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Referees’ reports, first round of review 
  
Reviewer #1: Tsuo et al. reported a study on investigating multi-ancestry meta-analysis of asthma GWAS. 
In general, this is a well-conducted study with many several strengths, including the largest asthma GWAS 
sample size to date, including multi-ancestry populations, identifying novel loci, ancestry-specific analysis. I 
have several comments: 
Major comments: 
1. It's better to conduct conditional analysis to show whether the novel loci are independent from the nearby 
known loci. The authors can use GCTA-COJO for this. 
2. Please provide a Manhattan plot as a main figure to show the asthma GWAS results, and highlighting the 
novel loci. 
3. It is important to know that asthma is a very heterogeneous disease, thus, GWAS of asthma is not always 
the bigger the better, by contrast, it's important to stratify the analysis by asthma subtypes. I understand 
this is not easy for the current study, since this study depends on meta-analysis of GWAS summary 
statistics from many different studies, which provided asthma phenotype, not asthma subtypes. If possible, 
I would like the authors conduct asthma subtype GWAS analysis. If not possible, the authors should discuss 
this topic in the discussion section. 
4. GWAS of asthma in non-European population is important to know the population specific loci for asthma. 
From Figure 1, I see a few EAS populations, such as BBJ and CKB, which become more popular in recent 
years given large sample size and unique genetic background. Please also make a discussion about the 
future of asthma GWAS in non-European populations, especially Asian populations since large-scale GWAS 
resources are becoming available. The authors can use asthma-related disease/traits as the examples to 
discuss, see following papers. 
Tanaka N, Koido M, Suzuki A, Otomo N, Suetsugu H, Kochi Y, Tomizuka K, Momozawa Y, Kamatani Y; 
Biobank Japan Project, Ikegawa S, Yamamoto K, Terao C. Eight novel susceptibility loci and putative causal 
variants in atopic dermatitis. J Allergy Clin Immunol. 2021;148(5):1293-1306. PMID: 34116867. 
Zhu Z, Li J, Si J, Ma B, Shi H, Lv J, Cao W, Guo Y, Millwood IY, Walters RG, Lin K, Yang L, Chen Y, Du H, Yu 
B, Hasegawa K, Camargo CA Jr, Moffatt MF, Cookson WOC, Chen J, Chen Z, Li L, Yu C, Liang L. A large-scale 
genome-wide association analysis of lung function in the Chinese population identifies novel loci and 
highlights shared genetic aetiology with obesity. Eur Respir J. 2021;58(4):2100199. PMID: 33766948; 
PMCID: PMC8513692. 
5. Figure 4 results are interesting. In addition to the chr16 locus, it's better to include 17q21. Please check 
the lead SNP in 17q21 for ancestry heterogeneity. 
6. Supplementary Figure 4: Some of the LDSC results do not make too much sense. For example, it is 
strange for me to see no genetic correlation between asthma and atopic dermatitis in the first 3 columns, 
and the 4th column UKB results showed significant but not very strong correlation (color bar shows Rg is 
around 0.25-0.3?) Also, it shows asthma has strong genetic correlation with chronic heart failure, peripheral 
artery disease, and rheumatoid arthritis? The authors need to double check with this analysis and provide 
reasonable justification. 
 
 
 
Reviewer #2: This manuscript provides important information and reports on the largest and most diverse 
collection of asthma biobanks to date and includes 18 biobanks with GWAS data. However, the manuscript is 
a bit ambitious using multiple tools: meta-analysis, PRS, and genetic correlation. Because so many analyses 
are mentioned, the manuscript lacks details for full understanding of the analyses. The authors could 
consider deleting the genetic correlation analyses in order to have space to more fully describe the meta-
analysis and PRS. 
 
Major comments 



 

 

1. The investigators could address if the higher predictive power for asthma in non-EUR populations because 
of the smaller sample sizes. 
2. More details of the biobanks are needed. Providing the sample size for cases and controls for each of the 
races would help understand the reader interpret the results. 
3. It's not clear what the major outcome for the asthma PRS is. The manuscript mentions 14 phenotypes 
analyzed in GBMI, but it's unclear what these phenotypes are. 
4. The investigators acknowledge the large variability in asthma prevalence across the biobanks, however 
the investigators could make clear how they accounted for this variability. 
5. What is the average prediction accuracy of the PRS? This is not reported in the Results. 
6. The Results state that these analyses suggest genetic architecture of asthma is largely shared across 
diverse cohorts. Does this mean that diverse populations are not needed for future research? This is 
probably not the authors conclusion, I think. 
7. The genetic correlation analysis with all of the phenotypes in the GBMI biobanks is not needed in this 
paper. It's unclear what the goal of examining genetic correlations between asthma and all of the heritable 
diseases is. It appears that chronic heart failure and asthma are correlated—explanations for this could be 
provided. 
8. There is no independent replication population. This is a limitation even though the authors use the leave 
on out approach. 
9. The authors could justify their fixed effects meta-analysis with inverse variance weighting. It seems a 
random effects meta-analysis may have been more appropriate. 
10. In the Discussion, the investigators could provide explanation for why excluding COPD would introduce 
an additional source of ascertainment bias. 
11. Discussion. The manuscript states that Bayesian PRS construction methods can improve prediction in 
asthma. The authors could explain how prediction is improved and discuss their PRS scores in the context of 
other asthma PRSs reported on to date. 
12. It's not clear if ancestry markers were used at all in these analyses. 
13. The authors could mention that they are not able to account for BMI. 
14. One of the limitations that the authors appropriately address is the heterogeneity in the phenotype. The 
authors could consider conducting sensitivity analysis to see if there are differences whether the cases were 
defined based on self-report (Taiwan Biobank, QSkin) compared to PheCodes or ICD-9 codes. 
15. Another limitation is it seems the investigators were unable to distinguish between child-onset and 
adult-onset asthma. Limiting to adult-onset asthma could help their analysis. 
16. The authors conclude that the "genetic effects of associated loci are largely consistent across the 
biobanks and ancestries." How do the authors put this in the setting of multiple other studies that suggest 
that genetic effects vary by genetic ancestry? 
17. The manuscript does not mention how ancestry groups are defined. This could be added to the 
supplemental tables. Was self-report used or ancestry markers? 
Minor comments: 
1. Summary: "Despite the considerable range in prevalence…" Consider adding "of asthma" after 
"prevalence." 
2. Introduction: Need reference 
3. Need to write out GWAS the first time in the Introduction 
4. Introduction "efforts to diversify asthma" is not clear. Maybe the authors mean "efforts to conduct asthma 
GWAS in diverse populations." 
5. Introduction: Add "initiative" after "Global Biobank Meta-analysis." 
6. Consider using the term "allergic rhinitis" in addition to "hay fever." 
 
 
 
Reviewer #3: Comments enter in this field will be shared with the author; your identity will remain 
anonymous. 
 
This is an interesting study representing a huge effort combining multiple biobank based GWASes resulting 
in the largest asthma GWAS to date. 
The study identifies novel susceptibility genes, adding to the understanding of the genetic mechanisms of 
asthma, and provides novel knowledge on the potential of using large, herterogenous datasets in genetic 
studies of asthma. 
The manuscript is well written and the methodologies seem sound. 
 
