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SUMMARY
Copy number variation (CNV) is known to influence human traits, having a rich history of research into com-
mon and rare genetic disease, and although CNV is accepted as an important class of genomic variation,
progress on copy-number-based genome-wide association studies (GWASs) from next-generation
sequencing (NGS) data has been limited. Here we present a novel method for large-scale copy number anal-
ysis from NGS data generating robust copy number estimates and allowing copy number GWASs (CN-
GWASs) to be performed genome-wide in discovery mode. We provide a detailed analysis in the UK Biobank
resource and a specifically designed software package. We use these methods to perform CN-GWAS anal-
ysis across 78 human traits, discovering over 800 genetic associations that are likely to contribute strongly to
trait distributions. Finally, we compare CNV and SNP association signals across the same traits and samples,
defining specific CNV association classes.
INTRODUCTION

Genome-wide association studies (GWASs) are a well-estab-

lished genetic technique, havingmade thousands of robust asso-

ciations between traits and sequence-level genetic variation.1–7

Often these associations can have significant impacts on the un-

derstanding and, in some cases, the treatment of human dis-

ease.8–10 However, for most common genetic diseases, these as-

sociations only account for part of the heritable disease risk.11–13

In termsof total basepairs, copynumber variation (CNV) accounts

for themajority of differences between any two genomes14–18 and

is known to alter human trait distributions,19–21 often with a strong

impact on human health.22,23 This is highlighted best within

the large body of research studyingCNV in relation to rare genetic

disease.24–26 Although it is widely accepted that CNV can

contribute significantly to differences in human traits, to date,

methods for large-scale CNV to phenotype association studies,

the equivalent ofGWAS forCNVs, havebeenhamperedbya num-

berof factors, includingmethodological difficulties,27 theavailabil-

ity of sufficiently largedatasets, and theability to interpret complex

rearrangements from sequencing data.28,29

CNVs have been amajor component of routine clinical medical

genetics screening for over a decade; however, the interpreta-

tion of individual events remains challenging,30,31 with most clin-

ical testing laboratories routinely finding potentially pathogenic

CNVs in patients with intellectual disability, autism spectrum dis-

orders, and/or multiple congenital anomalies.32–34 Although CNV

detection from sequence data in a clinical setting is in active
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development, most clinical CNVs are still discovered using

specialized microarrays.35 Most CNVs with strong effects are

rare and they are often discovered as de novo mutations in pa-

tients across a range of genomic disorders.36,37 Furthermore, it

has been observed that the overall burden of CNVs is higher in

specific patient groups compared with controls38,39 indicating

potential combinatorial CNV effects.40 It is conceivable that spe-

cific combinations of CNVs, by acting in concert, may have a

large potential to cause phenotypic differences due to factors

such as dosage compensation, incomplete penetrance, and

polygenic effects.41,42 The impact of CNVs in rare diseases is

likely to be large, whereas one might expect weaker effects of

all variation in more common diseases, consistent with the poly-

genic behavior of these diseases.

Several CNV genotype-phenotype correlations have been

observed in relatively small-scale studies of specific patient

groups43 or by collaborative efforts to share genetic data for

rare disease;44 however, CNVs have also been associated with

a number of complex diseases.45,46 Recent large-scale CNV as-

sociation testing using datasets such as the UK Biobank have

found some highly significant loci in relation to certain human

traits,47 and previous studies focused on cognitive traits such

as schizophrenia48 and autism49 have demonstrated the utility

of SNP arrays to search for novel CNV associations. Focused

studies into specific human traits have used large-scale SNP ge-

notypes to perform association testing with great success;50–54

however, these studies have often focused on predefined lists

of CNV regions known to be important within a clinical setting.53
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Another important consideration is that SNP genotyping arrays

have a limited resolution to detect small CNVs and a limited

sensitivity for CNV discovery genome-wide due to the distribu-

tion of SNPs across the genome and a limited dose response.55

A recent CNV association study showed both the power and lim-

itations of genotype-based CNV association testing in the UK

Biobank, finding 131 significant signals across 47 quantitative

traits.56 The smallest CNV association detected was 49 kb at

1p36.11 found to be in association with reticulocyte count,

platelet count, and hemoglobin A1c (HbA1c).56 However, most

of the CNV association signals detected involved large recurrent

CNVs with a mean size of 817 kb, highlighting the limited resolu-

tion when using SNP arrays. Another recent study showed an

improvement in resolution fromSNP arrays by including informa-

tion on shared extended SNP haplotypes into their model, de-

tecting 269 independent associations across 56 quantitative

traits.57 Both studies tested quantitative traits only and were

limited to the resolution of the SNP array; nevertheless, both

found novel discoveries, highlighting a large potential for CNV

association testing genome-wide for complex human traits.

It is reasonable to assume that CNVs may account for a sub-

stantial portion of the variance observed in common disease risk.

Some of these CNVs will be in strong linkage disequilibrium (LD)

with SNPs, and so they can be discovered by tagging polymor-

phisms, but the causal change is impossible to narrow down us-

ing SNPs alone. Other CNVs might not have good tagging SNPs

and, furthermore, recurrent CNVs are far more common than

recurrent SNPs, with the CNV mutation rate currently estimated

at 0.2 de novo events per individual compared with between

1.83 10⁻8 and 2.5 3 10⁻⁸ per base pair per generation for point

mutations,19,58–60 meaning that the aggregate higher-frequency

CNVs with the same functional impact are hard to model using

the combination of rare haplotypes. With the advance of large

data cohorts with datasets that are amenable to copy number

estimation,61–63 the ability to perform high-resolution genome-

wide GWAS testing for CNVs has become more feasible. One

challenge for large-scale CNV discovery has been variability in

raw sequencing depth due to other factors, most likely extraction

techniques and immune system state at the time of blood draw.

This variation gives rise to complex noise characteristics in raw

sequencing read depth between samples, so called genomic

waves. To explore this, one needs robust normalization strate-

gies for CNVs, an appropriate discovery method for CNVs, and

away to easily integrate both CNV- and SNP-based associations

into one framework.

In this work, we address some of these issues by providing a

new discovery method for CNVs from next-generation

sequencing (NGS) data, CNest, based on novel normalization

techniques for large-scale cohorts. Rather than trying to create

individual models of alleles for each CNV locus, we have chosen

to use a straightforward linear model for discovery. This linear

model is both consistent across all CNV loci and has many

similar properties to the linear models used in SNP GWAS. As

such, we can use the same covariates, the same diagnostic style

QQ plots, and place SNPs and CNVs associations into the same

framework. Post discovery, we show we can provide more

detailed modeling of at least some loci. We provide a compre-

hensive CNV analysis using this method on the large UK Biobank
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cohort with exome sequences. To explore the relationship with

established SNP polymorphisms, we also performed both CNV

and SNP GWAS within a single framework, applying our

methods across the same set of UK Biobank samples and inter-

rogating the resulting associations across a diverse set of traits.

We find many CNV to phenotype associations, although, as

expected, many of these associations are also tagged by SNP

polymorphisms. However, we have a subset of CNV associa-

tions that cannot be discovered via SNPs and another subset

that are coincident with strong SNP polymorphisms but not

well correlated with any specific SNP, and many where the

CNV is taggable but the tagged SNP is at some distance from

the CNV locus. Many of these associations recapitulate multiple

known associations based on previous studies on both CNV and

SNP genome association testing, whereas others discover new

CNV-specific findings in relation to the genetics of common hu-

man traits. We have made the software, CNest, which performs

this discovery open source and provided portable workflows to

run CNest, compatible with GA4GH standards.64

RESULTS

CNV in 200,629 individuals from the UK Biobank
To identify exon-resolution CNV regions across a large popula-

tion of individuals from NGS data in the UK Biobank, we devel-

oped a suite of flexible, highly scalable CNV analysis tools known

as CNest (see STARMethods). Within this package, we include a

robust CNV caller as well as a set of tools and novel approaches

to CNV association testing genome-wide in discovery mode. A

flow diagram describing the major steps performed for CNest

calling and association testing can be found in Figure S1. A cen-

tral component of these methods is the selection of appropriate

reference datasets and normalization procedures by modeling

certain noise characteristics of whole-exome sequencing

(WES)/whole-genome sequencing (WGS), for example, the pres-

ence and scale of genomic waves, to generate optimized copy

number measurements across large sample cohorts (see

STARMethods). After calling CNVs in the 200,629 sample cohort

withWES data, we applied several quality control (QC)measures

to ensure that the copy number measurements and CNV calls

were consistent.

A subset of the diagnostic plots of CNest is shown in Figure 1.

An obvious but important step in CNV analysis is the classifica-

tion of sex based on the estimated copy number of the X chro-

mosome. Well-controlled one versus two copy number of the X

chromosome indicates that the normalization procedure and

relative copy number estimates have worked successfully, at

least for the X chromosome (Figure 1A). A side effect of this anal-

ysis is the ability to detect sex chromosome aneuploidy. We de-

tected 50 samples showing an unusually high number of copies

on chromosome X (Figure 1A). These samples were assumed to

be amixture of data quality issues and real triple X cases. Triple X

is a condition caused by random error during reproductive cell

division and is found in approximately one in 1,000 women.

Although triple X has been associated with several trait differ-

ences, it can often go undiagnosed and, depending on other so-

cial factors, may never give rise to any noticeable problems.65

We also detected 51 datasets that show an unusual level of



Figure 1. QC of CNV calls in the 200,629 UK Biobank exome sequences

(A) Gender classification, the relative coverage of autosomes compared with chromosome X and the CNest gender classifications shown in different colors

across all samples.

(B) The total number of autosomal CNV calls versus a measure of the proportion of rare CNVs per sample using a 1% population frequency.

(C) The log10 of the loss to gain ratio versus log10 of the total number of CNV calls for each sample.

(D) A density plot showing (B) but for QC-passed samples only.
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chromosome X coverage and cannot be reliably assigned to

either double (female) or single X (male). These we assume to

be both inconsistent capture of chromosomal baits and potential

mosaic sex chromosome events (i.e., mosaic XXY).

Like previous studies into sex chromosome aneuploidy in the

UK Biobank,66 we classify 50 out of 110,312 women as potential

trisomy X (Ambigous_high) giving a prevalence of 45.3 out of

100,000. We also compared the sex classification made by the

SNP arrays (f22001), the prediction of sex chromosome aneu-

ploidy (f22019), and the presence of any International Classifica-

tion of Diseases, Tenth Revision (ICD10) code for sex chromo-

some abnormality, Q90 to Q99 (Table S1). The majority of sex

classifications agree between the exome sequence and SNP

array data, and those that are discordant are enriched for the

presence of both f22019 and sex chromosome abnormality-
related ICD10 codes. Sex chromosome aneuploidy is not a focus

of this study, and we simply exclude all samples that could not

be reliably assigned to either double or single X based on their

coverage profiles (Figure 1A); these copy number sex chromo-

some calls will be returned to the UK Biobank for further investi-

gation by other investigators.

Some informative CNV quality information is contained within

the consistency in the number of CNV calls in all samples against

the proportion of those calls that are rare across the entire pop-

ulation (Figure 1B). This is like the genotyping extreme heterozy-

gosity quality parameter used as standard in SNP genotyping

QC. Given current estimates on the CNV mutation rate,67 we

would expect very low numbers of de novo CNV events (less

than one per genome) and rare CNVs to be infrequent in any in-

dividual genome, which is supported empirically here with a
Cell Genomics 2, 100167, August 10, 2022 3
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median of three rare CNVs per UK Biobank exome based on a

1% population frequency for losses and gains separately. For

large-scale CNV analysis in assumed healthy individuals, it is

sensible to assume that most genomes will on average display

a consistent level of rare variation compared with the bulk of

the population. Encouragingly, after applying our strictest defini-

tion of QC across greater than 200,000 exome sequences for

CNV calling, we obtain a greater than 92% pass rate, indicating

that, for most samples, our CNV estimation and calling approach

is consistent. There is no reason to expect, given knownCNV for-

mationmechanisms such as non-allelic homologous recombina-

tion (NAHR) and non-homologous end-joining (NHEJ), that there

would be any bias between the number of losses and gains when

comparing large numbers of genomes in aggregate, and

although there are some outliers, we observe a tight loss-to-

gain ratio distribution with a median of 1.4 (Figure 1C). When as-

sessing these distributions in samples that passed our QC

criteria, the bulk of the data are tightly centered around a mean

number of calls of 48 and a mean rarity rate of 0.07 (Figure 1D).

