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Referees’ reports, first round of review 
Reviewer #1 (Comments to authors)  
The authors have performed a technical tour-de-force to try to understand differences between glaucoma 
cases and controls gene expression, using iPSCs given the unavailability of appropriate human tissue, and 
are to be congratulated. While they have compressed a huge amount of work into a readable manuscript, at 
times it was not easy to follow through, and I hope my comments below will improve the manuscript. In 
particular, the results for each set of experiments do not particularly reference previous results- for example 
CDKN2B has a SNP allelic effect with respect to glaucoma status, but is not mentioned again- so I assume 
has no differential expression? Similarly the TWAS results are mildly disappointing- in terms of refining 
known loci there are only 3 loci identified in the end, and none of the better-known loci are discussed. 
Maybe a table of the authors' multitrait GWAS significant hits and what was found here for future 
researchers to refer to? It would be good to have a better flow-through of information. 
1. I would like clarification about the recruitment. The advanced glaucoma is clearly a great phenotype, but 
it is unclear from the description whether the subjects recruited ALL had end-stage disease, all had normal 
tension glaucoma- using the term recruitment "focused" on a) end stage b) NTG makes it unclear. Similarly 
the age of diagnosis of cases is given, and the age at recruitment of controls, but not the age of recruitment 
of cases (which may have bearing on later comments) 
2. I would like some clarification of methods- in the first paragraph of results, the authors talk of batches, 
pooling, 160 cell lines, SNPs from 162 individuals, 23 failures, 110 donor cell lines (and 55+57 human 
subjects). It is unclear to me how these all relate and where 162 individuals come from and exactly what 
was pooled. How many cases and controls were left? Could this be in some sort of flow chart? 
3. There were 17% RGCs, 77% RPCs and fewer other cells, as expected. Were these proportions similar in 
cases and controls? 
4. The study identified 58 e-genes and refers to Fig 2B/C where there are fewer names of genes shown. Are 
these results tabulated anywhere? And the circos plot is not fully explained in the legend as to what the 
different colors mean. 
5. The authors on page 7 give two possible explanations for the cell type-specific eQTL detection but then 
discount these. Cell type specificity and correlation properties are well known (see GTEX Consortium Science 
2020). Any other possible reasons? Could another possibility be random clonal differentiation with aberrant 
translational patterns? Apart from a few gene-markers that prove that these cells are RGC cells of some 
sort, how differentiated they were and how similar to actual cells (for example in animals)? 
6. Given the "poster-boy" status of CDKN2B in NTG, it would have been helpful to include this in the figure. 
This is probably an ubiquitous effect, give Burdon et al showing allele-specific methylation of this promoter. 
7. How was the FDR for the 54 eQTLs specific to RGCs actually calculated? I don't think I saw this and some 
have 10-2 FDRs in the table. 
8. Bottom page 7 fig 3C is referenced but I assume you mean 3A? And you refer to A alleles but the figure 
illustrates T/G alleles. 
9. Table S7 is referenced after 3118 genes but later in same paragraph 144 genes are differentially 
expressed (and table looks to have around 156 lines so I assume relates to the 144 genes?). Suggest move 
reference to correct place. 
10. Regarding differential expression, while I understand the randomisation should avoid false positives, 
differing ages might have some effect? Even during the natural conception 10-20% of CpG sites remain 
methylated. Epigenetic memory and age: there is talk about differential pluripotency depending on the age 
of the donor. How well age-matched were the cases and controls at skin biopsy? 
11. Further comment on the TWAS results might be helpful- TWAS infers expression but this study actually 
has expression data- and how these relate to the authors' previous publication cited that used non-RGC 
expression. 
12. While RGCs are the end-organ damaged in glaucoma, some comment on the importance of IOP and the 
fact that previous GWAS have found mainly IOP genes would be helpful to the non-expert reader. 
 
Reviewer #2 (Comments to authors)  
In this study, Daniszewski et al. use organoid technology to study the genetics of primary open angle 
glaucoma (POAG). The authors established iPSC lines from POAG patients and controls, then used them to 
derive retinal organoids, which were subjected to scRNA-seq. Transcriptional analysis enabled the authors to 
identify disease specific differentially expressed genes and retinal ganglion cell specific eQTLs. 
 



 

The authors present a large dataset that they are depositing in the Human Cell Atlas. Though a number of 
sc-RNAseq studies now have been performed on retinal organoids, this dataset will be a useful resource for 
the field. The study would benefit from a better description of the overall rationale. Specifically, what classes 
of genes identified in POAG GWAS would be expected to show differential expression in retinal ganglion 
cells, as opposed to other putative target cell types i.e. trabecular meshwork cells. Why would gene 
expression in immature (fetal) RGC) be expected to correlate with that in mature cells undergoing pathology 
or repair? These are questions that pertain to many disease modeling studies with iPSC, particularly for 
degenerative diseases, but the authors should address them. It might be important that the authors focused 
on normal tension glaucoma (as they explain in the methods), where RGC susceptibility may be more 
central, and if so, this should be explained up front. The study does not permit conclusions regarding the 
role of newly identified RGC eQTL or DEG in the disease, but the information may be useful in conjunction 
with other data, and the brief discussion does not claim too much from the data. 
 
Specific comments: 
 
1. Page 5-authors should comment of the diversity of the population studied with respect to sex and 
ethnicity. How many clones from each individual were studied? How many replicate differentiations were 
performed? What was the overall reproducibility? Were failures to differentiate equally distributed between 
patients and controls? 
2. Page 5-what was the rationale for harvest of organoids at the two-week timepoint. Would additional 
maturation have provided better information (most cells are still progenitors at this point). 
3. Page 5 in the end, how many cells from how many control and patient lines were assessed 
4. Page 5-Figure S2 shows very substantial variation in the proportion of RGC from patient to patient 
(though not in a disease related fashion). How did this variation impact on gene expression profiles? 
5. How convincing is Figure 2c-two cell types and only three genes does not seem sufficient to draw general 
conclusions. In some cases, effects of genotype across RGC subsets are not that striking. In S4, many eQTL 
also operate in RPE, including KANSL1-AS1 
6. Page 7-what is the basis for the statement that a number of RGC eQTL are directly involved in 
neurogenesis or neurodegeneration. You might expect the three examples cited to turn up by chance, given 
the diversity of processes (and apparently species) surveyed. How about actual gene ontology analysis? 
7. Pge 7 and Figure 3a-unless I have misunderstood, these eQTL in genes previously associated with POAG 
can certainly be detected in (most subsets of) RGC, but there seem to be no consistent differences in patient 
versus control cells. I suppose that this makes sense, but how is one to identify important eQTL without 
knowledge a priori if this is the case. I could not find the Figure 3c referred to in the text in my copy of the 
manuscript. 
8. Page 8-what exactly is the link postulated between TTR, familial amyloidotic polyneuropathy, and POAG. 
This does not seem convincing. 
9. Page 8-explain clearly how your multitrait glaucoma GWAS should relate to POAG? Is POAG a subset of 
the diseases examined in the GWAS? How exactly did you use the GWAS statistics? 
 