I am not sure, calculating gene-based p-values using MAGMA can truly be termed 'gene prioritization". It 
might be more appropriate to use actual gene prioritization methods such as DEPICT or PoPS which 
incorporate biological features to search for patterns of shared biology to prioritize genes at GWAS loci. 



 

 

Comparing gene-based results from MAGMA is not very different from directly comparing summary stats. In 
order to compare prioritized genes for e.g. asthma and COPD, I think other methods such as DEPICT are 
more suitable. 
 
The high genetic correlation with COPD might reflect a relatively high age of participants (high age of 
asthma diagnosis), which is likely to increase the overlap between diagnoses of asthma and COPD compared 
to asthma studies including younger individuals. How did participant age compare to previous studies 
reporting lower genetic correlation of asthma and COPD? 
 
Data on participant age should be provided for the individual studies. 
  

 

Authors’ response to the first round of review 
We thank the reviewers and editors for their insightful comments and suggestions. Our responses to 
each comment are below in purple, and quoted text from the manuscript is italicized and in gray. In the 
manuscript, added and revised text is in purple. 

Reviewer 1 
Tsuo et al. reported a study on investigating multi-ancestry meta-analysis of asthma GWAS. In general, 
this is a well-conducted study with many several strengths, including the largest asthma GWAS sample 
size to date, including multi-ancestry populations, identifying novel loci, ancestry-specific analysis. I 
have several comments: 
 
We thank the reviewer for these positive comments and respond to each comment below individually. 
 
1. It's better to conduct conditional analysis to show whether the novel loci are independent from the 
nearby known loci. The authors can use GCTA-COJO for this. 
 
We thank the reviewer for this suggestion. We note that to designate loci as potentially novel, we 
compiled a list of previously discovered asthma-associated variants (p < 5x10-8) from El-Husseini et al. 
(2020)1 and as listed in the GWAS catalog (as of 11/14/2021), extended 500kb upstream and 
downstream each of these variants to define loci, and intersected these with the top loci discovered in 
the GBMI meta-analysis. Thus, the index variants of the potentially novel loci are at least 1Mb in 
distance from a previously discovered variant. Additionally, we computed LD using a reference panel 
from individuals in 1000 Genomes between the potentially novel SNPs and the index variants of each 
previously discovered loci, defined as the variant with the strongest association in the GBMI meta-
analysis. All potentially novel index variants, with the exception of one (r2 = 0.16), had r2 < 0.07 with a 
previously known SNP (Supplementary Table 2). This provides strong evidence that the novel loci are 
likely independent from the nearby known loci. Although conditional analysis using GCTA-COJO would 
account for potential long-range LD, there is currently no gold standard for conducting conditional 
analysis on meta-analysis data. Given the ancestral diversity of the GBMI meta-analysis, it is unclear 
which LD reference panel would be appropriate to use for conditional analysis. Lastly, Kanai et al. 
(2022)2 shows that applying existing fine-mapping methods to meta-analysis data results in 
substantial miscalibration due to heterogeneity across biobanks, and thus we expect that applying 
existing conditional analysis methods to the GBMI data would similarly yield miscalibrated results. We 
added an explanation of how we defined the potentially novel loci in the “Multi-ancestry meta-analysis 
for asthma across 18 biobanks in GBMI” Results section: 
 
The meta-analysis identified 179 loci of genome-wide significance (p < 5x10-8), 49 of which have not 



 

 

been previously reported to be associated with asthma (Fig. 2A, Supplementary Fig. 2). These 
potentially novel loci were defined so that the index variants, or the most significant variants in each 
locus, were at least 1 Megabase in distance from a previously discovered genome-wide significant 
variant associated with asthma (Methods). Additionally, all but one index variant did not have a 
previously discovered SNP in linkage disequilibrium (LD) at r2 > 0.07, estimated using a reference panel 
from individuals in 1000 Genomes34 (Supplementary Table 2). 
 
2. Please provide a Manhattan plot as a main figure to show the asthma GWAS results, and highlighting 
the novel loci. 
 
We have included a Manhattan plot highlighting the nearest genes to the 49 novel lead loci 
(Supplementary Figure 2). We included this in the “Multi-ancestry meta-analysis for asthma across 18 
biobanks in GBMI” Results section as follows: 
The meta-analysis identified 179 loci of genome-wide significance (p < 5x10-8), 49 of which have not 
been previously reported to be associated with asthma (Fig. 2A, Supplementary Fig. 2). 

 
3. It is important to know that asthma is a very heterogeneous disease, thus, GWAS of asthma is not 
always the bigger the better, by contrast, it's important to stratify the analysis by asthma subtypes. I 
understand this is not easy for the current study, since this study depends on meta-analysis of GWAS 
summary statistics from many different studies, which provided asthma phenotype, not asthma 
subtypes. If possible, I would like the authors conduct asthma subtype GWAS analysis. If not possible, 
the authors should discuss this topic in the discussion section. 
 



 

 

We thank the reviewer for this suggestion and agree that subtype analysis is particularly important for 
asthma, given its heterogeneity. We were able to conduct asthma age-of-onset subtype analyses in two 
of the participating GBMI biobanks, UKBB and FinnGen. We performed GWAS of childhood-onset 
asthma (COA) and adult-onset asthma (AOA) in Finngen and the EUR ancestry cohort in UKBB, using a 
cut-off age of 19 years at asthma diagnosis to define the subtypes (Methods). Then, we conducted fixed-
effects, inverse-variance weighted meta-analyses of the COA (20,964 cases, 674,014 controls) and AOA 
(56,744 cases, 674,014 controls) GWAS, respectively. We added the results of these analyses to the 
“Childhood-onset (COA) and adult-onset (AOA) asthma have high genetic correlations with all-asthma 
meta-analysis” section as follows: 
 
To increase power for genetic discovery, we used a broad phenotype definition for asthma (Methods), 
but given the heterogeneity of the disease, we sought to address the extent to which this meta-analysis 
captured the genetic architectures of two common subtypes of asthma, childhood-onset (COA) and 
adult-onset (AOA) asthma. We conducted asthma age-of-onset subtype analyses in two of the 
participating GBMI biobanks for which age at asthma diagnosis information were accessible, UKBB and 
FinnGen. Using a cut-off age of 19 years at asthma diagnosis to define the subtypes (Methods), we 
performed GWAS of COA and AOA in FinnGen and the EUR ancestry cohort in UKBB, as well as 
fixed-effects, inverse-variance weighted meta-analyses of the COA (20,964 cases, 674,014 controls) 
and AOA (56,744 cases, 674,014 controls) GWAS, respectively. Applying linkage-disequilibrium score 
correlation (LDSC), we observed strong genetic correlations between each COA GWAS and the 
respective leave-that-biobank-out meta-analysis of all other biobanks utilizing the broad phenotype 
definition (rg (se) = 0.73 (0.03), p = 4.70x10-132 for UKBB and rg (se) = 0.80 (0.4), p = 3.19x10-73 for 
FinnGen), and even larger genetic correlations between each AOA GWAS and leave-that-biobank-out 
meta-analysis (rg (se) = 0.90 (0.04), p = 1.71x10-127 for UKBB and rg (se) = 0.90 (0.30), p = 1.39x10-237 

for FinnGen). The genetic correlation between the COA and AOA meta-analyses was similarly high (rg 

(se) = 0.78 (0.30), p = 1.32x10-116), and similar to the genetic correlation (rg (se) = 0.67 (0.02)) reported 
by a previous study of asthma age-of-onset subtypes59. We also observed substantial overlap between 
the top loci identified in each subtype meta-analysis and the all-asthma meta-analysis. 75 of the 90 loci 
(83%) of genome-wide significance (p < 5x10-8) and 55 of the 69 loci (80%) identified by the COA and 
AOA meta-analysis, respectively, overlapped with a locus discovered in the all-asthma meta-analysis 
(Supplementary Table 11). Overall, these results suggest that much of the genetic architecture 
between COA and AOA is shared, as is consistent with previous findings59,60. Despite the GBMI 
meta-analysis drawing from primarily adult cohorts, many of the genetic variants identified contribute 
to both subtypes. 
 