As expected, we observe a bias in loss/gain detection with a

median of 28 losses compared with 19 gains per sample (Fig-

ure S2A); most CNV callers from both array- and sequence-

based data show an increased ability to detect losses compared

with gains due to the increased variance for higher copy number

signals (‘‘reads’’) and a lowered dose response.68–70 This

decreased dose response makes it more challenging to detect

gains, often requiring a larger number of consistent signals (‘‘re-

sponding probes’’) to be able to distinguish real signals from

baseline noise properties.71,72 When looking at the proportion

of CNV calls (deletions and duplications) made by CNest across

all 200,000 UK Biobank samples, most calls are small (51% of all

calls <100 kb) and the difference in loss-to-gain sensitivity is

most evident for smaller events (Figure S2B). Most CNVs de-

tected are small; however, only 1.8% of all calls include only a

single exon, and, as size increases, the proportion of losses to

gains stabilizes to approximately equal numbers above a size

of 500 kb, with calls above this size accounting for 14.1% of

the total call set (Figure S2B). Common CNVs are not uniformly

distributed throughout the genome, andwe find several high-fre-

quency recurrent events in knownCNV formation hotspots (often

closer to low copy repeats and centromeric regions). We see

strong correlation between the number of CNVs called by CNest

for each chromosome with the total number of annotated

segmental duplications for that chromosome (Figure S2C). There

is a stronger correlation for losses compared with gains (Pear-

son’s R of 0.82 for losses compared with 0.75 for gains), which

is likely due to the dose response difference and decreased

sensitivity for smaller gains. To assess the presence of the

genomic wave within our final log2 ratio distribution, we calcu-

lated a genome wave estimate based on the interquartile range

(IQR) of a running median using a 401-data-point span scaled

by a scaling factor. Across all 200,000 sample-level normalized

log2 ratio distributions, we observe very low levels of extreme

wave characteristics, with only 3.2% of all samples having a

genomic wave estimate greater than 1 (Figure S2D). Samples

with a wave estimate greater than one represent those for which

we would expect that the presence of wave-based noise in their

log2 ratio distribution may make CNV calling challenging (Fig-
4 Cell Genomics 2, 100167, August 10, 2022
ure S3). When looking at the wave estimates in relation to the to-

tal number of losses and gains made per sample, we observe

very tight distributions across the full range of total CNV calls

(Figure S2D). Interestingly, our sample-level CNV calls appear

to be largely robust to differences in wave-based noise, with

most samples showing higher wave estimates being within the

lower ranges of total CNV calls.

To further assess some characteristics of our CNV calls, we

looked at how many predicted loss-of-function CNVs (either

deletion or truncating duplications) overlapped clinically impor-

tant genes from the dd gene to phenotype (DDG2P) resource;24

we expect the common CNVs discovered in UK Biobank to be

depleted in overlaps to these genes. Using a 50% reciprocal

overlap rule against 218 mono-allelic loss-of-function genes

from the DDG2P, we found a total of 342 individuals CNV calls

(Figure S4), 40% of which were in the same gene, GLMN, which

is known to be involved in glomuvenous malformations.73 Over-

all, similar to previous work on pathogenic CNVs in the UK

Biobank,52 we detect small numbers of CNVs in clinically impor-

tant disease genes across the UKBiobank, and rare variant anal-

ysis is not a focus of this study; however, we encourage inter-

ested researchers to make use of these high-resolution CNV

calls (see data and code availability) where it might be possible

to look at modifier effects for rare CNV events.

Copy number variation association testing in the UK
Biobank
For CNV association testing genome-wide in discovery mode,

we made use of both the copy number estimates and CNV calls

generated by CNest and applied standard linear and logistic

regression models using the copy number estimates as CNV

dosage (see STAR Methods), analogous to the common dosage

model of alleles from SNPs. Although the choice of linear models

restricts our signal to sites displaying a linear relationship be-

tween copy number and trait, more sophisticated models that

could have non-linear impacts on phenotypes can be complex

to select and even more complex to analyze the resulting statis-

tics consistently genome-wide. Furthermore, this simple model

is like those most often used in SNP GWAS74 and so is more

easily jointly integrated with SNP discovery. All models were

applied to unrelated samples from the principal-component

analysis (PCA)-defined European cluster (SNP principal compo-

nents [PCs] 1 and 2) and include standard covariates with 10 PCs

derived from both SNP and CNV estimates independently.

We performed CNV association testing for 46 different main

UK Biobank fields, including 30 quantitative and 16 binary traits

across a variety of physiological, lifestyle, and health-related cat-

egories (Table S2). We used diagnostic QQ plots and the associ-

ated genomic inflation statistic to be confident that our model

produced a well-behaved statistical test in which the majority

of the genome fits the expected null hypothesis (Table S2). In to-

tal, after fine mapping to select the most associated probe for

each CNV-phenotype association at a locus (see STAR

Methods) we discovered 646 significant CNV-specific associa-

tions across 34 traits, 24 quantitative and 10 binary (Figure S5).

We also selected all instances of the First Occurrences UK Bio-

bank field that had greater than 500 cases mapping to an ICD10

code (UK Biobank field 1712), resulting in 398 different codes



Figure 2. Copy number association Manhattan plots for four different UK Biobank traits

Exon-level signals are shown in different shades of gray and CNV call level signals in orange and green.

(A–D) Associations for (A) hair color using a linear model, (B) associations for standing height using a linear model, (C) associations for disease coding asthma

using a logistic model, (D) associations for disease coding myocardial infarction using a logistic model.

(E) Zoom locus plot showing chr15 around the OCA2/HERC2 genes for hair color signal.

(F) Zoom locus plot showing chr15 around the ADAMTSL3/UBE2Q2L/GOLGA6L4 genes for standing height signal.

(G) Zoom locus plot showing chr2 around the genes CHROMR, PRKRA, and PJVK for asthma signal.

(H) Zoom locus plot showing chr6 around the LPA gene for myocardial infarction signal.
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that we used as case/control labels for CNV association testing

with logistic regression models. These 398 labels covered 15

broader categories (Table S3), and we obtained significant asso-

ciations for 44 ICD10 codes across 13 broad categories. We

show some specific examples (Figure 2) to illustrate these asso-

ciations and their concordance to previous studies (see Data S1

for a further description).

For most UK Biobank main traits tested, we discovered new

CNV-specific associations (Table S8); for example, for the eye-

related trait corneal hysteresis, we detect robust CNV associa-

tions in exons 15 to 36 of the ANAPC1 gene (Figure S6), in which

sequence variation has been estimated to account for 24% of

corneal endothelial cell density variability;75 and for both corneal
hysteresis and intraocular pressure, we discover exon-level as-

sociations in the important TCF4 gene, which is known to be

involved in several eye disorders, such as Fuchs corneal dystro-

phy76 as well as haploinsufficiency of TCF4 being strongly asso-

ciated with Pitt-Hopkins syndrome.77 Given that the UK Biobank

participants were broadly healthy at recruitment, this association

with eye phenotypes at the TCF4 locus deserves further investi-

gation. For red blood cell-related traits we detect a large number

of associations that have prior evidence of association from SNP

GWAS (Figure S7), such as variation in and around the ABO

gene;78 for lifestyle measures such as alcohol consumption,

we find associations within known genes79 such as NPIPB6;

and for cognitive measures, we also discover CNV association
Cell Genomics 2, 100167, August 10, 2022 5



Figure 3. ICD10 code case/control copy number associations

(A) Combined and overlaid Manhattan plot for CNV associations across 44 ICD10 codes.

(B) Combined QQ plot including all p values from association results across all 44 traits.

(C) Overlaid QQ plots showing all individual QQ plots for the 44 traits.

(D) Plot showing the total number of exons for all ICD10 codes that had any significant signal.

(E) Locus zoom plot at UGT1A genes for ICD10 code E80 (disorders of porphyrin and bilirubin metabolism).

(F) Locus zoom plot at the PRSS1 gene for ICD10 code D50 (iron deficiency anemia).

(G) Locus zoom plot at the SLC2A9 gene for ICD10 code M10 (gout).

(H) Locus zoom plot at the RHD and RHCE genes for ICD10 code O 36 (maternal care for known or suspected fetal problems).

(I) Locus zoom plot at the PNPLA3 gene for ICD10 code K74 (fibrosis and cirrhosis of liver).
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in genes with previous evidence of association from SNP GWAS

testing in the UK Biobank, such as the ARL17B gene in associa-

tion with reaction speed.80

All these CNV discoveries deserve integration with SNP poly-

morphisms and the often well-studied biology around these loci,

and, as described in the ‘‘data and code availability’’ section, we

have made all these results available to the community in a vari-

ety of ways. Here we provide important insight into the type of re-

sults possible to achieve for copy number association testing in

large NGS cohorts bringing CNV GWAS into a similar framework

to SNP-based tests and paving the way for further extensive

studies to investigate the relationship between copy number

and complex traits in humans.

First occurrences ICD10 code CNV associations
To complement the UK Biobank measured and binary traits we

also explore CNV associations to direct healthcare measures,

as represented by the Hospital Episode Statistics (HES)-

captured data on ICD10 codes in the UKBiobank.We performed

CNV association testing using the First Occurrences fields as

case control labels for all codes that had greater than 500 cases

and did not preselect or filter out any case labels, running CNV

association testing across a total of 398 case control labels
6 Cell Genomics 2, 100167, August 10, 2022
(Table S3). Across all 398 codes, we discovered 242 CNV-spe-

cific associations across 44 codes covering 144 unique genes

(Figure 3A). A large fraction (117 out of 242) were located within

the human leukocyte antigen (HLA) super locus at 6q21 between

chromosome positions chr6:30500001 and 46200000, and there

were six traits that had no associations outside of the HLA super

locus, 13 traits that had associations both within and outside of

the HLA, and 25 traits that had associations exclusively outside

of the HLA.

After fine mapping, the majority of ICD10 codes (27 out of 44)

had between one and two significantly associating regions, with

nine ICD10 codes having between three and 10, and eight ICD10

codes having greater than 10 associations. Almost all the asso-

ciation results were well controlled with inflation factors (lambda)

ranging from 0.984 to 1.140, with the exception of ICD10 code

F17, mental and behavioral disorders due to use of tobacco,

which showed mild inflation with a lambda of 1.382 (Figures 3B

and 3C; Table S2). Most fine-mapped regions were small

(Table S9), with a median number of significant exons of three

per fine-mapped region (Figure 3D), with the largest region

involving 52 exons across five different genes in association

with ICD10 code K90: intestinal malabsorption. In total, we de-

tected 242 associations ranging from well-known important
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regions of the genome through to completely novel findings

based on CNVs alone. All association results for the 44 signifi-

cantly associating ICD10 codes are provided in the supple-

mental information. We provide specific examples (Figure 3)

showcasing some of the new CNV associations that we have

made by describing in detail some of the associations discov-

ered across 10 different ICD10 code case control sets (see

Data S2 for a further description).

In summary, we discovered 862 new fine-mapped CNV asso-

ciations across 78 different traits (24 quantitative and 54 binary)

using the 200,000 whole-exome release from the UK Biobank,

the majority of which have either been previously discovered

by SNP GWAS tests or have compelling evidence from other

research areas such as health care, rare disease, or animal

models (supplemental information), but a significant minority

are entirely novel. We were able to detect more associations

on average from quantitative compared with binary traits, with

a median of four associations per quantitative trait compared

with two for binary traits. These new association results and

genome-wide association testing approach for CNV provides

important insights into the contribution of CNV in complex hu-

man traits, which in some cases can have a direct relevance to

health-related outcomes and genetic risk profiles.We encourage

interested readers to pursue the discoveries discussed here and

listed in our supplemental information.

Comparison with recent CNV association studies using
SNP genotyping arrays
There have been some recent studies leveraging the ability of

SNP genotyping arrays to detect CNVs and perform genome-

wide association testing for copy number.56,57 Although the

technology is different and both recent studies used all available

UK Biobank participants (�450,000), we sought to compare the

associations we obtained here against those that could be de-

tected using SNP arrays in the UK Biobank. Overall Auwerx

et al.56 detected 131 new associations across 47 quantitative

traits with a mean size of 715 kb, and Hujoei et al.,57 who addi-

tionally utilized identity by decent (IBD) information into the

CNV detection, found 269 associations across 56 quantitative

traits with amean size of 467 kb compared with 862 associations

across 78 quantitative and binary traits with a mean size of

9,970 bp with CNest using WES (Figures S9A and S9B).