Reviewer #3 (Comments to authors)  
Daniszewski et al. used single cell RNA-seq (scRNA-seq), combined with eQTL analysis and GWAS, to study 
the associations between genetic variation and primary open-angle glaucoma (POAG). They reprogrammed 
fibroblasts to iPSCs from >50 POAG patients and matched controls and differentiated iPSC-derived retinal 
organoids. They performed scRNA-seq on ~250,000 cells and found that the vast majority of cells were 
retinal progenitor cells (RPCs). No difference in the cell type proportions between cases and controls was 
found. To determine the associations between genetic variation and gene expression, they performed an 
eQTL analysis on all cells and on each cell type. They found 2,235 eGenes across all cells, but they had very 
little power to detect eQTLs on each cell type (10-456 eGenes/cell type). To determine associations between 
genetic variation, gene expression and POAG, they performed TWAS, and found seven genes associated with 
disease, most of which were at known GWAS loci. 
While this study represents a great resource to study the transcriptome of retinal organoids, genetic 
analyses are weak and need to be strengthened. 
 
Major comments: 
A- The authors use terminology in a confusing manner: 
a. Page 4-5: "Using an additive linear model, a total of 54,786 eQTLs were found to be associated with 
21,512 SNPs". Because of LD structure, reporting the number of variants whose genotype is significantly 
associated with gene expression is meaningless. It would be more useful to report the number of eGenes. 
Additionally, these numbers are not described anywhere else in the text. 
b. Page 6: eQTLs underlie association, not causality. The authors cannot refer to eQTL analysis as "To 



 

explore cell type-specific genetic control of gene expression". 
 
B- Many of the analyses need to be substantially improved and the Methods section lacks important details: 
a. Batch effects are a common and real problem in Genomic studies. In the Results section on page 5 first 
paragraph it is unclear how the data were generated to avoid batch effects. Sentences from this paragraph: 
1. The cohort had 57 healthy and 55 POAG individuals; 2. Twenty-three lines did not differentiate; 3. 
330,569 cells from 160 individual cell lines; 4. SNPs from 162 individuals; 5. scRNA-seq data assigned to 
128 donors; and 6. Data from 110 donor iPSC lines used for subsequent analyses. This is impossible to 
follow and the methods and Table S1 do not clarify. Were cases and controls differentiated at the same time 
and mixed for scRNA-seq generation? If not, how were the data generated? The supplemental table should 
include a differentiation number and which samples were combined for scRNA-seq generation. On page 8 
this is stated, "We can be confident that these results are due to the genetic effects underlying POAG risk, 
as at all steps from iPSC generation, differentiation, cell capture, and library preparation, the cell lines were 
either managed in either shared conditions or randomized with respect to disease status (Methods)." But I 
don't see this information provided in the Methods. 
 
b. Page 5, section "Identification and characterisation of 23 subpopulations from 253,107 cells". The authors 
identify 23 clusters. While this is technically correct, it would be extremely surprising that retinal organoids 
include 24 cell types. Indeed, they are combined into six distinct cell types. Can the authors find a clustering 
resolution that allows them to identify these biologically relevant cell populations? If not, what would the 
reason be? 
 
c. The differential expression analysis could be more informative, considering the resources generated in this 
study. With ~250,000 individual cells differential expression analysis could provide invaluable information 
beyond the observed 3,118 genes that were differentially expressed. With single cell technologies, there are 
a few methods that would provide better insights into the transcriptomic differences between cases and 
controls. The authors should explore a few of these to strengthen their analysis: 
i. Pseudotime: the authors do not find differences between cell composition of cases and controls, but this 
does not exclude that, overall, cases and controls may display differences in maturity. Pseudotime may be 
tested for eQTLs too (see Cuomo et al., Nat Comm 2020 for an example) 
ii. Differential expression analysis cell type by cell type. Are there differentially expressed genes in each cell 
type? Is there a cell type that accounts for the most differences between cases and controls? 
 
d. Page 6, "The genetic control of gene expression is highly cell type-specific": "We identified a total of 
2,235 eQTL across all cell types, which surpassed a study-wide significance threshold of FDR < 0.05". FDR 
correction for the eQTL analysis should be explained. There are methods that account for LD when 
performing gene by gene FDR correction (eigenMT) and studies that suggest to perform a two- or three-step 
approach to perform FDR correction (Huang, NAR 2018: doi: 10.1093/nar/gky780). The authors do not 
describe how they performed FDR correction. 
 
e. Page 6, "The genetic control of gene expression is highly cell type-specific": The authors find 2,235 eQTLs 
and 1,447 eGenes across all cell populations. I do not understand what the authors intend by "eQTLs". Are 
these all independent eQTL signals (primary and conditional eQTLs)? If so, this should be clearly stated and 
the methods should describe how conditional eQTLs were performed. If not, it would be very surprising to 
find only 1.5 eVariants/eGene, considering the LD structure of the genome. It is also surprising that the 
authors used a very stringent MAF cutoff for eQTLs (10%, when the usual threshold for studies with a 
similar size is 5%). Also, these numbers do not match those described in the Introduction (54,786 eQTLs 
and 21,512 SNPs). 
 
f. Page 6, "The genetic control of gene expression is highly cell type-specific": finding that almost all eQTLs 
are cell type-specific is the opposite of what has been found in previous eQTL studies. For example, the 
latest GTEx papers show that many eQTLs are shared between different tissues, while other papers (Kim-
Hellmuth, Science 2020; Donovan, Nat. Comm. 2020; Cuomo, Nat Comm. 2020; Jerber, bioRxiv 2020) have 
shown that only a subset of eQTLs are cell type-specific. This needs to be discussed in discussion as to why 
the results from this study are so different. 
 
g. Page 7, second paragraph: "To evaluate this, we correlated the expression of each gene that had a 
significant cell type-specific eQTL effect, with its expression levels in each of the other cell types (Figure 
2C)". The figure shows three examples of eQTL signals in four cell types, of which one (DNAJA1) supports 
the cell type-specificity of eQTLs, one (CNOT6L) shows an eQTL shared between RGCs and RPE, and one 
(TSPAN2) does not have good agreement between RGCs. Based on these examples, I do not understand 
how the authors can conclude that "These results indicate that cell type-specific eQTL are not a function of 



 

cell type-specific gene expression, showing high levels of correlation in almost all instances". The authors 
also provide an alternative hypothesis: "Another possible explanation for the cell type-specific eQTL is low 
statistical power to detect eQTL in multiple cell types" and describe a convoluted analysis that, in their 
opinion, does not support the hypothesis, but they do not provide any supporting data. 
 
h. Page 7, last paragraph and its corresponding Methods section (page 26-27: "Identification of cis-eQTL 
using transcriptome and genotype data"): "To identify eQTL specific to POAG, disease status was included in 
the model". I interpret this as adding the disease status as a covariate in the eQTL analysis. If this is the 
correct interpretation (please, explain how this analysis was performed), adding disease status as a 
covariate in the eQTL analysis would remove the effects of the "disease" variable from the analysis. If the 
authors aim at finding variants that are associated with gene expression only in disease, a better approach 
would be to add an interaction term (genotype:disease) to the linear regression model and test its 
significance. For more details on this approach, please look at Alasoo, Nat Genet 2018. 
 
i. Page 24: "Participant recruitment". The cohort needs to be better described. It is indicated that the cohort 
of POAG and patients and cases were sex-, ethnically, and age-matched. Only the mean ages are given: 
cases 59.7 and controls 70.1. Complete information on each individual needs to be provided. This is 
important given how the SNP imputation was conducted (page 25) and the requirement to take this 
information into consideration as covariates in calling the eQTLs. The authors should describe the individuals 
included in this study at least in a supplemental table. 
 
j. page 26-27: "Identification of cis-eQTL using transcriptome and genotype data". Considering the number 
of samples tested, the number of eGenes should be higher. By changing the normalization step and adding 
covariates, the power should be improved: 
i. Gene expression is usually quantile-normalized to be used as input for eQTL analysis. Having normalized 
data allows to compare effect sizes across genes that are expressed at different levels. Log-transformation 
risks to flatten the differences for genes expressed at high levels. 
ii. Using PEER factors has been shown to increase the number of detected eQTLs, as PEER factors reduce the 
noise derived from unknown sources of variability in the data. Optimizing the number of PEER factors to use 
can greatly improve the number of eQTLs detected. 
 

