for exploring detailed gene test associations (burden, SKAT-O, SKAT) across annotation
groups (pLoF, missense and low confidence pLoF, synonymous) in addition to single variants
that were included in the burden tests. Related to STAR Methods.



Fig. S22 | Results by phenotype. For a given phenotype, gene or variant association results are
displayed in Manhattan plot formats in addition to an exportable table. Detailed gene results can
be quickly previewed using the arrow button located in each row of the table. Related to STAR
Methods.



Fig. S23 | Multi-phenotype plotting. Many phenotypes can be selected simultaneously to be
overlaid for comparison of single variant analysis associations. Related to STAR Methods.



Fig. S24 | Using hover interactions with the multi-phenotype pivot table. Here 10 LDLR
associations are compared simultaneously and one splice donor of interest is hovered in the
variant table to highlight the plot. Related to STAR Methods.



Fig. S25 | Viewing case-control counts and allele frequencies for pLoF variants across traits in a
gene. Related to STAR Methods.



Fig. S26 | Color variants by attribute to uncover patterns in A) consequence, B) p-value, C) beta,
D) trait, or E) zygosity. Related to STAR Methods.



Fig. S27 | Single variant page. Related to STAR Methods.



Table S1 | Final sample counts passing QC. "nfe" refers to samples inferred as having
non-Finnish European ancestry. Note that relatedness was run after hard filtering, so the total
number of related and unrelated individuals is equal to the total number of samples less 683.
Related to STAR Methods.



Table S2 | QC of summary statistics. All filters are applied sequentially. Related to STAR
Methods.

Description

Count
(% Percentage Remaining)

pLoF Missense Synonymous Total

Group
(SKAT-O)

Before filtering 18,358 19,403 19,372 75,767
(Oth:18,634)

Number of variants >= 2 17,876
(97.4%)

19,392
(99.9%)

19,355
(99.9%)

75,251
(99.3%)

(Oth:18,628)

Mean coverage >= 20 17,370
(94.6%)

18,791
(96.8%)

18,768
(96.9%)

72,999
(96.3%)

(Oth:18,070)

At least 1 phenotype with
expected AC

(CAF*n_cases) >= 50

8,044
(43.8%)

18,461
(95.1%)

18,068
(93.3%)

62,350
(82.3%)

(Oth:17,777)

Lambda of the
synonymous group > 0.75

7,296
(39.7%)

15,943
(82.2%)

16,014
(82.7%)

54,647
(72.1%)

(Oth:15,394)

Variant

Before filtering 515,246 5,279,243 2,274,565 8,074,878
(NA: 5,824)

Annotation defined 515,246 5,279,243 2,274,565 8,069,054
(99.9%)

At least 1 phenotype with
expected AC

(AF*n_cases) >= 50

6,117
(1.2%)

155,705
(2.9%)

101,874
(4.5%)

263,696
(3.3%)

Continuous Categorical Disease (ICD) Total

Phenotype
(SKAT-O)

Before filtering 1,233 2,571 725 4,529

Lambda > 0.75 1,233
(100%)

2,514
(97.8%)

710
(97.9%)

4,457
(98.4%)

Correlation < 0.5 677
(54.9%)

2,434
(94.7%)

708
(97.7%)

3,819
(84.3%)



Table S3 | Comparison to 32 rare (MAF < 1%) variants associated with adult height in GIANT; in
UK Biobank, 21 of these variants are found to be associated with height at p < 8 x 10-9 (blue),
and 29 are associated with height at p < 0.05 (light blue). Related to STAR Methods.