Both recent SNP-based studies only performed GWAS on

quantitative traits including many blood-related measurements

and metabolic traits and there were nine traits overlapping

both SNP array studies and the CNest results, resulting in 57

CNV associations that we could compare (Table S10). To

compare these associations, we remapped all SNP array-based

associations to the latest genome build (GRCh38) and interro-

gated the exome association signals across each site from the

association tests on the same trait (see STAR Methods). In total,

we found that 63% (36 out of 57) of locations could be confirmed

(19 genome-wide and 17 suggestive) across all traits (Fig-

ure S9C), and certain traits (e.g., height and reticulocyte counts)

had higher levels of agreement (Figure S9D). Some signals only

reached suggestive significance levels, and we expect these

would likely increase to genome-wide levels with larger sample

sizes, whereas some regions showed no evidence of association
from CNest association testing (Figures S9E–S9G). We also per-

formed 100 rounds of permutation for each association (see

STAR Methods) showing that the number of suggestive signals

found for each trait was significantly higher (p = 0.018) for the

SNP array-based CNV association regions compared with

random areas of the genome with the same size (Table S11).

This is a robust but by nomeans perfect concordance of CNV as-

sociations from these very different datasets (SNP based and

WES based), different sample sizes, and different detailed

methods (how the association is modeled). As expected, using

WES, CNest results achieved higher resolution, detecting

many smaller associations than both SNP-based studies using

less than half the number of samples, variation exclusively in

coding regions (exons) and the standard additive model most

often applied to SNP GWASs. As all studies were able to find

some unique associations, it may be useful to combine copy

number information from whole-exome and SNP genotyping ar-

rays for future association studies. Furthermore, the SNP array

associations that show no signal from CNest results deserve

further exploration once results are available using the same

samples, traits, and model setups.

Combined CNV- and SNP-based associations in the UK
Biobank
To investigate the relationship between SNP and CNV associa-

tions, we ran SNP-based GWAS tests across six quantitative

traits using the same samples we used for CNV association

testing (see STAR Methods). These six traits were selected to

include a range of signals across different regions of the genome

with differential signal strengths. The intention is to allow a direct

comparison of SNP with CNV association signals across a vari-

ety of human traits. This allowed us to start to explore the under-

lying genome landscape for associations and to classify individ-

ual associations into those that were detectable by SNP and

CNV GWAS independently against those that are specific to

CNVs (see STAR Methods). We classified CNV signals into

CNV only (signals that were detectable by CNV GWAS only),

CNV-allele (signals that were present at the same locus by

both SNP and CNVGWAS but with very little correlation between

them), SNP-CNV near (signals that were detectable by both SNP

and CNV GWAS and where those signals were highly likely to be

assigned to the same gene), and SNP-CNV far (signals that could

be detected by both SNP and CNV GWAS but were highly likely

to be assigned to different genes).

Across 133 fine-mapped CNV association regions, we classi-

fied 17% (23/113) as CNV only, 44% (59 out of 133) as CNV-

allele, 28% (38 out of 133) as SNP-CNV near, and 11% (13 out

of 133) as SNP-CNV far (Table S12). We choose to be strict in

the definition of novel CNV events (CNV only and CNV-allele)

by setting the r2 cutoff relatively low since very strong SNP-

CNV tagging is rare genome-wide. Most exonic signals that

could be well tagged by SNPs were found in regions involving

recurrent CNVs with 68% found in CNV regions present in

greater than 1,854 individuals (1% population frequency). We

consider the SNP-CNV-far, CNV-allele, and CNV-only associa-

tion classes as different types of novel CNV associations,

whereas, for SNP-CNV near, we assume that the signals from

both variant types are likely to be tagging the same functional
Cell Genomics 2, 100167, August 10, 2022 7



Figure 4. Locus zoom plots showing SNP andCNV association results for the different CNV association type classifications for four different

quantitative traits

(A) SNP-CNV near association plot for standing height at ACAN.

(B) SNP-CNV far association plot for FEV/FEC ratio at C4A.

(C) CNV-allele association plot for hair color at HERC2.

(D) CNV-only association plot for chronotype at SPDYE1.
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variant; nevertheless, the CNV association may well provide

functional insight for the locus.

We show one example (Figure 4) and an additional two exam-

ples (Figure S10) for each of the CNV association type classifica-

tions covering a variety of SNP-CNV correlation patterns and dif-

ferential signal strengths using locus zoom-style plots but with

the focal point being the lead exon from the fine-mapped CNV re-

gion. For SNP-CNV-near andSNP-CNV-far classes, we show sig-

nificant association signals for CNVs and SNPs (Figures 4A and

4B) restricted to a single exon of the ACAN gene association to

height and a region includingC4A andC4B genes with an associ-

ation to the FEV/FEC ratio (see Data S3 for a further description).

Next, to investigate which gene-to-trait associations would be

detectable by CNV association testing only, we classified novel

CNV associations as CNV-allele at the OCA2/HERC2 locus,

which is described in detail above. Interestingly, although there

is strong evidence of association, with similar signal strength,

from both CNV- and SNP-based tests atHERC2, there is very lit-

tle correlation between the two variant types (Figure 4C), sug-

gesting that these associations are likely to be operating via

different functional mutations. For the CNV-only class, we

discover a highly specific association to chronotype within the

SPDYE1 gene on chromosome sevenwhere there are no tagging

SNPs and no SNPs associations within 1 Mb (Figure 4D). The

SPDYE1 gene has no previous association to measures of sleep

patterns and very little description of CNVs at this location; how-

ever, a related gene, SPDYE6, has been associated with

insomnia via SNP GWAS in a much larger sample set (1.3 million

samples).81 We also discovered significant CNV-only associa-

tions at SPDYE6 and the directly adjacent region containing

the POLR and SPDYE2B genes, which have been previously

associated with chronotype by SNP GWAS in the UK Biobank.82

Here we provide strong evidence that CNVs at SPDYE1-,

SPDYE6-, and POLR-related genes are associated with a mea-

sure of chronotype in the UK Biobank and may act in a dose-

dependent manner to influence an individual’s sleeping pattern.
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We also present two additional examples of each of the

different CNV association classes (Figure S10), including SNP-

CNV near associations to hair color at the SPG7 gene83 and to

alcohol consumption at a 0.8-Mb region including four fine-map-

ped CNV regions involving the NPIPB6, NPIPB7, NPIPB9, and

SH2B1 genes;79,84–86 SNP-CNV-far classifications for hair color

at the TRIM49C gene and standing height at a fine-mapped re-

gion involving the EVPLL and LGALS9C genes; CNV-allele asso-

ciation types for heel bone density at the WNT16 gene87–90 and

the FEV/FEC ratio at the HTR4 gene91–95; and CNV-only classifi-

cations for the FEV/FEC ratio at the ZDHHC11B gene91 and for

standing height at the CDK11A gene.

Competitive SNP-CNV association models
We performed joint CNV-SNP competitive association models

for standing height and hair color (see STAR Methods) since

these traits include multiple signals genome-wide and have

been extensively studied by previous work.96,97 Across 91

exon-level CNV association signals that had at least one signifi-

cant SNP within 1 Mb around the lead CNV position, we per-

formed eight different models (see STAR Methods). First, we

applied a three-component mixture model to the normalized

copy number estimates (log2 ratio) to define copy number geno-

types (assuming a simple deletion/gain process). Next, we per-

formed joint SNP and CNV competitive models using both the

SNP with the highest signal strength against the same trait, in

the same samples, and the SNP showing the highest r2 against

the lead CNV exon within 1 Mb.

After the denoising of copy number estimates into a three-

component model, the majority of associations (71 out of 91)

showed a lowering of signal with 17 out of 91 sites dropping

below genome-wide significance (Figures 5 A and 5B). For

most sites, the association signal strength was lowered, with a

median �log10 p value reduction of 1.7 for the three-state

model; however, there were 20 out of 91 sites that showed a

marginal improvement in signal strength with a median increase



Figure 5. Competitive models for CNV and SNPs using copy number estimates, copy number genotypes, and joint models including SNP

genotypes from the most highly correlated SNP or the SNP with the highest association signal for the same trait within 1 Mb

(A) Minus log10 p values for four different models: CNest only, copy number estimates only; cnstate only, copy number genotypes (three-component mixture

model) only; CNest-max-snp, joint model with copy number estimates and the SNPwith the highest association signal for the same trait within 1Mb; CNest-max-

r2-snp, joint model with copy number estimates and the most highly correlated SNP within 1 Mb.

(B) Zoomed in view of (A) restricting the x axis to a maximum �log10 p value of 20.

(C–F) SNP genotypes from the most highly correlated SNP against the copy number estimate (log2 ratio) for four individual exon-level association signals, further

details of which are shown in (G)–(J).

(G–J) Finer-grain details for joint models of four exon-level copy number association signals; top panel shows the copy number estimate association signal with

the lead exon highlighted in red, second panel shows the SNP genotypes association signal from SNPGWAS tests in the same samples and trait colored by the r2

of SNP genotypes against the lead exon signal from the copy number GWAS (CN-GWAS), the third panel shows the copy number estimate (log2 ratio) of the lead

exon association from the CN-GWAS fitted using a three-component mixture model to define copy number genotypes, and the fourth panel shows the�log10 p

value from eight different types of association model: cnstate-only, cnstate-only, max-snp-only, max-r2-snp-only, CNest-max-snp, cnstate-max-snp, CNest-

max-r2-snp, and cnstate-max-r2-snp.
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of 0.65, and one site at the GOLGA6L4 gene showing the rela-

tively large increase of seven when using the CNV state

compared with the CNV estimate model. The drop in p values

is to be expected due to the selection of the most associated

exon (winner’s curse phenomenon), but it shows that there are

no large gains to be made by a more categorical model for

discovery.

We show the relationship between copy number estimates and

SNP genotypes (Figures 5C–5F) as well as a finer-grained view of

the difference in association signals when performing eight

different competitive models (Figures 5G–5J). These four exam-

ples range from highly correlated and well-tagged CNVs

(Figures 5C, 5D, 5G, and 5H) to moderately tagged CNV

(Figures 5E and 5I), and finally a poorly tagged CNV (Figures 5F

and 5J). For competitive SNP andCNVmodeling, the simplest hy-

pothesis is that sites that are well tagged and show association to

the same trait are likely to beable to control eachother’s signal in a

pairwise competitive model. Across the 91 sites, including the

SNP with the highest signal strength irrespective of its r2 can fully

control 72% (66 out of 91) of CNV associations (Figures 5A and

5B).When switching the SNP to thosewith the highest r2 irrespec-

tive of association strength, we observe an increased level of con-

trol with 80% (73 out of 91) of CNV signals being reduced below

genome-wide significance. Indeed, the most frequent situation

is that SNPs that can well tag the CNV in aggregate (across all
samples) are best able to control the CNV association signals

within a competitive model, with only two cases where highly

correlated and significant SNPs are unable to fully control the

CNV association (Figures 5G and 5I). As expected for the 18

CNV associations that cannot be fully controlled by either SNP

type, the majority show very little tagging, with 80% of these sites

having amaximum r2 below0.6 for all SNPswithin 1Mb.However,

there are two cases where the main assumption that highly corre-

lated SNPs can control the CNV association does not hold true

(Figures 5G and 5I).

We show four examples of different types of association con-

trol from these competitive models. First, a case where neither

SNP type included in the models can fully correct the CNV esti-

mate signal, where we assume the SNPs are tagging the CNV

(Figure 5G). Next, an example where both SNPs, either the

most significant or the most highly correlated, can fully control

the CNV association signal and we assume that the CNV tags

the more significant SNP (Figure 5H). It is worth noting that the

most significant SNP is found in intron 1 of the DOCK8 gene,

whereas the CNV signal and the tagging SNP are both found in

the neighboring CBWD1 gene, and that both genes have been

found to be associated with the trait (hair color) by previous

SNP GWAS testing.83,96 We also show an example of a CNV as-

sociation where neither SNP can fully control the CNV associa-

tion, but the highest-correlated SNP is able to push the copy
Cell Genomics 2, 100167, August 10, 2022 9
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number state joint model down just below genome-wide signifi-

cance (Figure 5I). The highest signal SNP is found closest to a

different gene upstream of the CNV signal and there are multiple

tagging SNPs surrounding the CNV locus, which we assume all

tag the CNV. Finally, we show an example of a highly significant

CNV association signal that has very little SNP tagging around

the locus and is not able to be controlled by either SNP in the

competitive joint models, supporting our general assumption

that SNPs that cannot well tag nearby CNVs are unlikely to be

able to control any CNV association even if both variant classes

show significant associations to the same trait (Figure 5J).