Authors’ response to the first round of review 
Reviewer #1: 
The authors have performed a technical tour-de-force to try to understand differences 
between glaucoma cases and controls gene expression, using iPSCs given the 
unavailability of appropriate human tissue, and are to be congratulated. While they 
have compressed a huge amount of work into a readable manuscript, at times it was 
not easy to follow through, and I hope my comments below will improve the 
manuscript. In particular, the results for each set of experiments do not particularly 
reference previous results- for example CDKN2B has a SNP allelic effect with respect 
to glaucoma status, but is not mentioned again - so I assume it has no differential 
expression? Similarly the TWAS results are mildly disappointing- in terms of refining 
known loci there are only 3 loci identified in the end, and none of the better-known loci 
are discussed. Maybe a table of the authors' multitrait GWAS significant hits and what 
was found here for future researchers to refer to? It would be good to have a better 
flow-through of information. 
1. I would like clarification about the recruitment. The advanced glaucoma is clearly a 
great phenotype, but it is unclear from the description whether the subjects recruited 
ALL had end-stage disease, all had normal tension glaucoma- using the term 
recruitment "focused" on a) end stage b) NTG makes it unclear. Similarly the age of 
diagnosis of cases is given, and the age at recruitment of controls, but not the age of 
recruitment of cases (which may have bearing on later comments) 
Action. We have ‘tightened’ our description of the cohort, such that it now reads: 



 

“POAG patients required a clinical diagnosis of advanced normal tension glaucoma, 
…” In addition, we have included specific details regarding the age at collection for 
both the case and controls subjects: “(mean ± SD age: 69.1 ± 14.4 years at biopsy for 
case subjects; 68.1 ± 8.2 years at biopsy for controls).” Given that this information 
could be useful for future epigenetic work, these details for each individual cell line has 
been included in Table S1. 
2. I would like some clarification of methods - in the first paragraph of results, the 
authors talk of batches, pooling, 160 cell lines, SNPs from 162 individuals, 23 failures, 
110 donor cell lines (and 55+57 human subjects). It is unclear to me how these all 
relate and where 162 individuals come from and exactly what was pooled. How many 
cases and controls were left? Could this be in some sort of flow chart? 
Action. Thank you for this suggestion. We have now inserted a flowchart that 
describes progression of numbers (Figure S1). The first section of results was 
rewritten to clarify the experimental flow, as follows: 
“Large-scale generation of patient iPSCs, differentiation into retinal organoids 
and scRNA-seq. We recruited a large cohort of 183 individuals, which included 
healthy (n=92, of which 50 were female) and patients with advanced POAG (n=91, of 
which 50 were female). The mean ± SD age at biopsy for controls was : 68.1 ± 8.2 
years, and 69.1 ± 14.4 years for case subjects. Participants underwent skin biopsy 
and their cultured fibroblasts were reprogrammed to iPSCs using episomal vectors as 
Response to Reviewers 

we previously described(Crombie et al. 2017). Genotyping data were also generated 
from participants and after quality control and imputation, yielded 7,691,208 autosomal 
SNPs at a minor allele frequency (MAF) above 0.01. iPSC lines were differentiated in 
batches (25 batches, 6-8 lines with equal numbers of control and POAG lines per 
batch) to neural retina for 28 days in adherent cultures. Retinal organoids were then 
excised, cultured in suspension for 7 days and plated onto Matrigel for an additional 
2-week period to allow neuronal outgrowth from RGCs, and harvested for scRNA-seq 
(Figure 1A). This timeline was based on work by others, which described RGC 
emergence by day 35 of retinal organoid differentiation (Reichman et al. 2017), and 
RGC neurite extension following plating of dissociated organoids by day 40 (Fligor et 
al. 2018). Twenty-two lines did not differentiate to retinal organoids and were 
discarded (healthy: 11 lines, of which 1 was female; POAG: 11 lines of which 5 were 
female). Cells from the remaining 161 individual cell lines were harvested and divided 
into 25 batches for scRNA-seq, with each batch containing cells from 6-8 cell lines and 
had a targeted capture of 2,000 cells per line. A total number of 330,569 cells were 
captured via scRNA-seq and sequenced to a mean read depth of 41,020 per cell 
(Table S1). Individual cells were traced back to their cell line donor using a 
combination of transcriptome and genotype-based methods. Lines were removed 
based on the following criteria: failed genotype and virtual karyotyping QC, monogenic 
POAG, non-European background and low cell capture numbers. Individual cells were 
removed based on scRNA-seq metrics as described in the methodology. 247,50 cells 
(Healthy: 128,175, POAG: 119,345) from 110 iPSC lines (Healthy: 56 of which 35 
were female, mean ± SD age of samples 67.5 ± 7.8 years; POAG: 54 of which 33 were 
female, 71.8 ± 11.5 years) were retained for subsequent analyses.” 
3. There were 17% RGCs, 77% RPCs and fewer other cells, as expected. Were these 
proportions similar in cases and controls? 



 