To investigate whether the genetic effects of the index variants of the asthma-associated loci differ 
across the subtypes, we compared the estimated effect sizes of the 179 index variants discovered in 
the all-asthma meta-analysis in the COA and AOA meta-analyses using the Deming regression 
method. We found that these variants had systematically stronger effects in the COA meta-analysis 
compared to in the AOA meta-analysis (Supplementary Fig. 11), supporting previous findings that the 
etiology of COA is likely partially characterized by genes that have smaller (or no) effects on AOA59,60 

 
Broadly, the results indicated that the GBMI meta-analysis containing both age-of-onset subtypes 
captured many of the genetic variants contributing to the subtypes, but additional stratification by 
subtype revealed that the etiology of COA is characterized by a substantial overlap with AOA, as well as 
genes that have smaller (or no) effects on AOA. This supports previous findings3,4. Due to the limited 
availability of age of onset information across the biobanks, we did not have as much power to identify 



 

 

potential subtype-specific associations, which is an important area for future investigation and noted in 
the Discussion, as follows: 
 
This study, and importantly the data sharing across biobanks facilitated by this initiative, have laid the 
groundwork for deeper dives into the shared and distinct genetic signatures of asthma subtypes. We 
were able to stratify two participating biobanks, UKBB and FinnGen, into COA and AOA based on the 
participants’ ages at first diagnosis. While we found that the GBMI asthma meta-analysis of all biobanks 
containing both subtypes identified many of the loci contributing to these subtypes, the 
age-of-onset-stratified meta-analyses uncovered additional subtype-specific loci. Of the top loci 
associated with COA and AOA, 11 and 12 loci, respectively, (1) did not overlap with a top locus in the 
other subgroup meta-analysis; and (2) were evaluated in the all-asthma GBMI meta-analysis (i.e. in 
more than 3 GBMI biobanks) but did not reach genome-wide significance in the meta-analysis 
(Supplementary Table 11). Due to the limited availability of age at first diagnosis information across 
the biobanks, we were not able to explore age-dependent associations further, but with sufficient scale, 
it is likely that more of the distinct genetic architectures of COA and AOA will be uncovered. 

 
4. GWAS of asthma in non-European population is important to know the population specific loci for 
asthma. From Figure 1, I see a few EAS populations, such as BBJ and CKB, which become more 
popular in recent years given large sample size and unique genetic background. Please also make a 
discussion about the future of asthma GWAS in non-European populations, especially Asian 
populations since large-scale GWAS resources are becoming available. The authors can use 
asthma-related disease/traits as the examples to discuss, see following papers. 
Tanaka N, Koido M, Suzuki A, Otomo N, Suetsugu H, Kochi Y, Tomizuka K, Momozawa Y, Kamatani Y; 
Biobank Japan Project, Ikegawa S, Yamamoto K, Terao C. Eight novel susceptibility loci and putative 
causal variants in atopic dermatitis. J Allergy Clin Immunol. 2021;148(5):1293-1306. PMID: 34116867. 
Zhu Z, Li J, Si J, Ma B, Shi H, Lv J, Cao W, Guo Y, Millwood IY, Walters RG, Lin K, Yang L, Chen Y, Du H, 
Yu B, Hasegawa K, Camargo CA Jr, Moffatt MF, Cookson WOC, Chen J, Chen Z, Li L, Yu C, Liang L. A 
large-scale genome-wide association analysis of lung function in the Chinese population identifies 
novel loci and highlights shared genetic aetiology with obesity. Eur Respir J. 2021;58(4):2100199. 
PMID: 33766948; PMCID: PMC8513692. 
 



 

 

We thank the reviewer for this suggestion. In addition to the section in “GWAS from diverse ancestries 
reveal shared genetic architecture of asthma and improves power for genetic discovery” highlighting the 
several putative population-specific asthma loci that have heterogeneous effects across ancestry groups, 
we have added an additional paragraph in this section of the Results explicitly addressing the added 
benefits of including non-European populations in the meta-analysis: 
 
Additionally, the greater diversity of GBMI facilitated the discovery of loci that would not have been 
identified in association analyses using data from only EUR ancestry cohorts. We found that of the 179 
loci identified in the all-biobank meta-analysis, 49 did not reach genome-wide significance in the 
EUR-only meta-analysis (Supplementary Table 8). This additional yield of loci may be partially due to 
the increase in sample size, but the inclusion of GWAS from diverse ancestries also enabled the 
identification of loci that are more frequent in some non-EUR populations. 19 of these 49 loci were 
potentially novel, and 13 of these novel loci had an index variant higher in frequency in a non-EUR 
ancestry group compared to the EUR ancestry group. The consistent effect estimates of the 49 
additional variants across populations (45/49 had p-value for Cochran’s Q test across ancestries >0.02) 
indicate that the additional variants discovered with the incorporation of GWAS from diverse ancestries 
do not tend to be population-specific loci that only have effects in certain populations. However, due to 
differences in frequency across populations, it is essential to conduct asthma GWAS in different 
populations to uncover the full spectrum of asthma-associated loci. 
 
We also added a section to the Discussion: 
 
Importantly, however, the addition of GWAS from more diverse populations aided the discovery of 
genetic loci with higher frequencies in non-EUR populations that did not reach genome-wide 
significance in the meta-analysis with only EUR cohorts, highlighting the importance of diversifying 
genomic studies of asthma. Given the current disproportionate representation of European ancestries, 
we expect that as the availability of non-EUR GWAS of asthma and other asthma-related diseases and 
traits continues to increase, it is likely that greater numbers of such variants associated with asthma will 
be discovered. Previous studies of asthma-related diseases, such as atopic dermatitis, in non-EUR 
populations have similarly identified additional risk variants that are higher in frequency in other 
populations but also found highly shared polygenic architecture between populations, mirroring our 
findings for asthma83,84. 
 
As we discuss in these sections, it is particularly important to include GWAS from diverse cohorts to 
uncover the full spectrum of genetic variants associated with asthma. We show that with the addition of 
non-EUR ancestry GWAS, we were able to identify 49 asthma-associated variants that did not reach 
genome-wide significance in the EUR-only meta-analysis (Supplementary Table 8). 19 of these loci were 
potentially novel, and 13 of these 19 loci had an index variant higher in frequency in a non-EUR ancestry 
group compared to the EUR ancestry group. As the availability of non-EUR GWAS of asthma continues to 
increase, it is likely that additional variants associated with asthma that are higher in frequency in other 
populations will be discovered. 
 