Here we have shown results from combined SNP and CNV as-

sociation testing across close to 100 significant exon-level CNV

associations. We have shown that the most obvious assumption

that nearby tagging SNPs are often able to control CNV associ-

ations holds true but that more complex situations exist where

aggregate variant correlations are not sufficient to predict the in-

teractions between them in relation to trait association testing.

We have also shown that it is possible to use copy number esti-

mates in a dosage-dependent linear model as a reasonable

proxy for the underlying copy number state distribution, and,

by applying similar methods to the highly successful SNP

GWAS approach, it is possible to discover novel CNV associa-

tions, adding additional supporting evidence for SNP-based trait

association mapping further delineating the underlying genome

architecture and variant interactions for trait associations.

DISCUSSION

In this paper, we present a robust CNV-to-phenotype discovery

process that uses NGS information that is analogous to the tradi-

tional SNP-based GWAS. This paper therefore complements the

long-standing use of CNV in rare disease discovery98 and pro-

vides a higher-resolution view of common CNV than established

SNP array-based methods.21 A key foundation is a robust

normalization procedure that can handle the diversity of DNA

presentation and extraction states in a large cohort. Armed

with this normalized copy number level, we decided to model

the complexity of CNVs in the genome as a linear dosage vari-

able; this model is obviously an approximation to the reality of

structural variation, but it allows consistency of statistical

approach and the same degree of freedom across the genome

between loci, and means that similar covariates, methods, and

diagnostic procedures, with similar expected null model proper-

ties to SNP GWAS, can be used.99 Our resulting linear dosage

model produces well-calibrated statistics for both quantitative

and qualitative traits, where most associations fit the expected

null model. The minority of associations where one can confi-

dently reject the null model at a genome-wide significance level

include many well-known individual CNV associations, with a to-

tal of 862 associations across 78 different human traits.

We have illustrated the large-scale discovery of CNV associa-

tions with 12 examples in the main text and an additional 18 ex-

amples in the supplemental information. The examples vary

from well-established CNV loci (e.g., LPA with heart disease

loci) through partially understood CNV loci (e.g., the UGT1A

gene in porphyrin andbilirubinmetabolism) to very credible asso-

ciations to paralogues with the same phenotype (the RCHE gene
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in pregnancy complications) or credible novel alleles in a gene

with robust association to a phenotype (HERC gene with hair co-

lor). Across most UK Biobank traits that we tested with sufficient

sample size, we obtained strong discovery signals for CNV asso-

ciations genome-wide, and, importantly, all signals were within

exons providing a direct link to genes. Most (82%) of these

fine-mapped association regions contained a single gene and

sometimes single exons; however, when there aremultiple genes

across individual regions it can be hard to determine which gene

is most responsible for the association. One such case is shown

with the association of ICD10 code E80 (disorders of porphyrin

and bilirubin metabolism) to multiple UGT1A genes. Although

these minority of situations can be challenging to interpret, since

we achieve exon resolution within our association tests, it is

possible to rank individual exons (or genes) based on association

signal strength or effect sizes. There are numerous other exam-

ples in the supplemental information, and the full information of

thediscovery processedhere is available both viaUKBiobank re-

turn of results and via the GWAS catalog. Even so, we have cho-

sen only a subset of phenotypes present in the UKBiobank, itself

only one cohort; to enable broader discovery by others, we have

released CNest as an open-source package and provided

portable workflows consistent with GA4GH standards. One of

the central components of the association testing reliability is

the generation of accurate copy number estimates. CNest uses

a dynamic reference approach similar to previouswork onmicro-

arrays and sequence datasets,100–102 selecting an optimized set

of internal samples to use as baseline copy number measures.

We hope to build out more extensive user-friendly tutorials,

including the practical and necessary aspects of QC before dis-

covery. We encourage the community to examine the results

we have presented here and use the software to make more

discoveries.

When comparing our results with other studies into CNV asso-

ciation in theUKBiobank usingWES forCNVdetection and asso-

ciation testing focused on asthma,103 we see good agreement in

association signals for many of the asthma-specific associations

wehave reported in this study.When comparing resultswithCNV

studies usingSNPgenotyping arrays,56,57we canconfirm63%of

previous CNV associations made across nine quantitative traits.

For those associations that were not confirmed by CNest, it is

difficult to know whether these are real false-negatives from the

exome association testing or are due to other technical or model

choices. Some possibilities are that both SNP array-based

studies used more than twice the number of samples, as well

as differences in the type of signal that can be derived from the

two platforms (WES versus SNP) where, for example, there

may be certain exonic baits that are challenging for NGS due to

differences in capture efficiency.104 One other important factor

is, unlike the twoSNParray studies,wedeliberately choose to as-

sume additive effects, allowing us to place our results into a

similar framework most often used in SNP GWAS, and did not

attempt to model any non-linear effects. Nevertheless, we were

able to obtain many more associations and at far higher resolu-

tion during this study, providing strong evidence that many

copy number variable locations throughout the genome do asso-

ciate with both continuous and discrete human traits. Further

research is needed to fully catalogCNVassociations across large
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cohorts such as the UK Biobank and beyond, and there are also

many further interesting methodological questions to address

where it may be useful to integrate information across multiple

platforms for CNV discovery and association testing.

We have shown that it is possible to bring CNV GWASs into a

similar framework as genome-wide SNP tests for trait associa-

tion mapping in large cohorts, opening several new avenues of

investigation into combinedmodeling of CNV association signals

in human traits. We were also able to look at the correlation be-

tween SNP and CNV discoveries by performing association

testing independently and jointly using the same sample sets

and traits. Here it is possible to start to estimate the contribution

that both types of variations have on trait associations in a large

cohort and to gain some insight into the different types of inter-

actions that can occur. As expected, for the CNV associations

with some level of correlation to an SNP, there are complex rela-

tionships between SNPs and CNVs, and most CNVs that can be

well tagged are relatively common in the population. In some

cases, the SNP associations can completely explain the CNV as-

sociation, whereas, in other less frequent situations, the CNV as-

sociation cannot be recapitulated by any SNP. This latter case is

consistent with multiple CNVs arising on different haplotypes,

where the CNV association appropriately aggregates the CNV

information in a way that is far harder to achieve via tagging

SNPs. Even in the cases where the loci are discoverable by

SNP methods, and the SNPs tag the CNV, the large impact of

deletion or expansion of an exon makes CNV an interesting po-

tential functional change.

CNV has long been known as an important aspect of germline

DNA variation, and has long been a key part of rare genetic dis-

ease discovery and diagnosis. The system we have proposed

here, CNest, can robustly find associations of CNVs to common

phenotypes in large cohorts, but we have only started in

providing a full catalog of these results. We encourage the com-

munity to explore the discoveries we have made in this paper, to

use CNest to make more CNV associations in both UK Biobank

and beyond, and to help extend the CNestmethod further to pro-

vide a more comprehensive view of human variation.
Limitations of the study
In this study, we have limited ourselves to associations consis-

tent with a standard additive model that allowed for a more nat-

ural comparison with SNP GWAS results; however, there are

known examples of CNV loci where both deletion or duplication

(and in particular truncating duplications) can have a negative

consequence on human phenotypes.105 In further work, it will

be interesting to expand the CNest framework to include addi-

tional models that can account for non-linear effects (such as

U-shaped distributions or ‘‘mirror models’’), which is very likely

to result in an increase in the number of significant associations

that can be made. Unlike most CNV GWAS studies to date, we

have included association testing across multiple quantitative

and binary traits, discovering many new associations across a

large range of phenotypic measures. Similar to SNP GWAS,106

wewere able to discovermore associations for quantitative traits

compared with disease-related binary codes; however, we did

make several discoveries related to human disease code, high-
lighting that certain genomic regions could contribute to disease

progression in a dose-dependent additive manner.

The ability to jointly model SNPs and CNVs in the same frame-

work will more easily allow for integration of these two types of

variation. An obvious extension is to polygenic risk scores

(PRSs) for traits, where the linear model for CNVs naturally fits

with the additive linear SNP loci in a PRS.107 However, care

needs to be taken over ascertainment and modeling for PRSs,

in particular for certain traits such as blood-based cancers where

the normalization procedures we have employed for CNV asso-

ciation might not be robust enough to distinguish germline from

somatic changes in cancer risk. Importantly, this means care

needs to be taken about the time of blood sample compared

with the onset of diseases in constructing such PRSs. Another

extension will be using these linear variables as instrumental var-

iables in Mendelian randomization techniques to understand

causality between physiological processes and often disease

outcomes.108 A similar concern on normalization techniques

needs to be considered, along with careful consideration of the

assumptions behind any instrumental analysis.
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D., Mägi, R., Estonian Biobank Research Team; Porcu, E., Reymond, A.,

et al. (2022). The individual and global impact of copy-number variants on

complex human traits. Am. J. Hum. Genet. 109, 647–668.

57. Hujoel, M.L.A., Sherman, M.A., Barton, A.R., Mukamel, R.E., Sankaran,

V.G., and Loh, P.-R. (2021). Influences of rare copy number variation

on human complex traits. Preprint at bioRxiv. https://doi.org/10.1101/

2021.10.21.465308.

58. Fu, W., Zhang, F., Wang, Y., Gu, X., and Jin, L. (2010). Identification of

copy number variation hotspots in human populations. Am. J. Hum.

Genet. 87, 494–504.

59. Brandler, W.M., Antaki, D., Gujral, M., Noor, A., Rosanio, G., Chapman,

T.R., Barrera, D.J., Lin, G.N., Malhotra, D., Watts, A.C., et al. (2016). Fre-

quency and complexity of de novo structural mutation in autism. Am. J.

Hum. Genet. 98, 667–679.

60. Belyeu, J.R., Brand, H., Wang, H., Zhao, X., Pedersen, B.S., Feusier, J.,

Gupta, M., Nicholas, T.J., Brown, J., Baird, L., et al. (2021). De novo

structural mutation rates and gamete-of-origin biases revealed through

genome sequencing of 2, 396 families. Am. J. Hum. Genet. 108, 597–607.
Cell Genomics 2, 100167, August 10, 2022 13

http://refhub.elsevier.com/S2666-979X(22)00109-4/sref30
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref30
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref30
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref31
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref31
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref31
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref31
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref31
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref32
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref32
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref32
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref32
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref32
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref33
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref33
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref33
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref33
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref34
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref34
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref34
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref34
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref34
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref35
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref35
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref35
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref36
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref36
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref36
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref36
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref36
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref37
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref37
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref37
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref37
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref37
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref38
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref38
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref38
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref38
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref38
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref39
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref39
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref39
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref39
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref40
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref40
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref40
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref40
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref41
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref41
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref41
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref41
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref42
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref42
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref42
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref42
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref43
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref43
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref43
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref43
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref44
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref44
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref44
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref44
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref45
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref45
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref45
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref46
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref46
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref46
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref46
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref46
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref47
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref47
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref48
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref48
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref48
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref48
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref49
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref49
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref49
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref49
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref49
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref50
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref50
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref50
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref51
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref51
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref51
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref51
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref51
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref52
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref52
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref52
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref52
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref53
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref53
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref53
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref53
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref54
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref54
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref54
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref54
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref54
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref55
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref55
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref55
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref55
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref56
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref56
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref56
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref56
https://doi.org/10.1101/2021.10.21.465308
https://doi.org/10.1101/2021.10.21.465308
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref58
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref58
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref58
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref59
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref59
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref59
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref59
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref60
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref60
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref60
http://refhub.elsevier.com/S2666-979X(22)00109-4/sref60


Please cite this article in press as: Fitzgerald and Birney, CNest: A novel copy number association discovery method uncovers 862 new associations
from 200,629 whole-exome sequence datasets in the UK Biobank, Cell Genomics (2022), https://doi.org/10.1016/j.xgen.2022.100167

Article
ll

OPEN ACCESS
61. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J.,

Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). UK biobank:

an open access resource for identifying the causes of a wide range of

complex diseases of middle and old age. PLoS Med. 12, e1001779.

62. Torjesen, I. (2013). Genomes of 100, 000 people will be sequenced to

create an open access research resource. BMJ 347, f6690.

63. Astle, W.J., Elding, H., Jiang, T., Allen, D., Ruklisa, D., Mann, A.L., Mead,

D., Bouman, H., Riveros-Mckay, F., Kostadima, M.A., et al. (2016). The

allelic landscape of human blood cell trait variation and links to common

complex disease. Cell 167, 1415–1429.e19.