Action. Yes the proportions were similar and the following sentence was included in 
the manuscript: “We compared the percentage of cell types between patients with 
POAG and healthy controls, and observed no statistically significant differences 
between the groups (Table S5, Figure S2).” 
4. The study identified 58 e-genes and refers to Fig 2B/C where there are fewer names 
of genes shown. Are these results tabulated anywhere? And the circos plot is not fully 
explained in the legend as to what the different colors mean. 
Action. The number of eQTL results has been tabulated in Table 2, whereby the 58 
eGenes mentioned in the paragraph were shared between members of a lineage. To 
clarify this, we have included an additional supplementary table containing these 
results, and the text in the figure caption has been altered to now read: 
“(B) Chromosomal map of significant loci in RGC subpopulations RGC1 (light orange), 
RGC2 (red), RGC3 (dark orange) and RPE (blue). Loci were labelled as significant if 
FDR < 5 ✕ 10-8. Table S6 contains full details of significant loci.” 
5. The authors on page 7 give two possible explanations for the cell type-specific eQTL 
detection but then discount these. Cell type specificity and correlation properties are 
well known (see GTEX Consortium Science 2020). Any other possible reasons? Could 
another possibility be random clonal differentiation with aberrant translational 
patterns? Apart from a few gene-markers that prove that these cells are RGC cells of 
some sort, how differentiated they were and how similar to actual cells (for example in 
animals)? 
Action. Thank you for this suggestion. To assess the similarity of our iPSC-derived 
retinal cell types, we used scPred - an unbiased gene-marker free cell classification 
method to classify our cells based on the dataset released by (Yan et al. 2020), who 
obtained retinal specimens from adult patients. The comparison indicates that the cell 
generated with our retinal organoid differentiation method cluster with scPred cell 
classifications, thus indicating a close relationship to native cells. In particular, the in 
vitro RGCs correlate with the in vivo RGC population as shown on the figure below. 
We have now inserted this additional analysis as panel C into Figure S3. 
Direct inspection of specific canonical genes, also revealed a similar pattern between 
our iPSC-derived retinal organdies and the human retinal dataset released by (Yan et 
al. 2020). Please see the figure below, which we have not currently included in our 
revised manuscript due to space considerations. 
6. Given the "poster-boy" status of CDKN2B in NTG, it would have been helpful to 
include this in the figure. This is probably an ubiquitous effect, given Burdon et al 
showing allele-specific methylation of this promoter. 
Action. We have further investigated the role of genetic variation on CDKN2B 
expression, and sought support of possible methylation influences. In our original 
submission we identified an interaction effect between the eQTL and disease status 
in the RGC1 cell population. In further analysis we identified that there was variation 
in the number of donors with a non-zero expression of the CDKN2B gene. We then 
tested if there was a relationship between the percentage of donors with non-zero 
expression and genotype classes for POAG and Controls. The analysis identified a 
significant association between disease status and genotype class for gene silencing. 
To highlight this we have included information relating to the expression frequency in 



 

Figure 4B, and the following text has been inserted: 
“In further analysis we identified that there was variation in the number of donors 
with a non-zero expression of the CDKN2B gene, supportive of previous work showing 
allele-specific methylation of this promoter region [67]. We then tested if there was a 
relationship between the percentage of donors with non-zero expression and genotype 
classes for cases and controls, and identified a significant association across all RGC 
subtypes (χ2, RGC1 p=5.17×10-11; RGC2 p= 9.42×10-10, RGC3 p= 1.57×10-14)(Figure 
4B).” 
7. How was the FDR for the 54 eQTLs specific to RGCs actually calculated? I don't 
think I saw this and some have 10-2 FDRs in the table. 
Action. The following sentence has now been inserted into the Methods section: “The 
FDR was calculated using the Benjamini–Hochberg procedure for all tested gene- 
SNP, as applied using MatrixEQTL (Shabalin 2012).” 
8. Bottom page 7 fig 3C is referenced but I assume you mean 3A? And you refer to A 
alleles but the figure illustrates T/G alleles. 
Action. Thank you for this astute observation. We verified this and the figure has been 
fully updated, and is now Figure 4. 
9. Table S7 is referenced after 3118 genes but later in the same paragraph 144 genes 
are differentially expressed (and table looks to have around 156 lines so I assume it 
relates to the 144 genes?). Suggest move reference to correct place. 
Action. Thank you for highlighting this, and the reference to this Table has been 
moved. 
10. Regarding differential expression, while I understand the randomisation should 
avoid false positives, differing ages might have some effect? Even during the natural 
conception 10-20% of CpG sites remain methylated. Epigenetic memory and age: 
there is talk about differential pluripotency depending on the age of the donor. How 
well age-matched were the cases and controls at skin biopsy? 
Action. We have now included additional details regarding the age of the case and 
control participants. 
At recruitment: Healthy: n=92, of which 50 were female; mean ± SD age: 68.1 ± 8.2 
years at biopsy. POAG: n=91, of which 50 were female; 69.1 ± 14.4 years at biopsy 
At analysis: Healthy: n=56 of which 35 were female; 67.5 ± 7.8 years. POAG: n=54 of 
which 33 were female; 71.8 ± 11.5 years. 
This information is now provided within an updated result section, methods, Table S1 
and in a flowchart presented as Figure S1. 
11. Further comment on the TWAS results might be helpful- TWAS infers expression 
but this study actually has expression data- and how these relate to the authors' 
previous publication cited that used non-RGC expression. 
Action. We have now inserted the following text into the Discussion Section: 
In the TWAS framework, the gene expression data (association between SNPs and 
genes) were used to train prediction models to determine gene expression levels by 
genetic variants (genetically regulated gene expression, GReX) (Gamazon et al. 2015; 
Gusev et al. 2016). The prediction models were used to impute gene expression levels 
in the GWAS dataset based on the trained weights from multiple-SNP prediction 
models, which could be further used to evaluate the association between imputed 
gene expression levels and the GWAS phenotype (that is glaucoma), and to identify 



 

genes associated with disease traits. In this study, we performed the first glaucoma 
TWAS based on cell type-specific expression profiling. The gene expression profiling 
between different tissues could be quite different, eg, bulk retinas versus 
subpopulations belonging to the RGC lineage. In our TWAS analysis, the single cell 
gene expression data from different subpopulations were used to train prediction 
models, and then to impute the gene expression levels in GWAS dataset based on 
summary statistics (Barbeira et al. 2018). The single-cell level resolution TWAS can 
provide new insights into the potential causal genes for glaucoma in specific cell types. 
12. While RGCs are the end-organ damaged in glaucoma, some comment on the 
importance of IOP and the fact that previous GWAS have found mainly IOP genes 
would be helpful to the non-expert reader. 
Action. The following text was added to the first paragraph of the introduction: 
“Elevated IOP was long considered a distinguishing feature of POAG; however, it is 
now clear that it is not a direct determinant of disease development [4]. Patients with 
elevated IOP may not develop glaucomatous optic neuropathy, while those with IOP 
within the normal population range may sustain significant RGC loss [5–7].” 
 
Reviewer #2: 
In this study, Daniszewski et al. use organoid technology to study the genetics of 
primary open angle glaucoma (POAG). The authors established iPSC lines from 
POAG patients and controls, then used them to derive retinal organoids, which were 
subjected to scRNA-seq. Transcriptional analysis enabled the authors to identify 
disease specific differentially expressed genes and retinal ganglion cell specific 
eQTLs. 
1. Page 5-authors should comment of the diversity of the population studied with 
respect to sex and ethnicity. How many clones from each individual were studied? 
How many replicate differentiations were performed? What was the overall 
reproducibility? Were failures to differentiate equally distributed between patients and 
controls? 
Action. Our cohort was age and sex matched. This information is now added to the 
result section: “We recruited a large cohort of 183 sex- and age- matched 
individuals,which included healthy (n=92, of which 50 were female) and patients with 
advanced POAG (n=91, of which 50 were female)”. The cohort exclusively focused on 
individuals of European descent. The selection of individuals based on ethnicity was 
performed as described in the methods section. “... a genetic relationship matrix from 
all the autosomal SNPs were generated using the GCTA tool and one of any pair of 
individuals with estimated relatedness larger than 0.125 were removed from the 
analysis (Yang et al. 2011). Individuals with non-European ancestry were excluded 
outside of an “acceptable” box of +/- 6SD from the European mean in PC1 and PC2 
in a SMARTPCA analysis. The 1000G Phase 3 population was used to define the 
axes, and the samples were projected onto those axes (Figure S5).” 
This plot has now been included as Figure S5. Two individuals did not cluster 
with the European (EUR) supercluster, and were excluded from analysis. Following 
reprogramming, polyclonal iPSC lines were generated for each patient as described 
in the methods section. Reproducibility of differentiation was similar between control 
and POAG iPSC lines with 81 control iPSC lines and 80 POAG iPSC lines successfully 