5. Figure 4 results are interesting. In addition to the chr16 locus, it's better to include 17q21. Please 
check the lead SNP in 17q21 for ancestry heterogeneity. 
 
We thank the reviewer for highlighting this important locus. chr17:39907128:C:T was identified in the 
meta-analysis as the lead SNP in the 17q21 locus. This SNP lies within GSDMB, which has previously 
been linked to asthma. However, this SNP did not exhibit heterogeneity in its effects across the 



 

 

ancestry-specific meta-analysis, with a heterogeneity p-value of 0.17. This SNP did have different allele 
frequencies across the ancestry groups; for example it is almost 3 times as frequent in EUR than in AFR 
(in AFR AF = 17.7%; in AMR AF = 36.6%; in CSA AF = 36.5%; in EAS AF = 26.4%; in EUR AF = 52.0%). The 
overall consistency of effects but difference in allele frequencies across different populations at this 
locus align with previous observations8, but as Stein et al. (2018) noted, there may be population-
specific rare variants at this locus associated with asthma risk that have been missed. Unfortunately, 
rare variant analyses are outside of the scope of this study. 
 
6. Supplementary Figure 4: Some of the LDSC results do not make too much sense. For example, it is 
strange for me to see no genetic correlation between asthma and atopic dermatitis in the first 3 
columns, and the 4th column UKB results showed significant but not very strong correlation (color bar 
shows Rg is around 0.25-0.3?) Also, it shows asthma has strong genetic correlation with chronic heart 
failure, peripheral artery disease, and rheumatoid arthritis? The authors need to double check with this 
analysis and provide reasonable justification. 
 
Thank you for pointing out these unexpected results. We note that the atopic dermatitis, chronic heart 
failure, and peripheral artery disease UKBB GWAS did not have statistically significant SNP heritability 
estimates, and thus the genetic correlation estimates between asthma and these diseases in UKBB are 
difficult to interpret. Additionally, the atopic dermatitis PheCode used in BBJ and in UKBB encompasses 
contact dermatitis, which may contribute to the low genetic correlation observed. We have updated 
Supplementary Table 13 and Supplementary Figure 12 to more clearly indicate the disease endpoints 
with significant heritability estimates in both UKBB and BBJ, as shown below: 



 

 

 
 
The rheumatoid arthritis GWAS in UKBB and BBJ have non-zero heritability estimates, and we also find a 
relatively high genetic correlation between rheumatoid arthritis and asthma in FinnGen (rg (se) = 0.375 
(0.1), p = 2x10-4). Several studies in the literature have reported a relationship between risk for asthma 
and rheumatoid arthritis9–14, but more genetic studies in different populations are needed to investigate 
the potential shared genetic architecture of these diseases. Significant genetic correlations between 
asthma and heritable disease endpoints that tend to affect older adults, such as myocardial infarction, 
could also potentially be driven by the likely predominance of AOA in GBMI. Studies investigating 
causality are needed here to better understand these relationships. We have revised the description of 
these genetic correlation results in the Results: 
 
Leveraging data from another biobank, BBJ, we computed genetic correlation estimates between the 
GBMI leave-BBJ-out meta-analysis of asthma and 19 significantly heritable disease endpoints in BBJ 
(Supplementary Table 13). COPD showed the strongest and most significant correlation with asthma 
(rg = 0.29, p = 6.41x10-6), but the notably lower estimate compared to the estimate from the UKBB 
correlation analyses may be due to differences in phenotype definition and curation. Pollinosis, also 
known as allergic rhinitis or hay fever, showed moderate correlation with asthma (rg = 0.28, p = 0.0004), 
consistent with the correlation results from UKBB (rg = 0.39, p = 4.60x10-3). Comparing the phenotypes 
with significant SNP heritability estimates in both BBJ and UKBB (Supplementary Fig. 12), we found 
that only COPD has significant genetic correlations with asthma across the biobanks. The rheumatoid 



 

 

arthritis (RA) and type 2 diabetes (T2D) GWAS from UKBB have moderate and significant correlations 
with asthma, which are partially recapitulated in the BBJ results that showed a moderate but not 
significant correlation between the BBJ GWAS of RA and of asthma, and a small but significant 
correlation between the BBJ GWAS of T2D and the GBMI leave-BBJ-out meta-analysis of asthma. 
Several studies in the literature have reported a relationship between risk for RA and asthma73–78, as 
well as T2D and asthma79–81, but more genetic studies in different populations and biobanks are needed 
to investigate the potential shared genetic architecture of these diseases. Importantly, causal 
relationships between asthma and genetically correlated phenotypes are not yet well-understood, and 
other methods such as Mendelian randomization could be applied to identify potential causal 
associations82. 

Reviewer 2 
This manuscript provides important information and reports on the largest and most diverse collection 
of asthma biobanks to date and includes 18 biobanks with GWAS data. However, the manuscript is a 
bit ambitious using multiple tools: meta-analysis, PRS, and genetic correlation. Because so many 
analyses are mentioned, the manuscript lacks details for full understanding of the analyses. The 
authors could consider deleting the genetic correlation analyses in order to have space to more fully 
describe the meta-analysis and PRS. 
 
We thank the reviewer for this feedback. We have restructured the genetic correlation sections to cover 
additional in-depth interpretations of the genetic relationships between asthma subtypes (childhood-
onset and adult-onset asthma), asthma and known comorbid diseases (with a focus on COPD), and other 
comorbid diseases that have been less explored in genetic studies. We have also described the meta-
analysis findings and PRS analyses in more detail. We respond to each comment below individually. 
 
Major comments 
1. The investigators could address if the higher predictive power for asthma in non-EUR populations 
because of the smaller sample sizes. 
 
Thank you for pointing this out. To evaluate the effects of the target cohort sample size on the 
predictive performance of the PRS, we downsampled the EUR target cohort to 1,000 individuals, and 
found that the average R2𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 was higher than in the EAS target cohort but the confidence intervals as 
expected were quite large, similar to the confidence intervals of the R2𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 in the BBJ cohort 
(Supplementary Table 9, Supplementary Fig. 9). Furthermore, we note that phenotype heterogeneity 
and differences in the precision of phenotype definition used, as well as other factors such as 
environmental exposures, demographic history, and recruitment strategy of the biobanks, could 
potentially contribute to differences in predictive power across cohorts. We added these results as 
below: 
 
When we downsampled the EUR target cohort to 1,000 individuals, to match the sample size of the 
EAS target cohort, we found a higher average R2𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  (0.063) but, as expected, much larger confidence 

intervals (Supplementary Fig. 9). 



 

 

 
2. More details of the biobanks are needed. Providing the sample size for cases and controls for each 
of the races would help understand the reader interpret the results. 
 
Supplementary Table 1 lists the number of cases and controls for each genetic ancestry group within 
each biobank. To more clearly present the sample size per ancestry group, we have added an additional 
supplementary figure (Supplementary Fig. 1) that indicates the number of cases per ancestry 

 
3. It's not clear what the major outcome for the asthma PRS is. The manuscript mentions 14 
phenotypes analyzed in GBMI, but it's unclear what these phenotypes are. 
 