Locus Allele
(Ref)

Allele
(Alt) Annotation Gene

P-value

UK
Biobank

GIANT

Discovery Validation Combined

1:32673514 G C missense IQCC 1.11E-10 7.92E-08 3.83E-06 1.34E-12

1:41540902 G A missense SCMH1 1.34E-27 1.58E-25 9.42E-13 1.35E-36

1:41618297 G A missense SCMH1 6.88E-24 1.92E-15 1.32E-08 1.80E-22

1:149902342 C T missense MTMR11 1.82E-14 4.16E-06 7.11E-06 3.03E-10

1:183495812 A G missense SMG7 5.47E-14 4.97E-11 8.94E-05 1.61E-14

1:223178026 T C missense DISP1 NA 1.11E-09 1.22E-06 1.27E-14

2:219920461 T A missense IHH 1.17E-06 1.09E-15 1.48E-09 1.85E-23

2:220078652 C T missense ABCB6 3.13E-16 3.43E-13 4.40E-04 2.47E-15

3:46939587 C T missense PTH1R 9.93E-09 1.30E-11 5.48E-10 1.14E-19

4:73179445 C T missense ADAMTS3 5.40E-10 1.82E-08 1.32E-04 1.30E-11

4:120422407 T G missense PDE5A 1.04E-10 7.50E-17 1.28E-08 2.65E-23

5:32784907 G A missense NPR3 3.93E-22 1.05E-08 1.78E-06 7.91E-14

5:64766798 G A missense ADAMTS6 9.39E-17 7.82E-09 1.37E-08 4.80E-16

5:127668685 G T missense FBN2 1.04E-30 2.47E-33 5.06E-20 1.47E-52

5:172755066 C A missense STC2 2.25E-34 5.69E-15 1.32E-17 1.15E-30

6:155450779 A G missense TIAM2 NA 1.45E-08 8.50E-01 3.96E-08

7:73482987 G A missense ELN 1.48E-13 2.63E-06 1.51E-03 2.31E-08

8:135614553 G C missense ZFAT 2.66E-45 4.42E-26 1.20E-14 6.12E-38

8:135622851 G A missense ZFAT 4.76E-14 1.54E-12 5.94E-18 2.05E-28

11:27016360 G A missense FIBIN 3.70E-08 5.79E-12 1.56E-03 3.26E-14

11:94533444 G A missense AMOTL1 1.96E-06 9.01E-16 3.84E-07 2.84E-21

12:58138971 G A missense TSPAN31 4.63E-01 8.26E-08 2.85E-03 5.50E-09

12:121756084 G A missense ANAPC5 4.32E-15 1.09E-11 1.44E-11 1.45E-21

15:44153571 C T missense WDR76 1.05E-04 1.56E-06 3.42E-04 2.32E-09



15:89424870 G T missense HAPLN3 1.51E-33 2.84E-13 2.43E-11 1.02E-22

16:31474091 A G missense /
splice acceptor ARMC5 5.76E-10 5.88E-12 1.16E-03 1.62E-13

16:47684830 C A missense PHKB 1.39E-06 3.96E-14 1.04E-01 3.43E-12

16:67470505 G A missense HSD11B2 4.15E-08 1.27E-07 3.38E-04 1.97E-10

16:84900645 G A missense CRISPLD2 5.32E-14 9.13E-12 4.34E-09 2.92E-19

16:84902472 G A missense CRISPLD2 2.66E-22 7.75E-14 3.49E-08 2.36E-20

16:88798919 G T missense PIEZO1 4.38E-17 5.27E-12 1.99E-08 8.68E-19

X:66941751 C G missense AR 1.06E-08 7.05E-07 7.12E-09 2.67E-14



Table S4 | Comparison to 59 low-frequency (MAF between 1% and 5%) variants associated with
adult height in GIANT; in UK Biobank, 10 of the variants were not tested, 30 of these variants
are found to be associated with height at p < 8 x 10-9 (blue), and 49 are associated with height
at p < 0.05 (light blue). Related to STAR Methods.