 

used for differentiation. The following information was added to the results section: “... 
Twenty-two lines did not differentiate to retinal organoids and were discarded (healthy: 
11 lines, of which 1 was female; POAG: 11 lines of which 5 were female). Cells from 
the remaining 161 individual cell lines were harvested and divided into 25 batches for 
scRNA-seq, with each batch containing cells from 6-8 cell lines and had a targeted 
capture of 2,000 cells per line.” The information on replicate differentiations is 
presented in Table S1 (donor quality control, number of pools). The following 
clarification was added to the result section: “... 247,520 cells (Healthy: 128,175; 
POAG: 119,345) from 110 iPSC lines (Healthy: 56 of which 35 were female, mean ± 
SD age of samples 67.5 ± 7.8 years; POAG: 54 of which 33 were female, 71.8 ± 11.5 
years) were retained for subsequent analyses.” 
2. Page 5-what was the rationale for harvest of organoids at the two-week time point. 
Would additional maturation have provided better information (most cells are still 
progenitors at this point). 
Action. We apologise for this confusion. RGCs were actually harvested after 49 days 
of differentiation, as based on work from Reichman and colleagues (2017, Stem Cells) 
which showed the emergence of RGC markers BRN3A/B by day 35, and a peak 
expression of these markers (mRNA and proteins) between days 42 and 84 of retinal 
organoid differentiation. The differentiation timeframe (49-day-differentiation) we used 
is also consistent with the thorough work of Fligor et al (2018, Sci Rep) which assessed 
RGC emergence during retinal organoid differentiation from hPSCs and showed that 
RGCs are present within the organoids from day 30, with a plating of dissociated 
organoids at day 40 allowing for RGC neurite extension. In our differentiation protocol, 
iPSC lines were first differentiated into retinal organoid for 28 days in adherent 
cultures, followed by 7 days in suspension culture (day 35) and plated onto Matrigel 
for an additional 2-weeks (day 49) to allow RGC neuronal outgrowth. Hence cells were 
harvested after 49 days days of retinal differentiation. The last 2-week-time-point of 
plated organoids was chosen following optimisation with the hESC line H9 (WiCell) 
and a BRN3B reporter hESC line (A81-H7, Fligor et al 2018, Sci Rep) which showed 
high expression of BRN3B in the plated organoids, with BRN3B positive neuronal 
outgrowth observed from 3 days of plating and length of these projections increased 
over time reaching higher levels by 14 days after plating whilst keeping cell viability 
high. For clarity the following sentences were inserted into the result section on page 
5: “This timeline was based on work by others, which described RGC emergence by 
day 35 of retinal organoid differentiation (Reichman et al. 2017), and RGC neurite 
extension following plating of dissociated organoids by day 40 (Fligor et al. 2018).” 
3. Page 5 in the end, how many cells from how many control and patient lines were 
assessed. 
Action. The results section was updated to reflect the number of control and patient 
lines retained for analysis: “Lines were removed based on the following criteria: failed 
genotype and virtual karyotyping QC, monogenic POAG, non-European background 
and low cell capture numbers. Individual cells were removed based on scRNA-seq 
metrics as described in the methodology. 247,520 cells (Healthy: 128,175, POAG: 
119,345) from 110 iPSC lines (Healthy: 56 of which 35 were female, mean ± SD age 
of samples 67.5 ± 7.8 years; POAG: 54 of which 33 were female, 71.8 ± 11.5 years) 
were retained for subsequent analyses.” 



 

4. Page 5-Figure S2 shows very substantial variation in the proportion of RGC from 
patient to patient (though not in a disease related fashion). How did this variation 
impact on gene expression profiles? 
Action. We thank the reviewer for this interesting suggestion. Following their advice, 
we assessed the effect of RGC proportion on both differentially expressed genes in all 
cell types, and the detection of eQTL in RGC subpopulations. We included the 
proportion of RGCs as a latent variable in DE analysis using MAST and compared the 
results to the baseline and found it had the biggest impact on the interneuron 
subpopulation (please see graph below). Enrichment of differentially expressed genes 
related to % RGC showed the upregulation of apoptosis pathways, growth pathways 
and developmental pathways (Table S9). As RGCs are one of the earliest cell types 
to arise during retinal development, they can influence the behaviour of surrounding 
cells, including progenitors and differentiating cells. It is already established that RGCs 
influence retinogenesis by interactions with progenitor cells and other retinal neurons 
(D’Souza and Lang 2020). The variation we observed in the DE analysis thus suggests 
that RGCs influence the differentiation and survival of early interneurons, by 
upregulated pathways associated with neuronal death, cell growth and differentiation. 
This statement was added to the Supplemental Results together with a new panel in 
Figure S3: “Comparing gene expression of samples with high levels of RGCs the other 
samples revealed an effect of RGC proportion on both differentially expressed genes 
in all cell types (Fig S3C), and the detection of eQTL in RGC subpopulations. In 
particular, RGC numbers mainly influenced gene expression in interneurons, with an 
upregulation of pathways linked to apoptosis growth and development (Table S9). As 
RGCs are one of the earliest cell types to arise during retinal development, they can 
influence retinogenesis by interactions with progenitor cells and other retinal neurons 
(D'Souza and Lang 2020). The variation in gene expression observed in interneurons 
thus suggests that RGCs influence the differentiation and survival of early 
interneurons, by upregulated pathways associated with neuronal death, cell growth 
and differentiation”. 
5. How convincing is Figure 2c-two cell types and only three genes does not seem 
sufficient to draw general conclusions. In some cases, effects of genotype across RGC 
subsets are not that striking. In S4, many eQTL also operate in RPE, including 
KANSL1-AS1 
Action. We now have included details of all significant loci as a supplementary table 
(Table S6) and have revised the text to reiterate this point. As displayed in the upset 
plot (Figure 3A), it is noteworthy that the majority of eQTLs were not common across 
cell types. Figure 2C are just examples of genes that had cell type-specific eQTL, and 
notably - KANSL1-AS1 did not have any significant interactions in the RPE cells of this 
study. 
6. Page 7-what is the basis for the statement that a number of RGC eQTL are directly 
involved in neurogenesis or neurodegeneration. You might expect the three examples 
cited to turn up by chance, given the diversity of processes (and apparently species) 
surveyed. How about actual gene ontology analysis? 
Action. We have now undertaken gene ontology analysis on eGenes associated with 
each RGC subpopulation and for comparison, RPE. No significant results were found 
using an Over Representation Analysis (ORA) (Boyle et al. 2004) and Gene Set 



 