We apologize for the confusion. We have listed in the Introduction which 14 endpoints were analyzed in 
GBMI, as follows: 
 
Participating biobanks shared summary statistics for the meta-analyses of 14 disease endpoints: 
asthma, COPD, heart failure, stroke, gout, venous thromboembolism, primary open-angle glaucoma, 
abdominal aortic aneurysm, idiopathic pulmonary fibrosis, thyroid cancer, cardiomyopathy, uterine 
cancer, acute appendicitis, and appendectomy33. More details on the selection of these disease 
endpoints can be found in Zhou et al. (2021)33. 



 

 

We have also clarified in the Results that we implemented PRS-CS for asthma as well as the other 
endpoints (see Wang et al. (2021)19), and PRS-CSx for asthma specifically, as follows: 
 
To establish a baseline understanding of PRS performance for asthma as well as other disease 
endpoints in GBMI, Wang et al. (2021)56 evaluated and compared the prediction accuracy of PRS 
derived from the pruning and thresholding (P+T) method and PRS-CS57 in target cohorts of EUR, CSA, 
EAS, and AFR ancestries, using the leave-one-biobank-out meta-analyses as discovery data. 
 
Our main conclusion from the PRS analyses is that increase in scale and diversity of discovery GWAS for 
PRS is the primary driver of increased PRS accuracy in non-EUR populations for asthma, with marginal 
gains using PRS-CSx over PRS-CS. We did not observe improvement in PRS accuracy using PRS-CSx vs. 
PRS-CS in the EUR target cohort, likely because the sample sizes of the EUR discovery GWAS already 
predominate and including GWAS from smaller, non-EUR discovery cohorts may introduce more noise 
than signal. We have updated the PRS Results section of the manuscript to clarify this, as follows: 
 
Collectively, these analyses show that the increase in scale and diversity of discovery GWAS for PRS is 
the primary driver of increased PRS accuracy in non-EUR populations for asthma, with marginal gains 
using PRS-CSx over PRS-CS. For EUR target cohorts, a multi-ancestry PRS construction method like 
PRS-CSx does not seem to contribute much improvement in prediction accuracy, likely due to the 
predominating sample size of EUR discovery GWAS, as well as the inclusion of GWAS from smaller, 
non-EUR discovery cohorts which may introduce more noise than signal. 
4. The investigators acknowledge the large variability in asthma prevalence across the biobanks, 
however the investigators could make clear how they accounted for this variability. 
 
We thank the reviewer for noting this important point for clarification. In the comparisons of the lead 
SNP effects in each biobank GWAS vs. the corresponding leave-that-biobank-out meta-analysis, we 
observed that the SNP effects were well aligned across the biobanks, despite variability in prevalence 
and other characteristics. Therefore, in this meta-analysis the large variation in asthma prevalence 
across the biobanks does not seem to significantly affect the resulting genetic discoveries. 
 
5. What is the average prediction accuracy of the PRS? This is not reported in the Results. 
 
Thank you for pointing this out and we apologize for the oversight. We have updated the PRS section of 
the Results to include the average prediction accuracy of the PRS in each target population, and added 
Supplementary Table 9 with these results as well. 
 
6. The Results state that these analyses suggest genetic architecture of asthma is largely shared 
across diverse cohorts. Does this mean that diverse populations are not needed for future research? 
This is probably not the authors conclusion, I think. 
 
Thank you for the comment. We have now added a section in “GWAS from diverse ancestries reveals 
shared genetic architecture of asthma and improves power for genetic discovery” of the Results part of 
the manuscript explicitly addressing the added benefits of studying diverse populations in genetic 
studies of asthma, as follows: 
 
Additionally, the greater diversity of GBMI facilitated the discovery of loci that would not have been 
identified in association analyses using data from only EUR ancestry cohorts. We found that of the 179 
loci identified in the all-biobank meta-analysis, 49 did not reach genome-wide significance in the 



 

 

EUR-only meta-analysis (Supplementary Table 8). This additional yield of loci may be partially due to 
the increase in sample size, but the inclusion of GWAS from diverse ancestries also enabled the 
identification of loci that are more frequent in some non-EUR populations. 19 of these 49 loci were 
potentially novel, and 13 of these novel loci had an index variant higher in frequency in a non-EUR 
ancestry group compared to the EUR ancestry group. The consistent effect estimates of the 49 
additional variants across populations (45/49 had p-value for Cochran’s Q test across ancestries >0.02) 
indicate that the additional variants discovered with the incorporation of GWAS from diverse ancestries 
do not tend to be population-specific loci that only have effects in certain populations. However, due to 
differences in frequency across populations, it is essential to conduct asthma GWAS in different 
populations to uncover the full spectrum of asthma-associated loci. 

We also added a section to the Discussion: 

 
Importantly, however, the addition of GWAS from more diverse populations aided the discovery of 
genetic loci with higher frequencies in non-EUR populations that did not reach genome-wide 
significance in the meta-analysis with only EUR cohorts, highlighting the importance of diversifying 
genomic studies of asthma. Given the current disproportionate representation of European ancestries, 
we expect that as the availability of non-EUR GWAS of asthma and other asthma-related diseases and 
traits continues to increase, it is likely that greater numbers of such variants associated with asthma will 
be discovered. Previous studies of asthma-related diseases, such as atopic dermatitis, in non-EUR 
populations have similarly identified additional risk variants that are higher in frequency in other 
populations but also found highly shared polygenic architecture between populations, mirroring our 
findings for asthma83,84. 
 
As we discuss in these sections, it is particularly important to include GWAS from diverse cohorts to 
uncover the full spectrum of genetic variants associated with asthma. We show that with the addition of 
non-EUR ancestry GWAS, we were able to identify 49 asthma-associated variants that did not reach 
genome-wide significance in the EUR-only meta-analysis (Supplementary Table 8). 19 of these loci were 
potentially novel, and 13 of these 19 loci had an index variant higher in frequency in a non-EUR ancestry 
group compared to the EUR ancestry group. As the availability of non-EUR GWAS of asthma continues to 
increase, it is likely that additional variants associated with asthma that are higher in frequency in other 
populations will be discovered. 
 
7. The genetic correlation analysis with all of the phenotypes in the GBMI biobanks is not needed in 
this paper. It's unclear what the goal of examining genetic correlations between asthma and all of the 
heritable diseases is. It appears that chronic heart failure and asthma are correlated—explanations for 
this could be provided. 
 
Non-genetic epidemiological studies have identified correlations between asthma and many other 
disease categories21–23. More recently, some genome-wide cross-trait studies have found evidence for 
shared genetic architectures between asthma and other allergic diseases24,25, neuropsychiatric 
disorders26, and obesity27, suggesting that a comprehensive characterization of the shared genetics 
among asthma and other complex diseases and traits could provide insights into the variable pathology 
of asthma28. Together, these findings motivated us to assess whether correlations across a broad 
spectrum of disease endpoints are potentially driven by a shared genetic basis, or are purely 
observational and not driven by a shared biology. Therefore, we leveraged the GBMI meta-analysis of 
asthma and data from two biobanks in GBMI to estimate genetic correlations between asthma and a 
wide range of phenotypic endpoints. We have restructured the Results to clarify these motivations: 



 

 

 
Genetic overlap between asthma and other diseases 
Non-genetic epidemiological studies have also identified correlations between asthma and many other 
disease categories beyond COPD69–71. More recently, some genome-wide cross-trait studies have 
found evidence for shared genetic architectures between asthma and other allergic diseases21,72, 
neuropsychiatric disorders22, and obesity20, suggesting that a comprehensive characterization of the 
shared genetics among asthma and other complex diseases and traits could provide insights into the 
variable pathology of asthma19. Together, these findings motivated us to assess whether correlations 
across a broad spectrum of disease endpoints are potentially driven by a shared genetic basis, or are 
purely observational and not driven by a shared biology. Since the GBMI project was limited to 14 
disease endpoints, we utilized the wide range of phenotypic data available in UKBB to measure 
correlations between asthma and additional diseases and traits. 
 