Locus Allele
(Ref)

Allele
(Alt) Annotation Gene

P-value

UK Biobank
GIANT

Discovery Validation Combined

1:51873967 G A missense EPS15 3.84E-18 5.07E-08 7.60E-11 2.56E-17

1:119427467 A C missense TBX15 6.10E-31 1.61E-24 4.19E-15 2.79E-36

1:150551327 G A missense MCL1 1.33E-25 2.16E-09 7.86E-12 1.55E-19

1:154987704 C T missense ZBTB7B 1.82E-12 7.30E-17 4.46E-10 3.46E-25

1:180886140 C T missense KIAA1614 1.50E-05 1.41E-06 4.51E-04 2.63E-09

2:20205541 C T missense MATN3 NA 2.67E-23 6.60E-19 3.74E-41

2:219949184 C T intron NHEJ1 NA 5.96E-21 1.12E-15 8.20E-37

2:179474668 G A missense TTN NA 1.35E-07 2.15E-01 3.44E-07

2:233077064 A G intron DIS3L2 NA 2.35E-16 2.58E-15 6.46E-31

3:14214524 G A missense XPC 1.22E-09 1.22E-08 1.68E-02 1.29E-08

3:47162886 C T missense SETD2 1.30E-08 2.24E-08 2.22E-07 1.65E-13

3:49162583 C T missense LAMB2 2.72E-37 3.28E-12 1.33E-16 3.49E-27

3:98600385 T C missense DCBLD2 4.69E-04 1.23E-07 5.62E-05 1.68E-12

4:5016883 G A missense CYTL1 8.93E-18 2.01E-17 6.68E-11 1.86E-25

4:87730980 C T missense PTPN13 6.71E-36 1.94E-19 1.38E-15 9.43E-32

4:135121721 T C missense PABPC4L 4.83E-07 1.39E-13 1.33E-04 7.54E-16

4:144359490 C T missense GAB1 8.42E-07 1.04E-08 3.24E-04 4.29E-12

4:154557616 C T missense TMEM131L 4.32E-08 7.75E-08 5.75E-06 2.18E-12

5:102338811 A G missense PAM NA 3.76E-06 8.47E-06 1.63E-10

5:126250812 C T missense MARCH3 5.87E-05 4.25E-08 2.45E-03 1.67E-10

5:135288632 A G missense LECT2 7.90E-06 1.02E-07 4.77E-04 1.36E-09

5:172196752 A G missense DUSP1 6.30E-14 4.00E-14 1.26E-06 1.93E-20

5:176637471 G A missense NSD1 3.58E-23 2.38E-17 2.62E-12 4.27E-30



5:176722005 G A missense NSD1 1.01E-37 1.86E-26 8.42E-18 2.32E-41

6:30851933 G A intron DDRI NA 1.11E-08 1.24E-05 4.64E-13

6:34730395 C T synonymous SNRPC 5.24E-52 9.21E-33 9.59E-31 3.45E-60

6:41903798 C A missense CCND3 1.74E-41 5.51E-17 3.41E-08 1.28E-22

7:99489571 G A 3'UTR TRIM4 NA 3.28E-10 2.26E-07 1.40E-17

7:100490077 G A synonymous ACHE 3.34E-06 8.59E-10 2.92E-02 2.98E-10

7:135123060 G C missense CNOT4 4.59E-20 2.31E-17 5.04E-10 3.90E-26

8:42226805 C G missense POLB 8.53E-05 1.95E-06 1.30E-02 1.88E-07

9:34660864 C T missense IL11RA 7.28E-11 5.20E-13 4.42E-03 4.01E-13

9:95063947 C T missense NOL8 3.67E-04 2.56E-06 3.45E-02 3.33E-06

10:79580976 G A missense DLG5 1.68E-21 2.72E-11 5.15E-11 7.66E-20

10:97919011 A G missense ZNF518A 1.29E-05 9.94E-08 3.05E-03 3.91E-09

11:65715204 G A missense TSGA10IP 2.23E-41 1.82E-21 1.41E-23 1.52E-43

12:7548996 C G missense CD163L1 1.05E-03 4.11E-08 6.68E-02 1.87E-08