Enrichment Analysis (GSEA) (Subramanian et al. 2005) (p-value threshold <0.05). We 
were able to perform a group Gene Ontology (GO) using clusterProfiler (Yu et al. 2012) 
which showed some groups of eGenes from the RGC subpopulations - such as those 
related to detoxification and biomineralization, were absent in eGenes from the RPE 
subpopulation. 
7. Pge 7 and Figure 3a-unless I have misunderstood, these eQTL in genes previously 
associated with POAG can certainly be detected in (most subsets of) RGC, but there 
seem to be no consistent differences in patient versus control cells. I suppose that this 
makes sense, but how is one to identify important eQTL without knowledge a priori if 
this is the case. I could not find the Figure 3c referred to in the text in my copy of the 
manuscript. 
Action. We apologise for this confusion. We approached the problem of identifying 
genes and eQTL with differing effects on disease status in several ways. We first 
tested for eQTL using all genes and SNPs that passed quality control in each cell using 
data from all individuals. For those genes that pass the study-wide FDR threshold and 
expression in at least 30% of donors, we tested if there was any interaction between 
the allelic effect and disease status, but fitting the following model (i.e. gene expression 
= SNP + SNP:disease + residual). The significance of the interaction term was also 
tested against a study-wide FDR threshold. We have revised Figure 4 to graphically 
display these results and have also updated the text to clarify this analysis strategy: 
“To identify eQTL that had alternative allelic effects under different disease statuses, 
we included an interaction term (SNP:disease status) in the original linear model for 
each eQTL identified by the first round of analysis. eQTL with interacting effects were 
determined to be significant based on a threshold of FDR < 0.05 of the interaction 
term.” 
8. Page 8-what exactly is the link postulated between TTR, familial amyloidotic 
polyneuropathy, and POAG. This does not seem convincing. 
Action. Individuals carrying specific mutations in TTR leading to Transthyretin 
V30Mrelated 
familial amyloidosis with polyneuropathy (FAP TTRV30M) often show ocular 
manifestations including glaucoma. A second reference supporting this point was 
added to this statement (Beirao et al, 2015). 
9. Page 8-explain clearly how your multitrait glaucoma GWAS should relate to POAG? 
Is POAG a subset of the diseases examined in the GWAS? How exactly did you use 
the GWAS statistics? 
Action. The multitrait glaucoma GWAS is currently the largest GWAS for this disease, 
and thus, presents the best power for our TWAS analysis. We only used the glaucoma 
GWAS statistic and the following sentence regarding multitrait GWAS has been 
inserted: “In previous work, we combined GWAS for multiple genetically correlated 
traits, and here used the glaucoma-specific effect size estimates and P-values for 
SNPs across the genome.” 
 
Reviewer #3: 
Daniszewski et al. used single cell RNA-seq (scRNA-seq), combined with eQTL 
analysis and GWAS, to study the associations between genetic variation and primary 
open-angle glaucoma (POAG). They reprogrammed fibroblasts to iPSCs from >50 



 

POAG patients and matched controls and differentiated iPSC-derived retinal 
organoids. They performed scRNA-seq on ~250,000 cells and found that the vast 
majority of cells were retinal progenitor cells (RPCs). No difference in the cell type 
proportions between cases and controls was found. To determine the associations 
between genetic variation and gene expression, they performed an eQTL analysis on 
all cells and on each cell type. They found 2,235 eGenes across all cells, but they had 
very little power to detect eQTLs on each cell type (10-456 eGenes/cell type). To 
determine associations between genetic variation, gene expression and POAG, they 
performed TWAS, and found seven genes associated with disease, most of which 
were at known GWAS loci. While this study represents a great resource to study the 
transcriptome of retinal organoids, genetic analyses are weak and need to be 
strengthened. 
We thank the reviewer for providing helpful and informative comments and 
suggestions. We have addressed each of these, and replied in detail below. In 
particular, we have improved on both the genetic analysis and description of the results 
and methods throughout. 
Major comments: 
A- The authors use terminology in a confusing manner: 
a. Page 4-5: "Using an additive linear model, a total of 54,786 eQTLs were found to 
be associated with 21,512 SNPs". Because of LD structure, reporting the number of 
variants whose genotype is significantly associated with gene expression is 
meaningless. It would be more useful to report the number of eGenes. Additionally, 
these numbers are not described anywhere else in the text. 
Action. We apologise for this confusion, and agree that it would be more useful to 
report the number of eGenes. Reference to the number of eQTL associated with 
eSNPs has been removed and replaced with reference to the number of eGenes. 
b. Page 6: eQTLs underlie association, not causality. The authors cannot refer to eQTL 
analysis as "To explore cell type-specific genetic control of gene expression". 
Action. We agree that eQTLs identified are associated and not necessarily causal and 
as such we have removed this phrase. 
B- Many of the analyses need to be substantially improved and the Methods section 
lacks important details: 
a. Batch effects are a common and real problem in Genomic studies. In the Results 
section on page 5 first paragraph it is unclear how the data were generated to avoid 
batch effects. Sentences from this paragraph: 
1. The cohort had 57 healthy and 55 POAG individuals; 
2. Twenty-three lines did not differentiate; 
3. 330,569 cells from 160 individual cell lines; 
4. SNPs from 162 individuals; 
5. scRNA-seq data assigned to 128 donors; and 
6. Data from 110 donor iPSC lines used for subsequent analyses. 
This is impossible to follow and the methods and Table S1 do not clarify. Were cases 
and controls differentiated at the same time and mixed for scRNA-seq generation? If 
not, how were the data generated? The supplemental table should include a 
differentiation number and which samples were combined for scRNA-seq generation. 
On page 8 this is stated, "We can be confident that these results are due to the genetic 



 

effects underlying POAG risk, as at all steps from iPSC generation, differentiation, cell 
capture, and library preparation, the cell lines were either managed in either shared 
conditions or randomized with respect to disease status (Methods)." But I don't see 
this information provided in the Methods. 
Action. We apologize for the lack of clarity of the paragraph. Cases and controls were 
differentiated simultaneously and mixed for scRNA-Seq. Differentiation number and 
sample identity per batch are now added Table S4. The first section of results was 
rewritten to clarify the experimental flow, please see response to Reviewer 1 point 2: 
“iPSC lines were differentiated in batches (25 batches, 6-8 lines with equal numbers 
of control and POAG lines per batch) to neural retina for 28 days in adherent cultures. 
Retinal organoids were then excised, cultured in suspension for 7 days and plated 
onto Matrigel for an additional 2-week period to allow neuronal outgrowth from RGCs, 
and harvested for scRNA-seq (Figure 1A). Cell lines were harvested in 25 batches 
with 6-8 lines per batch and multiplexed for scRNA-Seq with a targeted capture of 
2,000 cells per line”. 
Information on shared or randomized conditions have been included in Table S1 and 
the method section: page 25 for Differentiation of iPSCs into retinal organoids: “Cell 
lines were harvested in 25 batches (6-8 lines per batch) and multiplexed for scRNASeq 
with a targeted capture of 2,000 cells per line”. 
Computational methods were also used to correct for batch effects, as described in 
the methods section: “The unfiltered count matrices of all batches were combined into 
one dataset using the cellranger aggr pipeline. This pipeline equalized the read depth 
of all batches by downsampling reads from higher-depth libraries to match the lowest 
depth library (Zheng et al. 2016). The SCTransform function from Seurat (v3.0.2) was 
applied to the filtered count matrix to perform cell-cell and batch normalization 
(Hafemeister and Satija 2019). ” 
b. Page 5, section "Identification and characterisation of 23 subpopulations from 
253,107 cells". The authors identify 23 clusters. While this is technically correct, it 
would be extremely surprising that retinal organoids include 24 cell types. Indeed, they 
are combined into six distinct cell types. Can the authors find a clustering resolution 
that allows them to identify these biologically relevant cell populations? If not, what 
would the reason be? 
Action. As shown in Figure S2A, clustering was performed at resolutions ranging from 
0 to 1 in steps of 0.1. Even at the lowest resolution, there were 13 subpopulations. 
Considering we are working with stem cell-derived cultures, the cells exist on a 
continuum between the progenitor state and the final cell state, which is supported by 
our trajectory analysis. These subpopulations should therefore be considered cell 
states, rather than just cell types. 
c. The differential expression analysis could be more informative, considering the 
resources generated in this study. With ~250,000 individual cells differential 
expression analysis could provide invaluable information beyond the observed 3,118 
genes that were differentially expressed. With single cell technologies, there are a few 
methods that would provide better insights into the transcriptomic differences between 
cases and controls. The authors should explore a few of these to strengthen their 
analysis: 
i. Pseudotime: the authors do not find differences between cell composition of cases 