64. Birney, E., Vamathevan, J., and Goodhand, P. (2017). Genomics in

Healthcare: GA4GH Looks to 2022. Preprint at bioRxiv. https://doi.org/

10.1101/203554.

65. Nielsen, J., and Wohlert, M. (1990). Sex chromosome abnormalities

found among 34, 910 newborn children: results from a 13-year incidence

study in Arhus, Denmark. Birth Defects Orig. Birth Defects Orig. Artic.

Ser. 26, 209–223.

66. Tuke, M.A., Ruth, K.S., Wood, A.R., Beaumont, R.N., Tyrrell, J., Jones,

S.E., Yaghootkar, H., Turner, C.L.S., Donohoe, M.E., Brooke, A.M.,

et al. (2019). Mosaic Turner syndrome shows reduced penetrance in an

adult population study. Genet. Med. 21, 877–886.

67. Wang, S., Mandell, J.D., Kumar, Y., Sun, N., Morris, M.T., Arbelaez, J.,

Nasello, C., Dong, S., Duhn, C., Zhao, X., et al. (2018). De novo sequence

and copy number variants are strongly associated with tourette disorder

and implicate cell polarity in pathogenesis. Cell Rep. 25, 3544.

68. Abyzov, A., Urban, A.E., Snyder, M., and Gerstein, M. (2011). CNVnator:

an approach to discover, genotype, and characterize typical and atypical

CNVs from family and population genome sequencing. Genome Res. 21,

974–984.

69. Chen, Y., Zhao, L., Wang, Y., Cao, M., Gelowani, V., Xu, M., Agrawal,

S.A., Li, Y., Daiger, S.P., Gibbs, R., et al. (2017). SeqCNV: a novel method

for identification of copy number variations in targeted next-generation

sequencing data. BMC Bioinf. 18, 147.

70. Krumm, N., Sudmant, P.H., Ko, A., O’Roak, B.J., Malig, M., Coe, B.P.,

NHLBI Exome Sequencing Project; Quinlan, A.R., Nickerson, D.A., and

Eichler, E.E. (2012). Copy number variation detection and genotyping

from exome sequence data. Genome Res. 22, 1525–1532.

71. Tsuang, D.W., Millard, S.P., Ely, B., Chi, P., Wang, K., Raskind, W.H.,

Kim, S., Brkanac, Z., and Yu, C.-E. (2010). The effect of algorithms on

copy number variant detection. PLoS One 5, e14456.

72. Uddin, M., Thiruvahindrapuram, B.,Walker, S.,Wang, Z., Hu, P., Lamour-

eux, S., Wei, J., MacDonald, J.R., Pellecchia, G., Lu, C., et al. (2015). A

high-resolution copy-number variation resource for clinical and popula-

tion genetics. Genet. Med. 17, 747–752.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK BioBank Whole Exome Sequence (200,000 release) UK BioBank Data field: 23143

GWAS Catalogue summary statistics ftp://ftp.ebi.ac.

uk/pub/databases/gwas/summary_statistics/

GCST90103001-GCST90104000/GCST90103348

GWAS Catalogue (master

summary stats file)

Project: GCP000324

UK BioBank Data returns (to be

submitted on publication)

UK BioBank Application: 49978

Software and algorithms

CNest: https://github.com/tf2/CNest GitHub 3c2b94a

CNest: https://app.terra.bio/#workspaces/

ga4gh-cnest-test/cnest-terra

Terra Bio NA

CNest: https://hub.docker.com/repository/

docker/tomas81/cnest

Docker Hub tomas81/cnest:dev

CNest: https://zenodo.org/record/6770130#.

YsLe6-zMJMM

Zenodo https://doi.org/10.5281/zenodo.6770130

ViteRbi: https://zenodo.org/record/6794409#.

YsLliuzMJMM

Zenodo https://doi.org/10.5281/zenodo.6794409

Examples of association tests and plotting

CNest results: https://zenodo.org/record/

6806357#.YsavNuzMJMM

Zenodo https://doi.org/10.5281/zenodo.6806357
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Tomas Fitzgerald

(tomas@ebi.ac.uk).

Materials availability
CNV GWAS summary statistics and fine mapped association regions are included in the supplementary material of this paper.

All association results, including all sites tested irrespective of association signal strength, have been submitted to the GWAS cata-

logue and are available for download under the project ID: GCP000324.

CNV calls and copy number estimates will be made available via the UK BioBank data return and linked to UK Biobank application

number: 49978.

Data and code availability
The main CNest code base and docker setup can be found here: https://github.com/tf2/CNest

This repository contains all the source code and a docker setup as well as a link to a NextFlow workflow. There is a WDL workflow

featured inside the Terra platform along with example datasets and a tutorial for getting CNest up and running across a diverse set of

computational infrastructure including cloud based systems (https://app.terra.bio/#workspaces/ga4gh-cnest-test/cnest-terra). This

tutorial and the additional workflow implementations is linked to from the CNest main repository. All code has been deposited at Zen-

odo and can be found at the following links, https://zenodo.org/record/6770130#.YsLe6-zMJMM, https://zenodo.org/record/

6794409#.YsLliuzMJMM and https://zenodo.org/record/6806357#.YsavNuzMJMM.

METHOD DETAILS

Sample cohort and phenotypes
For this study, we used 200,624Whole Exome Sequencing datasets from the UKBiobank 200k release generated using the IDT xGen

Exome Research Panel v1.0 including supplemental probes and sequenced with dual-indexed 75 3 75 bp paired-end reads on the

Illumina NovaSeq 6000 platform using S2 and S4 flow cells109.We used the aligned CRAM files from the OQFE pipeline which aligned
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and duplicate-marked all raw sequencing data (FASTQs) against the full GRCh38 reference in an alt-aware manner as described in

the original FEmanuscript110. These aligned sequence datasets were used as the primary input in the CNest pipeline (details below)

for exome-wide copy number estimation and CNV calling. Phenotypes were extracted and linked to the copy number data under UK

Biobank application number 49978, resulting in a total of 78 different traits (24 quantitative and 54 binary) that we tested for CNV as-

sociation (Tables S2).

Genetic data processing and copy number estimation
We used CNest (full source code available: https://github.com/tf2/CNest.git) to carry out large scale copy number estimation in the

UK Biobank 200k WES release. This program was designed to provide accurate copy number estimation from very large NGS (WES

and WGS) datasets. The first required step is to extract read coverage information for all genomic locations of interest, to do this

CNest makes use of the samtools and htslib libraries111 implementing a custom coverage extraction method that importantly filters

reads based on several samtools alignment flags. The main flags of interest are BAM_FPROPER_PAIR, BAM_FDUP and

BAM_FSECONDARY where we ensure that aligned reads have a MAPQ greater than 1, are primary alignments with proper pairs

and are not PCR duplicates.

After extraction of coverage information, the first important step is to classify the sex of each sample based on the relative coverage

on chromosome X. Here CNest implements a simple k-means clustering for the initial classification and quality control steps. This

initial step results in the classification of two states relating to 2 or more and 1 or less copies of chromosome X (although less

than 1 copy of chromosome X is biologically incompatible there can be data quality issues to account for when processing large vol-

umes of data). CNest also implements a prototype automated classification to detect sex chromosome auniopoly which is based on

the ‘abberant’ cluster112 however we highly recommend that the sex classification in checked by a human before moving onto the

next steps. This is because all datasets are different and will contain a variety of sex classification types (Figure 1A), as standard

across large numbers of samples we observe 3 types of sex chromosome dosage exclusion types and classify samples into either

male or female, or ambiguous low, ambiguous mid, ambiguous high. All samples that are not classified as either male or female are

removed from the subsequent steps.

The next step is to derive sample specific dynamic reference datasets, briefly, CNest uses an optimisation process to select groups

of appropriate datasets to make up individual references (or baseline) estimates across the genome for each sample individually,

similar approaches have been proposed and successfully applied to derive copy number estimates from coverage level data.

One such approach can be found within the virtual reference genome (VRG) approach from the C-SCORE method100. It is worth

noting that by using this type of approach it is impossible to directly obtain the true copy number at any genome location, rather

it allows the optimisation of relative copy number estimates that are often (particularly if the reference set size is sufficiently large)

likely to be a good reflection of the underlying copy number state distribution.

During its baseline reference selection processes CNest estimates the overall correlation of coverage information between all sam-

ples, applies a wavelet model for estimating the scale of genomic waves, and implements a dose response optimisation using sex

mismatched samples and the expected single copy dosage change. This process has been designed to be extremely efficient across

very large numbers of samples and results in a ranked list of which samples are most correlated in terms of certain coverage patterns

and noise characteristics which are assumed to be the ideal set of samples to generate the baseline estimate. The only parameter

needed to be decided on at this stage is the total number of datasets to use to generate the dynamic references, for the UK Biobank

200K release we elected to use 2,000 sampleswithin each of the�200K dynamic reference datasets. Although it may, in some cases,

be preferable to allow the dynamic reference sets to be made up of different numbers of individual samples (which is possible using

CNest) we decided to fix this number across all datasets as we wanted to minimise any potential biases within the resulting copy

number estimates that could be introduced due to using differentially sized reference datasets.

Following the dynamic reference selection process, the median coverage for all genomic locations across all relevant reference da-

tasets is calculated for each sample individually formatched,mismatched, andmixed sex classifications. These data values are stored

in the custom CNest binary format to allow fast random access across the genome and across different sample sets. Finally, the

coverage information and reference estimates are transformed into the log2 ratio space and median normalised using the median

log2 ratio excluding sex chromosomes for sex matched, mismatched, and mixed estimates. These estimates are again saved

back into the CNest binary file format to allow efficient extraction during the next steps of CNV detection and CNV GWAS testing.

For CNV calling CNest implements a single custom designed 3 state Hidden Markov Model (HMM) to call losses and gains, the

basic implementation of which can be found (https://github.com/tf2/ViteRbi). In our hands this HMM model has been highly reliable

across a number of different detection applications, and it is extremely efficient in terms of speed andmemory usage.We apply a few

important steps during the HMM training (using the EM algorithm) to further improve the reliability of the model. Primarily these

include training the model independently for each sample by using all the log2 ratio estimates of all samples that made up the dy-

namic reference for that particular sample. By doing this we aim to increase the accuracy of the transition probabilities by giving

the EM algorithm sight of large numbers of highly similar datasets. Importantly the log2 ratio estimates that we use during this training

phase are those generated using the sex mismatched dynamic reference, ensuring that there is always at least one large single copy

number loss/gain event present in all training datasets. Having trained the HMM for each sample independently using this approach

we apply the forward backward Viterbi algorithm to call the most likely sequence of state paths across each sample independently.

The result of this process is the state calls (0,1,2) for every genomic position of interest across all samples, we then apply some
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merging criteria to obtain both state classification and CNV regions (CNVR) across the genome. In fact, although CNV callers will

often impose some complex merging criteria to account for outlier points within each called CNVR (e.g. by allowing a certain number

of outlier copy number estimates within a CNVR) we are so confident in the performance of the HMM that we simply merge consec-

utive state calls without any additional complex merging rules. As illustrated in Figure S4, this process does not result in over frag-

mentation of CNV regions.

CNV merging, frequency estimation and copy number principal component analysis
Having obtained reliable copy number estimates and CNV calls across all samples we apply some cross sample merging criteria to

allow us to generate merged copy number events (CNVEs) with frequency information attached. To do this we merge losses and

gains separately across all samples using an iterative 50% reciprocal overlap rule, building up sets of CNVRs across all samples

where all member segments (calls) within each set must share at least 50% of its boundaries (start and end positions) with at least

one other segment within the set. Once we obtain full closure of the set, when no additional segment can be added to the set, we

adjust the final start and end position by 80% of the inner to outer start and end positions. Finally, we calculate loss, gain and overall

CNV frequency and standard errors for eachCNVE resulting in a set of CNV regions across the genomewith frequency estimates that

can be used in some of the subsequent analyses (e.g. PCA and Association testing).