12:69140339 G C missense SLC35E3 1.87E-10 1.13E-09 5.UE-04 1.29E-11

12:104408832 T C missense GLT8D2 NA 8.72E-10 5.82E-10 1.60E-17

13:50842259 G A intron DLEU1 NA 2.33E-37 7.02E-25 5.66E-57

14:23313633 G A missense MMP14 5.63E-08 1.72E-08 7.81E-09 3.27E-16

14:24707479 G A missense GMPR2 1.38E-16 3.67E-16 1.34E-11 2.13E-29

14:45403699 C A missense KLHL28 1.53E-07 1.55E-06 4.13E-04 3.05E-09

14:70633411 C T missense SLC8A3 4.05E-11 2.49E-11 2.02E-06 2.03E-16

14:94844947 C T missense SERPINA1 1.53E-100 1.39E-45 2.50E-34 1.72E-75

14:101349454 G T missense RTL1 7.09E-12 1.17E-11 2.12E-04 2.50E-15

15:34520687 T C missense EMC4 6.45E-02 1.16E-06 2.19E-02 1.60E-07

15:72462255 C T missense GRAMD2A 2.04E-27 8.72E-17 3.66E-13 1.28E-27

15:89388905 C T synonymous ACAN 1.61E-150 4.30E-72 1.08E-56 3.79E-130

16:4812705 A G missense ZNF500 4.21E-10 8.61E-17 2.34E-07 2.89E-21

16:24804954 A T missense TNRC6A 3.87E-13 1.08E-09 1.65E-07 1.90E-15

16:67409180 G A missense LRRC36 2.22E-19 1.08E-18 3.91E-13 6.40E-31



17:67081278 A G missense ABCA6 5.70E-14 2.17E-06 5.58E-07 5.57E-12

18:74980601 A T missense GALR1 6.28E-07 3.60E-18 3.64E-05 5.11E-19

19:45296806 C T missense CBLC 5.91E-03 1.48E-07 1.19E-02 2.96E-08

19:55879672 C T missense IL11 5.24E-47 1.02E-57 2.28E-23 5.32E-81

19:55993436 G T missense ZNF628 9.38E-47 2.28E-18 1.17E-18 6.33E-34

22:28501414 C T missense TTC28 NA 9.47E-11 3.24E-09 3.93E-19

22:42095658 T G missense MEI1 4.63E-04 2.25E-08 6.59E-03 3.70E-10



Table S5 | Comparison to 10 genes associated with adult height in GIANT. In UK Biobank, FLNB
(pLoF, missense|LC), NOX4 (missense|LC), OSGIN1 (missense|LC), and UGGT2 (pLoF) reach
our genome-wide significance threshold (SKAT-O p < 2.5 x 10-7 ; Burden p < 6.7 x 10-7) (blue),
but all are found nominally significant for either pLoF or missense variants (light blue). Related
to STAR Methods.

Gene
UK Biobank GIANT P-value

Annotation Burden Test SKAT-O SKAT-Broad VT-Broad SKAT-Strict VT-Strict

B4GALNT3

missense|LC 5.49E-03 6.64E-03
2.40E-05 1.90E-05 1.80E-05 3.10E-07pLoF 3.25E-06 4.76E-06

synonymous 6.46E-01 2.33E-01

CCDC3

missense|LC 3.80E-02 9.03E-03
6.30E-04 6.30E-06 3.00E-07 5.40E-09pLoF 7.55E-01 6.25E-01

synonymous 4.00E-01 5.62E-01

CRISPLD1

missense|LC 8.61E-02 1.37E-01
2.20E-07 6.70E-11 8.50E-06 8.90E-07pLoF 5.00E-03 6.84E-03

synonymous 3.81E-02 6.55E-02

CSAD

missense|LC 3.57E-03 6.54E-03
2.30E-08 2.40E-09 0.83 0.59pLoF 3.33E-01 4.63E-01

synonymous 8.84E-02 6.97E-04

FLNB

missense|LC 2.99E-08 2.12E-08
2.20E-06 5.10E-04 2.40E-09 3.20E-06pLoF 5.51E-11 9.35E-11