 

and controls, but this does not exclude that, overall, cases and controls may display 
differences in maturity. Pseudotime may be tested for eQTLs too (see Cuomo et al., 
Nat Comm 2020 for an example) 
Action: We thank the reviewer for their interesting suggestion of applying pseudotime 
to eQTL analysis and have updated the analysis to include this information: 
“Trajectory analysis of subpopulations reveals disease-specific mechanisms in 
RGC lineages 
We studied the ordering of the subpopulations across pseudotime by performing 
trajectory inference using the slingshot package [56], as described in Methods. 
Trajectory inference revealed a complex, branching trajectory that consisted of 12 
lineages (Figure 1C, 2A). Three of these lineages (6, 7 and 9) comprise of RGC 
subpopulations branching off from RPC9 (Figure 2A, 2B). We examined these 
lineages in greater detail by studying gene expression patterns related to disease and 
pseudotime. Gene ontology analysis of the RGC lineages revealed an 
overrepresentation of genes involved in neurogenesis (Figure 2C). Further to this, 
there was a significant difference in the distribution of cells across pseudotime in the 
lineage terminating with RGC3 (Lineage 7), based on disease status (Kolmogorov- 
Smirnov Test: p-value - 0.028). 
We then used tradeSeq [57] to investigate the nature of this lineage, and determine if 
disease status affected gene expression patterns across the trajectory. We identified 
1,471 genes that were differentially expressed between the conditions, across 
pseudotime (Benjamini & Hochberg FDR < 0.05) (Table S6). Disease ontology of 
these genes was performed with Gene Set Enrichment Analysis (GSEA) [58], and 
revealed associated with four disease pathways - schizophrenia, psychotic disorders, 
disease of mental health and cognitive disorder, as annotated by the Disease Ontology 
database [59]. We also applied pseudotime to cis-eQTL mapping to determine if this 
had a significant interaction between genotype and POAG. This uncovered one new 
eGene - HMGB1, which had pseudotime as a significant interaction term (p=1.76 × 10- 

7) at SNP rs9578147 (Figure 2D). Interestingly, HMGB1 is involved with nucleosome 
stabilization, and is released from injured cells and to induce an inflammatory 
response [60]. It has been shown to induce RGC death in NMDA-mediated retinal 
neurodegeneration [61,62], and is present in glaucomatous retina [63].” 
ii. Differential expression analysis cell type by cell type. Are there differentially 
expressed genes in each cell type? Is there a cell type that accounts for the most 
differences between cases and controls? 
Action: In addition to canonical markers, we assigned cell types to subpopulations 
using differentially expressed genes. The table for all differentially expressed genes 
for each subpopulation can be found in Table S4. 
d. Page 6, "The genetic control of gene expression is highly cell type-specific": "We 
identified a total of 2,235 eQTL across all cell types, which surpassed a study-wide 
significance threshold of FDR < 0.05". FDR correction for the eQTL analysis should 
be explained. There are methods that account for LD when performing gene by gene 
FDR correction (eigenMT) and studies that suggest a two- or three-step approach to 
perform FDR correction (Huang, NAR 2018: doi: 10.1093/nar/gky780). The authors do 
not describe how they performed FDR correction. 
Action. We apologise for not making this clear in our initial submission. The following 



 

sentence has now been inserted into the Methods section: “The FDR was calculated 
using the Benjamini–Hochberg procedure for all gene-SNP interactions, as applied 
using MatrixEQTL (Shabalin 2012).” 
e. Page 6, "The genetic control of gene expression is highly cell type-specific": The 
authors find 2,235 eQTLs and 1,447 eGenes across all cell populations. I do not 
understand what the authors intend by "eQTLs". Are these all independent eQTL 
signals (primary and conditional eQTLs)? If so, this should be clearly stated and the 
methods should describe how conditional eQTLs were performed. If not, it would be 
very surprising to find only 1.5 eVariants/eGene, considering the LD structure of the 
genome. It is also surprising that the authors used a very stringent MAF cutoff for 
eQTLs (10%, when the usual threshold for studies with a similar size is 5%). Also, 
these numbers do not match those described in the Introduction (54,786 eQTLs and 
21,512 SNPs). 
Response. We apologise for the confusion here. We defefine eQTL as an 
independent genetic association between SNPs and a gene (termed an eGene if there 
is 1 or more signifuicant eQTL). An eQTL typically contains many eVariants (eSNPs) 
and to test for secondary independent associations we take the top eSNP from the 1st 
round of eQTL analysis and include it as a conditional effects in the regression model 
and test a second round of eQTL tests. This accounts for LD between SNPs as any 
SNPs in LD with the original top eSNP will not have a significant effect in the second 
round of analysis. However, unlinked (and associated) secondary eQTL can be 
identified. In total we identify eQTL for 1,447 eGenes, of which 788 have a significant 
secondary eQTL. We have updated the text throughout with a clearer explanation of 
terms. 
On the MAF, we decided to use a MAF cut-off of 0.1 to ensure that we (on average) 
had enough individuals in the rare homozygous genotype class to accurately estimate 
the mean effect for that genotype class. 
f. Page 6, "The genetic control of gene expression is highly cell type-specific": finding 
that almost all eQTLs are cell type-specific is the opposite of what has been found in 
previous eQTL studies. For example, the latest GTEx papers show that many eQTLs 
are shared between different tissues, while other papers (Kim-Hellmuth, Science 
2020; Donovan, Nat. Comm. 2020; Cuomo, Nat Comm. 2020; Jerber, bioRxiv 2020) 
have shown that only a subset of eQTLs are cell type-specific. This needs to be 
discussed in discussion as to why the results from this study are so different. 
Action. We appreciate this point, as the apparent difference in the conclusions could 
mislead readers. When testing for overlap of eQTL between cell-types, we tested if 
the top eSNPs were shared in common. This is in contrast to the papers mentioned 
above which tested for overlap in eGene. i.e. does the same gene have an eQTL 
between cell types. While this analysis strategy is valid, we were concerned that it 
would mask cell-type specific effects when independent eQTL acting on the same 
gene in different cell types. In other work (Yazar et al. Under Revision at Science) we 
have found that these types of effects are more common than true shared eQTL. we 
have added some new text in the discussion to make this clear. 
g. Page 7, second paragraph: "To evaluate this, we correlated the expression of each 
gene that had a significant cell type-specific eQTL effect, with its expression levels in 
each of the other cell types (Figure 2C)". The figure shows three examples of eQTL 