On top of the frequency estimate for all merged CNVEs we also assign frequencymeasures to individual bait regions where we can

calculate the frequency that each bait is included within any copy number event. This gives us two different sets of CNV type and

frequency datasets that can be used to perform principal component analysis (PCA) across the sample space. PCA is often used

in SNP GWAS to control for population structure and other technical (or sample level) variation that is less well understood but

that is important to control for during genome wide association scans. Similarly, it is important to correct for larger scale differences

between copy number estimates across large datasets for CNVGWAS analysis. Often during SNP based PCA the sites get filtered or

subsampled to allow efficient PCA to be performed, for CNV analysis it seems important that we can run PCA analysis using both

commonly variable CNV regions and rare regions separately. This is due to an observation that when including all CNV sites in

PCA, the commonly variable positions tend to suck out a lot of variation and get overrepresented in the first PCs. We used iterative

PCA to perform several different types of PCA using both bait level andCNV call level copy number information stratified by frequency

estimates. Overall, we find that PCA based on commonly variable positions are better able to capture sample level information such

as population structure, whereas PCA based on rare regions can account for cryptic sample differences which are likely due to

certain noise properties of the data that we were unable to accurately model during the previous steps.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genetic association testing
One major point of the CNest methods and approach is that by working with copy numbers in this way we have been able to employ

genetic association testing methods like the SNP based GWASmethods that have been applied with great success over many years.

ForCNVwecanuseseveraldifferentestimate types toperform largescalegenomewideassociation tests.Although itwouldbepossible

todevelopmethods for copynumbergenotyping (i.e. actual copynumber states)due to thewaywehavesetupour largescaleapproach

we are not able to accurately determine the real copy number of any individual genome position. Rather we havewell calibrated relative

copy number estimates across large numbers of samples that can be used to search for associations against any given traits.

We set our models up in a few different ways but always (in this study) by using standard linear and logistic regression techniques,

although this choice is potentially suboptimal (Discussion) this was done deliberately to ensure that any CNV association signals

follow the general additive model (where the copy number estimate must display a linear relationship against the given trait). All

models were applied to unrelated samples from the PCA-defined European cluster (SNP PCs 1 and 2). For quantitative traits we

use generalised linear models with covariates and use both the bait level copy number estimate (log2 ratio) and the copy number

estimate (mean log2 ratio) for all merged CNVEs across all samples as the test variables. The standard set of covariates we include

are sex, age, sequencing batch, the first 10 PC from SNP based PCA and the first 10 PCs from CNV PCA for both rare and common

sites separately. Additionally, to ensure that outliers in the phenotype distribution do not impact our association tests, for all quan-

titative traits we apply an inverse rank normalisation.

For SNP based association tests in exactly the same sample sets we used bgenie113 for quantitative and regenie for binary case

control trait tests106. Imputed SNP genotypes from the 500K UK Biobank release113 were remapped to genome build hg38 using the

UCSC liftover tool114 prior to sample selection based on the 162,633 samples that were used in the CNV association tests. In both

cases, for quantitative and qualitative tests, we followed the standard SNP filtering recommendations, including only bi-alleilc SNPs

with a minor allele frequency greater than 1%. Association tests were run across the main traits of interest and the genome wide sig-

nificance cut-off of 5e-08 was used to define associations between SNPs and traits.

Definition of the association significance threshold
To justify the use of the widely accepted genome wide significance threshold of 5e-08 for significance testing in this work we looked

at how our results would change when using three different p value correction approaches. We assessed the use of a stringent Bon-

ferroni correction, the Benjamini Hochberg (BH) false discovery rate (FDR) based approach and permutation tests.
e3 Cell Genomics 2, 100167, August 10, 2022



Please cite this article in press as: Fitzgerald and Birney, CNest: A novel copy number association discovery method uncovers 862 new associations
from 200,629 whole-exome sequence datasets in the UK Biobank, Cell Genomics (2022), https://doi.org/10.1016/j.xgen.2022.100167

Article
ll

OPEN ACCESS
Overall, applying the stringent Bonferroni correction only slightly lowered the significance threshold to a value of 3.35e-08 and had

very little effect on the number of significant exon level associations for most tests (Figure S11) with a median decrease of 0 (mean

decrease of 1.19 andmaximumdecrease of 21) across all traits. However, applying this stringent correction did result in the exclusion

of 0.5% (45/862) fine mapped regions across 18 of the 78 traits tested, after correction only 0.5% (4/78) of those traits had zero re-

maining significant associations at the specific loci since each of these 4 traits only had a single low level exon signal. Next, we

applied a 0.01 FDR based BH correction to each association result independently, again we observed highly consistent results

for most traits with a median increase of 1 significant exon signal across all traits (Figure S11B). For the majority of traits, the BH

correction resulted in less stringent thresholds than both the genome wide and Bonferroni approaches (Figure S11C), and in most

cases resulted in either the same (28 traits) or increased (40 traits) numbers of exon level signals that would be defined as significant.

For some traits (8/78) the number of additional significant associations for the BH correction was substantially higher (greater than

100 additional exonic signals) suggesting that there could be some value in applying an FDR based correction. Finally, we performed

100 rounds of permutations on 4 main traits (hair colour, height, MI and Asthma) where we randomly ordered the phenotype mea-

surements or case labels and ran our standard linear or logistic regressions models across 100 different random sets for all 4 traits.

In all cases after 100 rounds of permutations there were zero signals that passed a genome wide threshold of 5e-08 (Figure S12)

indicating that this value is suitable for use in the definition of copy number associations.

Although it may be possible to use a less stringent threshold (such as BH or permutation based) and to obtain a greater number of

copy number based trait association, we preferred to remain highly stringent. Copy number associations often display a similar as-

sociation pattern to SNP GWAS tests genome wide where close by exon signals are highly correlated and associate to the same trait

(LD peaks) and the use of the 5e-08 significance value had the additional benefit of allowing us to apply the same definition of sig-

nificance for both SNP and CNV based association tests.

Identifying associated genetic loci and fine mapping
We have developed a set of tools that build on top of the CNest framework to allow large-scale genome wide association testing for

CNVs - CNwas. These tools perform several of the important steps described above - namely CNV merge, PCA and GWAS testing

using regression models. Since we have placed CNVGWAS analysis into a similar framework to that often used for SNPGWAS anal-

ysis we can make use of standard approaches for genetic loci detection and quality control. Firstly, we use the accepted genome

wide significance threshold of 5e-08 to define associations between copy number and traits, although in this case we could theoret-

ically lower this cut-off by using, for example, an FDR or permutation approach we preferred to remain highly stringent for the results

we describe in this work (see definition of significance threshold). It also now becomes possible to use standard diagnostic ap-

proaches to association results, such as QQ plots and permutation. We apply these standard approaches to the CNV association

results described here and see that in general the distributions of p values from our association tests are well controlled. For

some tests we do see a degree of inflation and calculate the inflation factor - lambda - for all tests (Table S2), overall for the majority

of tests we get inflation factors below 1.13 which is generally considered to be acceptable in GWAS tests115 and for cases where the

inflation factor is above 1.13 we suggest that a level of caution is used when interpreting these results.

We did not perform fine mapping of SNP based association signals as it is not a focus of this work to provide SNP based GWAS

results, however we did fine map CNV signals to define fine mapped regions of CNV association that we report (GWAS catalogue)

and that we could use for investigation into CNV compared to SNP level signals during the next steps. Because our genomic test loci

are, by definition, in coding regions of the genome we choose to use a relatively simple approach for fine mapping CNV associations

in a gene/exon centric way. First, we merged all directly adjacent significant signals that had no intervening signal below the signif-

icance threshold, next we merged all significant signals that were found in the same gene(s). This resulted in a fine mapped list of

significant copy number regions that can contain a single exon, multiple exons within a gene or multiple exons across multiple genes,

to be clear these regions do not always contain the full coding region of the gene however any intervening not significant signals be-

tween two significant signals within the same gene are merged as that intervening region is assumed to be important for the under-

lying CNVs. For reporting purposes, the -log10 p value is reported for the lead exon signal within each fine mapped region and tests

for correlation between SNP and CNV signals in the next section are always performed in relation to the lead CNV signal for each fine

mapped region.

Comparison between SNP and CNV association signals
One question that wewanted to address with this work is that of howSNP andCNV associations for the same traits interact with each

other and howmany of the CNV specific association results would have been detectable using standard SNPGWAS tests. To explore

this we defined a set of classification rules to allow us to classify each fine mapped CNV region as either, CNV-only (not detectable

using SNPGWAS), CNV-alelle (detectable signal from SNP-GWAS but very hard to discover using tagging variation), SNP-CNV-near

(detectable by SNP GWAS and very likely to be fine mapped to the same gene), SNP-CNV-far (detectable by SNP GWAS however

likely to be mapped to a different gene).

First, we calculated r^2 between the lead CNV signal and all SNP genotypes within 1 MB. For the CNV-only type, if no significant

SNP signal within 1MB was closest to the gene from the lead CNV signal, irrespective of the r^2 value, the fine-mapped region was

classified as CNV-only i.e. not detectable by standard SNP GWAS. Regions are classified as CNV-allele if there were significant SNP

associations closest to the gene but if none of those SNP had an r^2 greater than 0.6 i.e. association is detectable by both SNP and
Cell Genomics 2, 100167, August 10, 2022 e4
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CNVGWASbut are not tagging. Next, if any significant SNPwithin 1MBdid have an r^2 greater than 0.6 and if any of those SNPswere

closest to the gene(s) inside the fine mapped CNV region than the region was classified as SNP-CNV-near i.e. the association signal

was taggable by a SNP that associated with the same trait and was highly likely to be assigned to the same gene. Finally, if there were

significant SNPs within 1MB that have an r^2 greater than 0.6 but if all those SNPs were closer to a gene that was not within the fine-

mapped CNV region then we classify these as SNP-CNV-far. It is worth noting that we set our SNP to CNV r^2 cut-off quite low at a

value of 0.6, this is because genome wide we observe relatively low r^2 between SNPs and CNVs and although there are numerous

cases of verywell taggedCNVs (r^2 > 0.9) for these results we decided to be strict with the definition of novel CNV associationsmean-

ing that when we classify an associated fine-mapped CNV region as CNV-only we can be very confident that it is not well tagged

by any associating SNP within 1 MB and this results in an overall decrease in the number of CNV associations that we classify as

CNV-only.

Competitive SNP-CNV association models
To look in greater detail at the relationship between SNP and CNV association interactions we performed some joint modelling of two

different copy number estimates, log2 ratios and approximated copy number state distributions, by including either the SNP geno-

types from the most significant SNP association or the best tagging SNP (highest r^2 values to the lead CNV association) within 1MB

around the CNV association location as covariates within a standard linear model. First we selected 91 single exon associations

across 2 traits (hair colour and standing height) and extracted the log2 ratio values across all UK Biobank samples included in the

association testing and fitted a 3 component mixture model to define the approximate copy number states boundaries, the decision

to use a 3 component was twofold, firstly it was to avoid complications in the definition of the number of actual copy number states

observed across the 91 sites that would be highly likely to cause problems during mixture model fits and secondly it was to place the

copy number state models into a similar categorical distribution to the SNP genotype models. Each sample was assigned a copy

number state based on its most likely component from the mixture model and additionally we did not allow any sample to cross

the mean of any adjacent component resulting in a 3-state copy number model relating to low, medium, and high copy numbers.

Next, we fitted 8 different types of models across all 91 sites where we tested all variant classes independently and additionally

included both SNP types (most significant association and best tagging SNP within 1MB around the CNV association) in pairwise

competitive linear models for the copy number estimate and copy number state distributions. We extracted both p values and

beta effect sizes from each variant type from all the eight different models and carried out a comparison of signal strength across

the different models, allowing us to look in more detail at the relationship and interactions between SNP and CNV associations using

close to one hundred CNV association discoveries.