synonymous 7.37E-01 3.00E-02

G6PC

missense|LC 5.77E-01 6.64E-02
1.30E-05 3.60E-08 5.50E-06 1.30E-06pLoF 3.03E-03 5.28E-03

synonymous 4.82E-01 4.06E-01

NOX4

missense|LC 1.47E-10 5.27E-14
5.10E-06 1.40E-07 NA NApLoF 3.01E-04 5.04E-04

synonymous 8.31E-01 2.39E-01

OSGIN1

missense|LC 8.14E-04 9.28E-11
4.30E-11 4.50E-05 0.19 0.18pLoF 7.40E-01 7.76E-02

synonymous 4.65E-01 6.53E-01

SNED1

missense|LC 3.67E-02 6.24E-02
1.90E-05 4.30E-09 NA NApLoF NA 3.69E-01

synonymous 1.32E-01 2.16E-01

UGGT2
missense|LC 4.47E-05 1.09E-04

3.00E-05 2.60E-07 2.30E-05 4.80E-07pLoF 7.84E-09 6.51E-09



synonymous 8.76E-02 1.48E-01



Table S6 | Comparison of 20 associations between missense variants and 7 major red blood cell
phenotypes discovered at the genome-wide significant loci of the marginal tests in TOPMed; in
UK Biobank, 9 of these associations are significant at p < 8 x 10-9 (blue), and 19 are found
significant at p < 0.05 (light blue). Related to STAR Methods.

Phenotype UKB
phenocode Locus Allele

(Ref)
Allele
(Alt) Gene Annotation

P-value

TOPMed UK
Biobank

hematocrit
(HCT)

30030:
hematocrit
percentage

chr6:26092913 G A HFE missense 6.40E-17 5.05E-174

chr22:37066896 A G TMPRSS6 missense 1.03E-26 3.28E-182

chrX:154536002 C T G6PD missense 3.36E-22 1.61E-03

hemoglobin
(HGB)

30020:
hemoglobin

concentration

chr6:26092913 G A HFE missense 2.16E-30 1.00E-300

chr22:37066896 A G TMPRSS6 missense 3.16E-51 1.00E-300

chrX:154536002 C T G6PD missense 1.47E-28 2.02E-02

mean
corpuscular
hemoglobin

(MCH)

30050:
Mean

corpuscular
hemoglobin

chr11:5227003 C T HBB missense 1.24E-23 2.06E-02

chrX:154536002 C T G6PD missense 2.12E-48 7.91E-03

mean
corpuscular
hemoglobin

concentration
(MCHC)

30060:
Mean

corpuscular
hemoglobin

concentration

chr6:26092913 G A HFE missense 9.52E-17 3.59E-246

chr11:5227003 C T HBB missense 4.29E-43 2.37E-02

chr22:37066896 A G TMPRSS6 missense 3.25E-26 5.70E-189

mean
corpuscular

volume
(MCV)

30040:
mean

corpuscular
volume

chr1:247876149 C T TRIM58 missense 1.77E-16 1.33E-118

chr11:5227003 C T HBB missense 1.36E-64 2.87E-04

chr16:67184472 T C EXOC3L1 missense /
synonymous 2.13E-09 7.48E-29

chrX:154536002 C T G6PD missense 3.96E-82 5.87E-02

red blood cell
count (RBC)

30010:
red blood cell
(erythrocyte)

count

chr11:5227003 C T HBB missense 2.44E-22 1.49E-02

chrX:154536002 C T G6PD missense 3.72E-82 1.27E-04

red blood cell
width (RDW)

30070:
red blood cell
(erythrocyte)
distribution

width

chr6:26092913 G A HFE missense 5.80E-15 1.00E-300

chr11:5227003 C T HBB missense 1.59E-10 1.51E-02

chrX:154536002 C T G6PD missense 8.27E-106 1.87E-04
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