The chronic heart failure UKBB GWAS did not have a statistically significant SNP heritability estimate, 
and thus the genetic correlation estimate between asthma and chronic heart failure in UKBB is difficult 
to interpret. We have updated Supplementary Table 13 and Supplementary Figure 12 to more clearly 
indicate the disease endpoints with significant heritability estimates in both UKBB and BBJ. See also 
related response to Reviewer #1, comment #6. 
 
8. There is no independent replication population. This is a limitation even though the authors use the 
leave on out approach. 
 
Since the initial submission of this manuscript, 4 more biobanks with asthma data have joined GBMI – 
Biobank of the Americas (BBofA), Qatar Biobank (QBB), Penn Medicine Biobank (PMBB), and Canadian 
Partnership for Tomorrow’s Health (CanPath) – and thus we were able to use these biobanks as 
independent replication studies. We have added cohort characteristics of these biobanks to 
Supplementary Table 1.  
 
We performed a meta-analysis using the GWAS from these replication studies. Although the case 
numbers in the replication data are less than 10% of the case numbers in the discovery data, 51 of the 
179 top loci had index variants with a p-value < 0.05 in the replication meta-analysis, and 154 of the 179 
top loci had index variants with consistent directions of effect in the discovery and replication meta-
analyses (Supplementary Table 2). We have added this to the “Multi-ancestry meta-analysis for asthma 
across 18 biobanks in GBMI” Results section: 
 
In the replication meta-analysis, 51 of the 179 loci had index variants with a p-value < 0.05, even 
though the case numbers in the replication data were less than 10% of the case numbers in the 
discovery data (Supplementary Table 2). 154 of the 179 index variants had consistent directions of 
effect in the discovery and replication meta-analyses. 
 
9. The authors could justify their fixed effects meta-analysis with inverse variance weighting. It seems a 
random effects meta-analysis may have been more appropriate. 
 
We thank the reviewer for this point. We chose to report results from the fixed effects meta-analysis 
because we did not observe substantial heterogeneity in the genetic effects of the genome-wide 
significant loci across biobanks (only 2 genome-wide significant loci were significantly heterogeneous 
across ancestries with Bonferroni p-value (Cochran’s Q) < 0.05/179). We also conducted meta-analysis 
using the meta-regression approach in MR-MEGA29, which accounts for effect size heterogeneity across 



 

 

the biobanks. We have added these results to the “GWAS from diverse ancestries reveal shared genetic 
architecture of asthma and improves power for genetic discovery” section of the Results, as follows: 
 
Taken together, these analyses indicate that the genetic architecture of asthma is largely shared across 
cohorts, despite differences in characteristics like disease prevalence and ascertainment strategy. 
Furthermore, the consistency of genetic effects across the biobanks suggests that the fixed effects 
meta-analysis approach is appropriate for the integration of GWAS from the different datasets. We 
additionally conducted meta-analysis using the meta-regression approach implemented in MR-MEGA51, 
which accounts for potential effect size heterogeneity across datasets. MR-MEGA identified only 2 
additional loci associated with asthma, 1 of which is novel (Supplementary Table 6). 
 
10. In the Discussion, the investigators could provide explanation for why excluding COPD would 
introduce an additional source of ascertainment bias. 
 
We thank the reviewer for this suggestion. If we excluded participants with a COPD diagnosis, we would 
not have a fully representative sample of the participants in GBMI with asthma, potentially introducing 
selection bias, or collider bias, that could distort genetic associations30,31. We would also have decreased 
power to identify asthma-associated loci. Most of the previous genetic studies of asthma in the 
literature did not exclude individuals with COPD from analyses. However, in the childhood- and adult-
onset asthma analyses, we do exclude participants with a COPD diagnosis to avoid confounding from 
potential misclassifications of adult-onset asthma and COPD. We have updated the Discussion to clarify 
this point, as follows: 
 
However, it is important to note that if we excluded participants with a COPD diagnosis, we would not 
have a fully representative sample of the participants in GBMI with asthma. As has been documented in 
other studies90,91, this could induce selection bias, or collider bias, which could lead to biased genetic 
associations. Most of the previous genetic studies of asthma in the literature did not exclude individuals 
with COPD from analyses. However, in the COA and AOA analyses, we do exclude participants with a 
COPD diagnosis to avoid confounding from potential misclassifications of adult-onset asthma and 
COPD. 
 
11. Discussion. The manuscript states that Bayesian PRS construction methods can improve 
prediction in asthma. The authors could explain how prediction is improved and discuss their PRS 
scores in the context of other asthma PRSs reported on to date. 
 
Thank you for pointing this out. In a GBMI companion paper focused on PRS, Wang et al. (2021)19 

compared the prediction accuracy of PRS derived from the pruning and thresholding (P+T) method 
versus PRS-CS for asthma in target cohorts of EUR, CSA, EAS, and AFR ancestries in GBMI, and observed 
improvements in prediction accuracy using PRS-CS across all target cohorts (Supplementary Fig. 7). 
Comparisons of the methods are discussed at length in the paper. We thus decided to investigate 
potential added improvements using PRS-CSx, the multi-ancestry extension of PRS-CS, in this 
manuscript. Despite its optimization for multi-ancestry GWAS discovery cohorts we observed similar 
performances across these two Bayesian methods. We have updated the PRS section of the Results to 
mention the results from Wang et al. (2021)19, as follows: 
 
We next explored the impact of the increased sample sizes and diversity in GBMI on genome-wide risk 
prediction of asthma. To establish a baseline understanding of PRS performance for asthma as well as 
other disease endpoints in GBMI, Wang et al. (2021)56 evaluated and compared the prediction accuracy 



 

 

of PRS derived from the pruning and thresholding (P+T) method and PRS-CS57 in target cohorts of 
EUR, CSA, EAS, and AFR ancestries, using the leave-one-biobank-out meta-analyses as discovery 
data. This study observed improvements in prediction accuracy for asthma using PRS-CS across all 
target cohorts (Supplementary Fig. 7), and additionally, the PRS derived from the GBMI 
leave-one-biobank-out meta-analyses of asthma had higher predictive accuracy, as measured by R2 on 
the liability scale (R2

liability ), compared to the PRS constructed from the TAGC meta-𝑅 analysis9 (Fig. 5). 