Comparison to previous CNV association studies using SNP genotyping arrays
We obtained all reported CNV association signals from two previous studies56,57 that were performed using CNVs detected in the full

UKK SNP genotyping cohort. First, we remapped these association loci to the latest genome build (GCRh38) using the UCSC liftover

tool116 withmost regions being successfully lifted over (258 / 269 forHujoei et al.57 and 114/132 forAuwerx et al.56). Next, we selected

all associations that were made against a trait that overlapped any traits from the CNest results, both studies only tested quantitative

traits and we were able to find 9 overlapping traits resulting in 57 CNV associations that we could compare. With these remapped

positions and traits, we then interrogated all CNest association signals from the same trait across each region independently and

defined the regions as being genome-wide significant if any signal passed the 5e-08 threshold and suggestive if any signal passed

the 1e-05 threshold. Although in some cases it may be possible to redefine the critical region within these association loci due to the

higher resolution of the exome data, we did not attempt to resolve any region since we did not have access to the raw copy number

SNP signals underlying each associated region. Additionally, we performed one hundred rounds of permutation on each of the as-

sociation regions separately, randomly selecting a region of the genome with the same size and counted the number of times any

signal passed either the genomewide or suggestive threshold showing that these regions are strongly enriched for suggestive signals

(Table S11).
e5 Cell Genomics 2, 100167, August 10, 2022
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Supplementary Figure 1: CNest flow diagram showing the main steps performed by CNest for CNV detection 
and association testing using next generation sequence data – relating to STAR methods (CNest methods). All 
processes are contained inside the CNest docker and available as workflows in several workflow languages 
(WDL, Nextflow and shell scripts). The primary input into CNest are aligned sequence files in CRAM or BAM 
format (and these associated index files). Th workflows run in a number of different ways, where, for example, 
the WDL workflow runs from start to finish in a single end to end process. Starting from aligned CRAM or BAM 
files and a target index file specifying the genomic regions to estimate copy number at, CNest via its WDL 
workflow will run all the individual steps required resulting in, sex classification, sample level CNV calls, merged 
and annotated CNV events, sample and target level QC files and CNV based PCA results. Next, for association 
testing via CNwas, a few important decisions need to be made relating to the level of sample and target QC to 
apply and the covariates to include within the association testing framework (these can be specific to the cohort 
although we provide some recommended default values). To perform the association testing CNwas needs a few 
inputs, primarily the output from CNest, copy number estimate in a custom, highly efficient binary format, a 
sample file including sample identifiers, phenotypes to test and covariates, the target (“bait”) design file and the 
merged CNVEs from CNest. CNwas operates under the same paradigm as tools such as “plink” or “begenie” 
using 3 primary input file types relating to sample, design and genotype information (“.fam”, “.bim” and “.bed” 
style formats). The type of test to perform (linear or logistic) needs to be specified and the process can be split 
into multiple jobs by specifying a chunking parameter. The result will be target level and CNVE level association 
results across all traits included in the sample file, which can then be fine mapped using a secondary process.  
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Supplementary Figure 2: CNV call summary information across ~200K UK Biobank Whole Exome sequences 
– relating to Figure 1. A: The distribution of the number of CNVs called (deletions in orange and duplications in 
blue) per sample. B: The log10 of the number of base pairs per CNV call against the total proportion of CNV 
calls (all calls in grey, deletions in orange and duplications in blue) greater than that size. C: The number of 
Segmental Duplications per chromosome (GRCh38) against the total number of CNV calls per chromosome (all 
calls in grey, deletions in orange and duplications in blue). D: The distribution of a genomic wave estimate (IQR 
of a running median across sample level log2 ratio distributions, using a span of 401 data points) separated 
across the range of the number of CNV call made per sample between zero and 100 in intervals of 5 CNV calls 
(deletions in orange and duplications in blue). 
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Supplementary Figure 3: Examples of the log2 ratio values for 4 different samples across the range of genomic 
wave estimates based on the interquartile range (IQR) of a running median using a 401 data point span scaled 
by a scaling factor – relating to Figure 1. Upper left: An example of extreme wave characteristics with a wave 
estimate of 2.1. Upper right: Example of a moderate wave level with a wave estimate of 1.5. Lower left: Example 
of a mild wave level with a wave estimate of 1.0. Lower right: Example of a sample showing very low level of 
wave characteristic with a wave estimate of 0.5 Note: wave estimates of 0.5 is where the majority of the CNest 
normalised sample level log2 ratio copy number estimate in the 200K UK Biobank Whole exome sequence are 
centred around (see Supplementary Figure S2D, CNV call summary information, CNV calls). 
 
 
 
 
 
 
 



Supplementary Figure 4: Individual CNV calls and copy number variable locations in the UK Biobank – relating 
to Figure 1. A: Barplot showing the number of CNV calls overlapping any of 218 monoallelic loss of function 
genes from the DDG2P (dd gene to phenotype). B: Truncating duplication at the PAX2 gene. C: Truncating 
duplication at the PIEZO2 gene. D: Deletion at the SIM1 gene. E: Deletion at the CREBBP gene. F: Deletion 
locus at 11q12.1. G: Duplication locus at 6q27. H: Deletion / duplication locus at 16p11.2. I: Multi-allelic locus 
at 11q12.2. J: Complex locus at 17q21.31. 

 



 

 

Supplementary Figure 5: Individual manhattan plots for 30 of the 34 main traits for CNV association in the UK 
Biobank 200K whole exomes – relating to Figure 2. All plots are pinned to a maximum -log10 p-value of less than 
30, meaning that all stronger association signals are not shown but this significantly aids the visualisation across 
all traits. We exclude 4 traits, showing only right eyes for eye related traits and only red blood cell counts for red 
blood cell related traits. All the 30 panels have a title showing the trait and all include both p-values from exon 
level (copy number estimates) trait association testing (grey) and CNV call (“genotype”) association testing 
(green and orange). 

 

 



 

Supplementary Figure 6: CNV association results for the eye related traits, Corneal hysteresis and Intra-ocular 
pressure for left and right eyes separately – relating to Figure 2. A: QQ plot for Corneal hysteresis in right eyes. 
B: QQ plot for Corneal hysteresis in left eyes. C: QQ plot for Intra-ocular pressure in right eyes. D: QQ plot for 
Intra-ocular pressure in left eyes. E: Bidirectional manhattan plot for Corneal hysteresis in right (top) and left 
(bottom) eyes. F: Bidirectional manhattan plot for Intra-ocular pressure in right (top) and left (bottom) eyes. G: 
Locus zoom plot of right eye Corneal hysteresis at the ANAPC1 gene. H: Locus zoom plot of right eye Intra-ocular 
pressure at the TCF4 gene. 



 

Supplementary Figure 7: CNV association results for the red blood cell, neurological and behavioural related 
traits – relating to Figure 2. A: Bidirectional manhattan plots for red blood cell count (top) and reticulocyte count 
(bottom), fine mapped regions are highlight in orange (red blood cell count) and green (reticulocyte count) with 
fine mapped regions for reticulocyte count that were also discovered for red blood cell counts not being 
highlighted. B: Bidirectional manhattan plots for fluid intelligence (top) and reaction time (bottom), fine mapped 
regions are highlighted in orange and green respectively. C: Bidirectional manhattan plots for alcohol (top) and 
coffee (bottom) intake, fine mapped regions are highlighted in orange and green respectively. D: Locus zoom plot 
for red blood cell count at the ABO gene. E: Locus zoom plot for alcohol intake around the NPIPB6 gene. F: 
Locus zoom plot for reaction time around the ARL17B gene. 

 

 

 

 



 

Supplementary Figure 8: Comparison of association signal strength for heart related ICD10 codes at the LPA 
gene – relating to Figure 3. A: Overlaid manhattan plot from chromosome 6 including 5 heart related ICD10 
code based case/control tests, the colour of points and legend indicate the ICD10 code. B: Minus log10 p values 
for ICD10 code I25 against code I20. C: Minus log10 p values for ICD10 code I25 against code I21. D: Minus 
log10 p values for ICD10 code I25 against code I35. E: Minus log10 p values for ICD10 code I25 against code 
I50. 



 

Supplementary Figure 9: Summary of comparison into CNV association results between 2 SNP based CNV 
association studies (Auwerx et al56 and Hujoel et al57) and CNest (Fitzgerald – this study) – relating to STAR 
Methods (comparison to previous association studies). A: Boxplot plots showing the log10 of the size (number of 
bases) for all fine mapped association regions with Auwerx in red, Hujoel in blue and Fitzgerald in green. B: The 
log10 of the size of all association regions against the -log10 p value for each of the 3 studies (Auwerx in red, 
Hujoel in blue and Fitzgerald in green). C: The -log10 p-value for the most significant exon level signal from 
CNest (Fitzgerald) against the -log10 p-value from each of the 2 SNP based CNV association studies across the 
9 different traits, the color of point and legend indicate the trait and study. D: Stacked barplots showing the 
number of associations from the 2 SNP base studies and traits that show genomewide (purple), suggestive 
(orange) or no significant (black) association from exon level CNest association, the y-axis labels indicate the 
study and trait. E: Association region for reticulocyte count that shows genome wide significance in CNest results. 
F: Association region for height that shows suggestive significance in CNest results. G: Association region for 
the FEV/FEC score that shows no significance in CNest results. 
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Supplementary Figure 10: Locus zoom plots showing some CNV association categories – relating to Figure 4. 
A: SNP-CNV near discovery for hair colour involving exons 7-10 of the SPG7 gene. B: SNP-CNV near discovery 
for alcohol consumption at a 0.8MB region containing 4 fine mapped CNV regions involving the NPIPB6, 
NPIPB7, NPIPB9 and SH2B1 genes. C: SNP-CNV far discovery for hair colour at the TRIM49C with tagging 
SNPs downstream at UBTFL1 or NAALAD2 genes. D: SNP-CNV far discovery for standing height at a 12.6KB 
region including the EVPLL and LGALS9C genes. E: CNV-allele discovery for heel bone density at the WNT16 
gene. F: CNV-allele discovery for the FEV/FEC ratio involving exon 1 of the HTR4 gene. G: CNV-only 
association for the FEV/FEC ratio on chromosome 5 at the ZDHHC11B gene. H: CNV-only discovery for standing 
height including several genes that are pulled up towards suggestive genome wide significance with a single exon 
signal that passes genome wide significance within the CDK11A gene. 

 

 

 

 



 

Supplementary Figure 11: Comparison of significance level approaches – relating to STAR Methods (definition 
of the association significance threshold). A: log10 of the number of significant exon level signals per trait using 
the genome wide 5e-08 cut-off vs. a strict Bonferroni cut-off. B: log10 of the number of significant exon level 
signals per trait using the genome wide 5e-08 cut-off vs. a 1% FDR cut-off. C: The -log10 significance level at a 
1% FDR cut-off for all traits tested. Red dashed line indicates the Genomewide 5e-08 cut-off and the blue dashed 
line shows the Bonferroni cut-off. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 12: Permutation tests for the 4 main traits – relating to STAR Methods (definition of the 
association significance threshold). All tests were performed using a 100 different random ordering of the trait 
or case labels followed by association testing genomewide. A: Genomewide tests across 100 differently permuted 
traits for hair colour. B: Genomewide tests across 100 differently permuted traits for standing height. C: 
Genomewide tests across 100 differently permuted case labels for asthma. D: Genomewide tests across 100 
differently permuted case labels for myocardial infarction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary data 1 – relating to Figure 2 (CNwas results on UK Biobank main traits) 

Example - Hair Colour: 
For hair colour (Figure 2A) after fine mapping we detect 30 copy number variable regions that 
pass genome wide significance, the majority of which (20/30) have been found to be associated 
with pigmentation by previous SNP GWAS (Supplementary Table S4). A particularly strong 
signal is found in a region containing the OCA2 and HERC2 genes with a -log10 P > 230. Both 
OCA2 and HERC2 are well known genes involved in pigmentation in both humans and mice 
and have been shown to be involved in iris, skin and hair pigmentation in human117–120. Pathogenic 
variation in OCA2 including CNVs are known to be a leading cause of the rare genetic disorder 
oculocutaneous albinism and an increased susceptibility to melanoma121–123. The strongest signal 
and lead exon (Figure 2E) around the fine mapped CNV region is found in the hect domain 
and RCC1-like domain 2 (HERC2) which has been well described by multiple studies and has 
a strong association to pigmentation of the eyes, hair and skin96,117,124. Some of the novel 
associations we discover in relation to hair colour (Supplementary Table S4) include signals 
around 15q11.2, including several of the GOLGA genes which have functions relating to 
membrane traffic and Golgi structure; however, the precise function is unclear. Human 
chromosome 15 contains multiple copies of the GOLGA core elements close to the 
evolutionary conserved chromosome 15 low copy repeat (LCR15) duplicons125 in primates at 
which several structural rearrangements break points have been described and linked to 
disorders and structural abnormalities such as Prader-Willi and Angelman syndromes126. 
Additionally, downstream GOLGA genes also detected here (GOLGA8F, GOLGA8G and 
GOLGA8M) have been linked to hair colour in previous SNP GWAS studies and from analysis 
of the UK Biobank127. 
  