 
Other studies on asthma PRS in the literature have primarily focused on using PRS to predict asthma in 
childhood, and overall found limited performance of PRS33–36. Most of these studies used the P+T 
approach, while a recently published paper, Namjou et al. (2022)37, applied PRS-CS to the TAGC multi-
ancestry GWAS and found improved discriminatory power of their PRS (AUC of 0.66-0.70 across two 
pediatric cohorts) compared to the prior studies that used P+T. Sordillo et al. (2021)38 applied another 
genome-wide approach, lassosum, to the TAGC data, but their PRS evaluated in adult cohorts showed 
moderate performance (AUC of 0.51-0.57 across cohorts of different ancestries). While we did not 
assess the lassosum method, we have shown that the greater sample size and diversity of GBMI 
compared to TAGC contribute to better performing PRS (Fig. 5). We have updated the Discussion to 
include a discussion of prior work on asthma PRS: 
 
We also demonstrated that the greater diversity of GBMI improved polygenic prediction in asthma, 
particularly for populations of non-European ancestry. Previous studies on asthma PRS in the literature 
have primarily focused on using PRS to predict asthma in pediatric cohorts, and overall found limited 
performance of PRS28–30,85. Most of these studies used the P+T approach, while a recently published 
paper, Namjou et al. (2022)32, applied PRS-CS to the TAGC multi-ancestry GWAS and found improved 
discriminatory power of their PRS (receiver-operating characteristic area under the curve, or AUC, of 
0.66-0.70 across two pediatric cohorts) compared to the prior studies that used P+T. Sordillo et al. 
(2021)31 applied another genome-wide approach, lassosum, to the TAGC data, but their PRS evaluated 
in adult cohorts showed moderate performance (AUC of 0.51-0.57 across cohorts of different 
ancestries). While we did not assess the lassosum method, we have shown that the greater sample 
size and diversity of GBMI compared to TAGC contribute to better performing PRS (Fig. 5). 

12. It's not clear if ancestry markers were used at all in these analyses. 
 
We did not use ancestry markers to define ancestry groups, although since we used genome-wide 
methods, ancestry-informative SNPs are likely included in the analyses. Biobanks defined the ancestry 



 

 

groups for their participants before conducting GWAS, and we added this information to Supplementary 
Table 1. To compare the genetic ancestries represented in different biobanks, we used pre-computed 
loadings of genetic markers shared across all biobanks and the reference data containing 1000 Genomes 
and the Human Genome Diversity Project to project biobank participants to the same principal 
components space18. We have added a section in Methods to clarify this: 
 
Principal components (PC) projection for genetic ancestry comparison 
To compare the genetic ancestries represented in different biobanks, we used pre-computed loadings 
of genetic markers shared across all biobanks and the reference data containing 1000 Genomes 
(1000G) and the Human Genome Diversity Project (HGDP) to project biobank participants to the same 
principal components space. 179,195 genetic variants were genotyped/imputed in all biobanks, among 
which 168,899 are also in the 1000 Genomes34 and HGDP94. The weights corresponding to principal 
components for those markers were estimated based on the PCA analysis for the reference samples 
with known ancestry in 1000G and HGDP and shared among biobanks. Biobanks then generated PC 
loadings based on the pre-estimated weights of those markers. More details are described in Zhou et 
al. (2021)33. 
 
13. The authors could mention that they are not able to account for BMI. 
BMI is not typically included as a covariate in GWAS for asthma, and thus we did not adjust for BMI in 
our association analyses. 
 
14. One of the limitations that the authors appropriately address is the heterogeneity in the phenotype. 
The authors could consider conducting sensitivity analysis to see if there are differences whether the 
cases were defined based on self-report (Taiwan Biobank, QSkin) compared to PheCodes or ICD-9 
codes. 
 
We thank the reviewer for this suggestion. We agree that an additional sensitivity analysis comparing 
SNP effects in the meta-analyses of the biobanks that used the PheCode definition vs. self-reported data 
would be helpful to evaluate the effects of phenotype heterogeneity on effect size estimation. However, 
only three biobanks used self-reported data, and 2 of the 3 biobanks (TWB and BBJ) only have 
participants of EAS ancestry. Unfortunately, this limits our ability to rigorously assess the effects of 
phenotype definition on differences in effect size estimates without confounding. However, as we 
mention in the Discussion, we compared the asthma GWAS derived from self-reported vs. PheCode data 
in UKBB and found high genetic correlation (rg (se) = 0.95 (0.01)) between the GWAS. This provides some 
evidence that minor differences in phenotype definition may not substantially change the association 
results for asthma.  
 
To address another potential source of heterogeneity, we conducted an additional sensitivity analysis 
comparing SNP effects in the meta-analyses of the biobanks with different ascertainment. 9 biobanks 
were population-based (CKB, DECODE, ESTBB, GNH, GS, HUNT, Lifelines, TWB, and UKBB) and 6 (BBJ, 
BioMe, BioVU, MGB, MGI, and UCLA) were hospital-based. We fit the Deming regression on the effect 
size estimates of loci identified by the all-biobank meta-analysis, using the SNPs with p-value < 1x10-6 in 
both meta-analyses, and observed high consistency in the effects across the two groups (Supplementary 
Fig. 6). We report these results in the “GWAS from diverse ancestries reveal shared genetic architecture 
of asthma and improves power for genetic discovery” section of the Results: 
 
To test for potential heterogeneity in effect estimates due to ascertainment, we conducted an 
additional sensitivity analysis comparing SNP effects in the meta-analyses of the hospital- vs. population-



 

 

based biobanks. We conducted meta-analyses of the 9 population-based biobanks (CKB, DECODE, 
ESTBB, GNH, GS, HUNT, Lifelines, TWB, and UKBB) and 6 hospital-based biobanks (BBJ, BioMe, BioVU, 
MGB, MGI, and UCLA). We then fitted the Deming regression35 on the effect size estimates of the loci 
identified by the all-biobank meta-analysis, using the SNPs with p-value < 1x10-6 in both meta-analyses, 
and observed high consistency in the effects across the two groups (Supplementary Fig. 6). 

 
15. Another limitation is it seems the investigators were unable to distinguish between child-onset and 
adult-onset asthma. Limiting to adult-onset asthma could help their analysis. 
 
We thank the reviewer for this suggestion and agree that stratifying by age of onset is particularly 
important for studying asthma. We were able to conduct asthma age-of-onset subtype analyses in two 
of the participating GBMI biobanks, UKBB and FinnGen. We performed GWAS of childhood-onset 
asthma (COA) and adult-onset asthma (AOA) in Finngen and the EUR ancestry cohort in UKBB, using a 
cut-off age of 19 years at asthma diagnosis to define the subtypes (Methods). Then, we conducted fixed-
effects, inverse-variance weighted meta-analyses of the COA (20,964 cases, 674,014 controls) and AOA 
(56,744 cases, 674,014 controls) GWAS, respectively. Broadly, the results indicated that the GBMI meta-
analysis containing both age-of-onset subtypes captured many of the genetic variants contributing to 
the subtypes, but additional stratification by subtype revealed that the etiology of COA is characterized 
by a substantial overlap with AOA, as well as genes that have smaller (or no) effects on AOA. This 
supports previous findings3,4. Due to the limited availability of age of onset information across the 
biobanks, we did not have as much power to identify potential subtype-specific associations, which is an 
important area for future investigation. Please see response to Reviewer #1, comment #3 for a full 
explanation. 
 
16. The authors conclude that the "genetic effects of associated loci are largely consistent across the 
biobanks and ancestries." How do the authors put this in the setting of multiple other studies that 
suggest that genetic effects vary by genetic ancestry? 
 