Example - Standing Height: 
After fine mapping we discovered 45 distinct regions associated with standing height 
encompassing between 1 and 2 genes (Figure 2B). The majority of these regions (27/45) 
contained at least one gene that had previously been associated with height from SNP GWAS 
(Supplementary Table S5) however with little to no evidence of CNV associations. The 
strongest signal outside of the HLA was seen in a region downstream of ADAMTSL3 at 
15q25.2, including the UBE2Q2L and GOLGA6L4 genes and which is enriched for segmental 
duplications128. There is a single exon signal at exon 15 of the ADAMTSL3 gene; ADAMTSL3 
has previous evidence from multiple SNP GWAS studies of being associated with height129–132 
and with certain neurological disorders such as schizophrenia133 and bipolar disorders134 acting 
under a proposed alternative splicing mechanism135. CNV at ADAMTSL3 has yet to be described 
in relation to human height and interestingly this region contains multiple different CNV events 
varying in size all with strong association signals to height (Figure 2F). One for these CNVs 
overlaps exons 28-30 of ADAMTSL3 which would likely result in truncation of the PLAC 
(protease and lacunin) domain136. Strong human height CNV association signals are observed 
in the segmental duplication rich region downstream of ADAMTSL3 including exons within 
the UBE2Q2L and GOLGA6L4 genes both of which have been linked to neurological disorders 
by previous work137,138 with UBE2Q2L also having been specifically linked with human height92,131. 
Recurrent deletions and duplications at 15q25.2 have been described in relation to rare disease 
including neurological traits139 however have not yet been described as a hotspot for structural 
rearrangements associated with common human traits such as height. We also found additional 
novel regions with no evidence of prior association to height (Supplementary Table S5), 
including one region at the Neuroblastoma BreakPoint Family NBPF1 gene involving the 



highly copy number variable DUF1220 domain140 which have be previously associated in a 
dose-dependent manner with important human traits such as microcephaly and macrocephaly, 
brain size and neurological disorders19,141,142. 
  
Example - Asthma: 
For Asthma we discover 18 fine mapped CNV regions (Figure 2C). Strong CNV association 
signal was found around a region containing the 3 genes CHROMR, PRKRA and PJVK and 
upstream of TTN (Figure 2G). None of the 3 genes have previous evidence of a link to asthma 
however both PRKRA and PJVK have been found to be associated with lung functions such as 
vital capacity and forced expiratory volume (FEV) in a recent study91. In contrast the cholesterol 
induced regulator of metabolism RNA CHROMR has no previous association to asthma and its 
precise function is poorly understood. Unsurprisingly the strongest signal for asthma is found 
in the HLA with the lead signal specifically restricted to the HLA-DQA2 gene which has strong 
prior associations to asthma and hay fever all based on intergenic SNPs from multiple SNP 
based GWAS investigations143–147. Some of our novel CNV associations for asthma 
(Supplementary Table S6) include signals in genes, TAP2 and STARD3NL, which have not 
been linked with asthma by previous SNP GWAS studies but have evidence of association to 
certain other respiratory diseases148,149. A recent study using a different approach for CNV 
association testing from WES in the UKBB and specifically focussed on Asthma have 
rediscovered many of the associations we have made here103. 
  
Example - myocardial infarction: 
For acute myocardial infarction (MI) we discover 26 fine mapped associations (Figure 2D). 
The strongest signal for MI is found within the LPA gene and this signal is found consistently 
across most heart related traits that we have tested in the UK Biobank. The LPA gene encodes 
a substantial portion of lipoprotein(a) and has been linked to numerous heart related diseases 
including coronary artery disease (CAD), aortic atherosclerosis and MI150–152. Changes in dosage 
of the LPA gene, specifically the KIV-2 copy number alteration, has been previously linked to 
changes in lipoprotein(a) levels and a modified risk of heart disease (CAD)153–156. This analysis 
of CNV association across a large cohort provides important additional information and allows 
a detailed estimate of the effect size for differences in LPA copy number in relation to the risk 
of MI. Interestingly we detect multiple different sized CNV events that hit the LPA gene 
(Figure 2G) but also include other coding regions with the lead exonic signal always restricted 
solely to the LPA gene. To our knowledge, only 2/26 fine mapped CNV associations (LPA and 
BMP1) have a direct association to MI from previous SNP GWAS testing151,157 however a large 
fraction of the remaining regions have prior associations to other important heart related traits 
or cardiac disease risk factors (Supplementary Table S7). For example, the TM2D1 gene that 
has prior association to electrocardiography158 and the structure of the left cardiac ventricle159; 
the DPP6 gene that has been associated with multiple heart related phenotypes including 
sudden cardiac arrest160; and genes associated with blood lipid level measurements such as 
LCAT and RCAN1161,162. 

  

Supplementary data 2 – relating to Figure 3 (CNwas results on UK Biobank ICD10 first 
occurrences fields) 

Example - E80: For disorders of porphyrin and bilirubin metabolism, we found multiple strong 
signals involving specific exons across UDP-glucuronosyltransferase genes (UGT1A10, 9, 8, 
7, 6 and 4) (Figure 3E). Genetic variation of UGT1A genes has been associated with disorders 
of bilirubin metabolism including Gilbert's syndrome by multiple previous SNP GWAS 



studies163,164 with, for example, very strong association signal at UGT1A10 for the intron variant 
rs6742078 (2_233763993_G_T)165. This specific SNP has also been linked to other lipid 
metabolism disorders such as Gallstones Disease (GSD)166 and although studies looking at CNV 
burden analysis of lipid metabolism genes have shown a significant enrichment in GSD cases 
none of those associations could be attributed to any single gene167. Here we provide novel CNV 
associations at UGT1A genes with a direct link to bilirubin metabolism that could be an 
important risk factor for several lipid metabolism related disorders. 
  
Example - D50: For iron deficiency anaemia we discovered two significantly associated loci 
on chromosome 7 (Figure 3F) one of which covers exons 4-6 of the cationic trypsinogene gene 
PRSS1 that has been linked to chronic pancreatitis by multiple studies168,169. Autosomal dominant 
mutations in PRSS1 are thought to be a leading cause of hereditary pancreatitis, a rare condition 
that results in recurrent inflammation of the pancreas, and an increased risk of pancreatic 
cancer170. As such PRSS1 is regularly tested in patients with suspected hereditary pancreatitis171 
however the PRSS1 gene contains multiple known variants, including copy number changes, 
often with unknown clinical importance172. Iron metabolism and pancreatic function are closely 
related processes173 with evidence that pancreatic enzyme levels influence the efficiency of iron 
absorption174. Here we provide a link between the copy number at exons 4-6 of the PRSS1 gene 
with the ICD10 code D50 relating to iron deficiency anaemia that may be a result of pancreatic 
dysfunction. 
  
Example - M10: For Musculoskeletal disorders we discovered 17 fine mapped association loci 
across 4 different traits including one location at 4p16.1 at exon 3 of the SLC2A9 gene that was 
associated with ICD10 code M10: gout (Figure 3G). Gout is a swelling of joints, normally in 
the feet, that is caused by hyperuricemia (an excess of uric acid in the blood) with mutations at 
SLC2A9 having been found to be associated with serum urate concentrations and the onset of 
gout175,176. A non coding CNV near SLC2A9 (integenic and approximately 200 kb upstream of 
the SLC2A9 gene) has been described in association with serum uric acid levels177 however 
CNVs in coding regions of the SLC2A9 have not yet been discovered in relation to uric acid 
level or with a direct association to gout. Here we provide a novel CNV association result at 
exon 3 of the SLC2A9 gene with a direct association to gout from the UK Biobank. 
  
Example - O36: For Pregnancy childbirth and the puerperium we discovered fine mapped CNV 
associations against code O36: maternal care for known or suspected foetal problems at 
1p36.11 including the RHD and RHCE genes (Figure 3H). Variation and RHD gene deletion 
in the human Rh blood group system has been extensively studied in relation to pregnancy 
risk178 where prior to the development of medical treatments, Rh-negative (D-negative) mothers 
were at significant risk of haemolytic disease of the newborn (HDN). It is still unclear what 
potential benefit the RHD gene deletion may have that merits its relatively high frequency in 
the human population179. Blood tests are normally carried out in D-negative expectant mothers 
to determine the Rh factor status of the child and direct treatment if using anti-D injection is 
required180. However variation in the less well understood Rh C and E alleles of RHCE is 
clinically relevant, influences the risk of HDN181 and this association discovered in this study 
merits further investigation for this well understood risk factor for pregnancy. 
  
Example -  K74: For fibrosis and cirrhosis of liver we discovered a single CNV association at 
exon 3 of the PNPLA3 gene (Figure 3I). Cirrhosis of the liver is a disorder in which the liver 
parenchyma is replaced with fibrous tissue and is often caused by alcoholism as well as 
hepatitis B and C infection182,183. The PNPLA3 gene has been found to be associated with liver 
cirrhosis by multiple SNP GWAS studies184,185 and although CNVs at PNPLA3 has not been well 



described or linked to Cirrhosis in the past it has been shown that transcriptional regulation of 
PNPLA3 has an impact on liver disease with higher levels of PNPLA3 mRNA in the cytoplasm 
being negatively associated with the severity of alcoholic fatty liver disease (NAFLD) in 
humans186. 
  
Example - heart related ICD10 codes: Across 5 heart related ICD10 codes (I20, I21, I25, I35 
and I50) we found strong CNV association signals at the LPA gene with the exception of I50: 
heart failure (Supplementary Figure S8). When comparing signal strength between the 5 heart 
related ICD10 codes we observe a clear sample size effect with the tests showing the stronger 
signals tending to have larger number of cases (Supplementary Figure S8 B-E). The five 
ICD10 codes included were I25: chronic ischaemic heart disease (20,503 cases), I20: angina 
pectoris (10,117 cases), I21: acute myocardial infarction (3,698 cases), I35: nonheumatic aortic 
valve disorders (1,692 cases) and I50: heart failure (3,557 cases). Although there is 
heterogeneity between the effect sizes for these different ICD codes, ranging from -0.39 for 
I25 to -1.41 for I35, they are similar for the 3 codes I20, I25 and I50 (-0.42, -0.39 and -0.38 
respectively), suggesting that this association may become significant for I50 with increased 
sample sizes. CNV association at LPA is a major feature in all heart related phenotypes we 
have tested in the UK Biobank providing further evidence that changes in dosage of LPA is a 
significant risk factor for heart disease in humans. 

  

Supplementary data 3 – relating to Figure 4 (combined CNV and SNP based associations) 

For standing height we show clear complementary signals at the ACAN gene for SNP based 
and CNV based association results (Figure 4A), an example of the SNP-CNV near class with 
the CNV signal being well tagged by 30 SNPs within the gene body between exons 6 to 12. 
The CNV signal is restricted to exon 12 that encodes the chondroitin sulfate attachment (CS) 
domain187 which is important for aggregation with hyaluronan resulting in a strong negative 
charge that gives rise to load-bearing properties of cartilage188. Mutations in ACAN have been 
studied in relation to both syndromic and nonsyndromic human traits with a number of different 
impactful variants having been discovered130,189,190. Earlier studies found ACAN to be a strong 
candidate for autosomal dominant disorders such as spondyloepiphyseal dysplasia Kimberley 
type (SEDK) and early-onset osteoarthritis (OA) from genetic linkage analysis and mouse 
models of chondrodysplasia187 however, heterozygous mutations in ACAN display highly 
variable nonsyndromic phenotypes including short stature, early onset osteoarthritis and mild 
dysmorphic features191. In this case, although the CNV is both well tagged and close to the SNP 
associations, the CNV directly suggests the functional variant of these SNPs is the deletion of 
this exon implying that haploinsufficiency of the ACAN gene is the main mechanism 
underlying these associations. 
  
A SNP-CNV far example is shown in Figure 4B, being a 60KB region on chromosome 6 that 
is associated with the lung function measure FEV/FEC ratio including the STK19, C4A, C4B 
and CYP21A2 genes with the lead exon CNV signal encompassing exons 26-30 of the C4A 
gene (Figure 4B). Interestingly, there are 208 tagging SNPs that pass genome wide 
significance for FEV/FEC ratio however none of these SNPs are located closest to either of the 
C4 genes (C4A or C4B). The C4 genes encode an important part of the immune complement 
system and deficiencies (including CNV) at C4 genes have been strongly associated with 
immune disorders such as Systemic Lupus Erythematosus192,193. The C4A and C4B genes encode 
different components of the highly polymorphic C4 complement protein and can be 
distinguished from each other by four specific amino acids at positions 1101–1106194. Due to 



high sequence similarity the total copy number of C4 can be defined as the sum between C4A 
and C4B195, however both C4A and C4B are multiallelic CNV locations displaying common 
differences in copy number with C4A ranging between 0 to 5 and C4B between 0 to 4 copies196. 
The CNVs at C4 has not been linked previously with lung function; however, a recent study 
into chronic obstructive pulmonary disease (COPD) in the Korea Associated Resource cohort 
has investigated genome wide SNP interactions mapped to C4B in relation COPD and the 
FEV/FEC ratio measure197. We provide new evidence for the role of C4 CNV in lung function 
as measured by the FEV/FEC ratio in the UK Biobank. 
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