We have highlighted a couple loci that showed significant heterogeneity in SNP effects across genetic 
ancestry groups, and recognize that other studies of asthma have discovered genetic loci that may have 



 

 

population-specific effects. Additional studies from diverse populations are needed to more fully 
investigate and uncover genetic loci that may have differing effects across populations. However, we 
note that across the other 13 phenotypes studied in GBMI, Zhou et al. (2021)18 did not observe 
substantial heterogeneity in genetic effects between the ancestry groups. 
 
17. The manuscript does not mention how ancestry groups are defined. This could be added to the 
supplemental tables. Was self-report used or ancestry markers? 
 
We thank the reviewer for this suggestion. We have added a column to Supplementary Table 1 with 
information on how ancestry groups were defined by each biobank. To compare the genetic ancestries 
represented in different biobanks, we used pre-computed loadings of genetic markers shared across all 
biobanks and the reference data containing 1000 Genomes and the Human Genome Diversity Project to 
project biobank participants to the same principal components space18. Additional information on 
ancestry groups can be found in Zhou et al. (2021)18. Please see also related response to Reviewer #1, 
comment #12. 
 
Minor comments: 
1. Summary: "Despite the considerable range in prevalence…" Consider adding "of asthma" after 
"prevalence." 
2. Introduction: Need reference 
3. Need to write out GWAS the first time in the Introduction 
4. Introduction "efforts to diversify asthma" is not clear. Maybe the authors mean "efforts to conduct 
asthma GWAS in diverse populations." 
5. Introduction: Add "initiative" after "Global Biobank Meta-analysis." 
6. Consider using the term "allergic rhinitis" in addition to "hay fever." 

We have addressed all above comments in the manuscript. 

Reviewer 3 
This is an interesting study representing a huge effort combining multiple biobank based GWASes 
resulting in the largest asthma GWAS to date. 
The study identifies novel susceptibility genes, adding to the understanding of the genetic 
mechanisms of asthma, and provides novel knowledge on the potential of using large, herterogenous 
datasets in genetic studies of asthma. 
The manuscript is well written and the methodologies seem sound. 
 
We thank the reviewer for the summary and positive comments and respond to each comment below 
individually. 
 
I am not sure, calculating gene-based p-values using MAGMA can truly be termed 'gene prioritization". 
It might be more appropriate to use actual gene prioritization methods such as DEPICT or PoPS which 
incorporate biological features to search for patterns of shared biology to prioritize genes at GWAS 
loci. Comparing gene-based results from MAGMA is not very different from directly comparing 
summary stats. In order to compare prioritized genes for e.g. asthma and COPD, I think other methods 
such as DEPICT are more suitable. 
 
We thank the reviewer for this suggestion. We conducted gene prioritization for both asthma and COPD 
using DEPICT and PoPS. Compared to the 41% of prioritized genes for COPD that overlapped with the 



 

 

genes prioritized for asthma, only 6% of the genes prioritized for COPD by DEPICT overlapped with 
asthma genes (Supplementary Table 16), and 9% of the genes prioritized for COPD by PoPS overlapped 
(Supplementary Table 17). The methods did not prioritize the same genes shared between COPD and 
asthma, with the exception of one shared gene which was prioritized by both DEPICT and MAGMA. 
Therefore, it is difficult to draw consistent conclusions about shared biology between asthma and COPD 
based on these approaches. This challenge is addressed in greater detail in Zhou et al. (2021)18. We 
added these analyses to the Results: 
 
We also conducted gene prioritization using Data-driven Expression-Prioritized Integration for Complex 
Traits (DEPICT)66 and gene-level Polygenic Priority Score (PoPS)67. However, only 3 of the 52 genes 
(6%) prioritized for COPD by DEPICT overlapped with a gene prioritized for asthma using the same 
method (Supplementary Table 16), and 17 of the 184 genes (9%) prioritized for COPD by PoPS 
overlapped with a prioritized gene for asthma (Supplementary Table 17). Across the shared COPD 
and asthma genes prioritized by each method, only 1 gene, MED24, was prioritized by more than one 
method, highlighting that existing gene prioritization methods have poor agreement, an observation 
that has been previously discussed67 and is explored in more detail in Zhou et al. (2021)33. 
The high genetic correlation with COPD might reflect a relatively high age of participants (high age of 
asthma diagnosis), which is likely to increase the overlap between diagnoses of asthma and COPD 
compared to asthma studies including younger individuals. How did participant age compare to previous 
studies reporting lower genetic correlation of asthma and COPD? 
 
Thank you for pointing this out. Sakornsakolpat et al. (2019)43 estimated genetic correlation between 
asthma and COPD using summary statistics from the Trans-National Asthma Genetic Consortium 
(TAGC)32, which included 66 studies, 27 of which were entirely or partially pediatric asthma cohorts. 
Hobbs et al. (2017)44 utilized summary statistics from the GABRIEL Consortium, which also included 
pediatric asthma cohorts. On the other hand, GBMI biobanks are primarily composed of adult 
participants (Supplementary Table 1). To further investigate the genetic overlap between asthma and 
COPD, we stratified two of the participating biobanks with age of onset information, UKBB and FinnGen, 
into childhood-onset asthma (COA) and adult-onset asthma (AOA) cohorts and performed meta-
analyses of COA and AOA GWAS from these two biobanks (Methods). We found that the AOA meta-
analysis had similarly strong genetic correlation with the GBMI COPD meta-analysis (rg (se) = 0.60 (0.3), p 
= 2.65x10-94), compared to the all-asthma GBMI meta-analysis, while the COA meta-analysis had a more 
moderate genetic correlation with the GBMI COPD meta-analysis (rg (se) = 0.33 (0.3), p = 7.60x10-31). 
Since we excluded participants with concurring asthma and COPD diagnoses from the asthma subtype 
meta-analyses, this suggests that the higher genetic correlation between the GBMI asthma and COPD 
meta-analyses is not solely a function of more potential overlaps between asthma and COPD diagnoses 
in GBMI but potentially also due to greater shared genetic architecture between AOA, which is likely 
overrepresented in GBMI, and COPD. We report the results of these analyses in the “Asthma and COPD 
have a shared genetic basis but are also influenced by distinct biological processes” section of the 
Results, as follows: 
 
Utilizing the GBMI meta-analyses of asthma and COPD, we observed a strong genetic correlation 
between asthma and COPD (rg (se) = 0.67 (0.021), p = 1.55x10-226). This genetic correlation estimate is 
higher than estimates from previous studies, which ranged from 0.38-0.4263,64. This may be a result of 
the discovery datasets used by these studies, which were enriched for pediatric asthma cohorts, while 
GBMI biobanks are primarily composed of adult participants. To more formally test for potential 
differences in the shared genetic architecture of age-of-onset subtypes and COPD, we computed 
genetic correlations between the COA and AOA meta-analyses and the GBMI COPD meta-analysis. 



 

 

We found that the AOA meta-analysis had a strong genetic correlation with the COPD meta-analysis (rg 

(se) = 0.60 (0.3), p = 2.65x10-94), while the COA meta-analysis had a more moderate genetic correlation 
with the COPD meta-analysis (rg (se) = 0.33 (0.3), p = 7.60x10-31). 
Data on participant age should be provided for the individual studies. 

We have added participant age information to Supplementary Table 1. 
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