 

signals in four cell types, of which one (DNAJA1) supports the cell type-specificity of 
eQTLs, one (CNOT6L) shows an eQTL shared between RGCs and RPE, and one 
(TSPAN2) does not have good agreement between RGCs. Based on these examples, 
I do not understand how the authors can conclude that "These results indicate that cell 
type-specific eQTL are not a function of cell type-specific gene expression, showing 
high levels of correlation in almost all instances". The authors also provide an 
alternative hypothesis: "Another possible explanation for the cell type-specific eQTL is 
low statistical power to detect eQTL in multiple cell types" and describe a convoluted 
analysis that, in their opinion, does not support the hypothesis, but they do not provide 
any supporting data. 
Action. To ensure clarity of manuscript we have removed this section of text and 
simplified the message, such that it now reads: 
“Whilst some eGenes are identified across multiple cell types (such as RPS26; Figure 
3B, 3C), the three RGC subpopulations share 17 eGenes, such as DNAJA1 and 
TSPAN2, that are absent from other subpopulations (Figure 3B). DNAJA1 belongs to 
a large family of chaperones, and has been shown to prevent neurodegeneration by 
decreasing α-synuclein aggregates [64], whilst TSPAN2, is known to support 
myelination [65].” 
h. Page 7, last paragraph and its corresponding Methods section (page 26-27: 
"Identification of cis-eQTL using transcriptome and genotype data"): "To identify eQTL 
specific to POAG, disease status was included in the model". I interpret this as adding 
the disease status as a covariate in the eQTL analysis. If this is the correct 
interpretation (please, explain how this analysis was performed), adding disease 
status as a covariate in the eQTL analysis would remove the effects of the "disease" 
variable from the analysis. If the authors aim at finding variants that are associated 
with gene expression only in disease, a better approach would be to add an interaction 
term (genotype:disease) to the linear regression model and test its significance. For 
more details on this approach, please look at Alasoo, Nat Genet 2018. 
Action. We apologise for the confusion over the statistical model that we used here. 
As highlighted above, we did apply a test for the interaction between SNP and Disease 
status, rather than just fitting disease status in the model. We have edited this section 
to provide a clearer explanation of our approach: 
“To identify eQTL that had alternative allelic effects under different disease statuses, 
we included an interaction term (SNP:disease status) in the original linear model for 
each eQTL identified by the first round of analysis. eQTL with interacting effects were 
determined to be significant based on a threshold of FDR < 0.05 of the interaction 
term.” 
i. Page 24: "Participant recruitment". The cohort needs to be better described. It is 
indicated that the cohort of POAG and patients and cases were sex-, ethnically, and 
age-matched. Only the mean ages are given: cases 59.7 and controls 70.1. Complete 
information on each individual needs to be provided. This is important given how the 
SNP imputation was conducted (page 25) and the requirement to take this information 
into consideration as covariates in calling the eQTLs. The authors should describe the 
individuals included in this study at least in a supplemental table. 
Action. The control and POAG cohorts were matched for age and sex. These 
matchings were respected at collection and in the subsequent samples used for the 



 

sequencing and analysis. 
At recruitment: Healthy: n=92, of which 50 were female; mean ± SD age: 68.1 ± 8.2 
years at biopsy. POAG: n=91, of which 50 were female; 69.1 ± 14.4 years at biopsy 
At analysis: Healthy: n=56 of which 35 were female; 67.5 ± 7.8 years. POAG: n=54 of 
which 33 were female; 71.8 ± 11.5 years. 
This information is now provided within an updated result section, methods, Table S4 
and in a flowchart presented in a revised Figure S1. 
j. page 26-27: "Identification of cis-eQTL using transcriptome and genotype data". 
Considering the number of samples tested, the number of eGenes should be higher. 
By changing the normalization step and adding covariates, the power should be 
improved: 
Action: We have now performed quantile-normalisation, and as suggested this did 
improve our power for discovery of eQTL. As such, the text (results & method) and 
figures have been updated with this revised analysis. 
Our revised breakdown of results are displayed here: 
Model Number of eQTL Number of eGenes Number of eSNPs 
Population 4,484 3,102 3,892 
Disease 4,443 3,091 3,860 
Control 2,985 2,394 2,492 
POAG 2,460 2,090 2,136 
i. Gene expression is usually quantile-normalized to be used as input for eQTL 
analysis. Having normalized data allows to compare effect sizes across genes that are 
expressed at different levels. Log-transformation risks to flatten the differences for 
genes expressed at high levels. 
Action. Thank you for this suggestion. As outlined in the point above, we have now 
performed quantile-normalisation, and revised our results accordingly. 
ii. Using PEER factors has been shown to increase the number of detected eQTLs, as 
PEER factors reduce the noise derived from unknown sources of variability in the data. 
Optimizing the number of PEER factors to use can greatly improve the number of 
eQTLs detected. 
Response. Again, thank you for this suggestion. To directly investigate this, we 
applied PEER factors to a subset of cells (those designated in the RGC1 cluster). 
Specifically, PEER factor residuals were applied to our gene expression matrix. UMI 
logcounts were quantile_normalised using limma, and results filtered with FDR 
threshold of 0.05. Interestingly, when compared to quantile normalisation, we identified 
a lower number of eQTLs PEER factors were applied (please see the figure below), 
and as such have not included these results into the manuscript.__ 

 

Referees’ report, second round of review 

Reviewer #2 (Comments to authors)  
In their rebuttal and revised manuscript, the authors have clarified a number of significant issues raised in 
three in depth reviews. The clarity of the manuscript has been improved. The data will be a great resource 
for workers in the field. 
Reviewer #3 (Comments to authors)  



 

The approach described by the authors likely results in an underestimation of the number of the overlapping 
eQTL signals between cell types, as it does not take LD structure into account: i.e. if two variants are in 
perfect LD but one is found as the lead eSNP for cell type A and the other is found as the lead eSNP for cell 
type B, the authors would not describe these two eQTL signals as “shared”. To address this issue, 
colocalization methods (see 
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004383) would provide a more 
meaningful estimation of the number of cell type-specific eQTL signals. 
 
The justification that the authors provide in the Discussion “This strategy, as opposed to testing for eGene 
overlap, helps ensure that the estimated proportion of shared eQTL is not inflated due to occurrences where 
the same gene’s expression is associated with two independent eQTL in different cell types” should be 
reformulated once the differences between cell types have been addressed taking LD structure into account. 
 
Extent they have addressed concerns, advance and suitability for publication in Cell Genomics or another 
journal. 
 
Overall the authors addressed most concerns except for the comment above. If this concern is addressed, 
the publication would be suitable for Cell Genomics. 

  
 
Authors’ response to the second round of review 
Reviewer #2: In their rebuttal and revised manuscript, the authors have clarified a 
number of significant issues raised in three in depth reviews. The clarity of the 
manuscript has been improved. The data will be a great resource for workers in the field. 
 
We thank the reviewer for their valuable suggestions and feedback. 
 
Reviewer #3: The approach described by the authors likely results in an 
underestimation of the number of the overlapping eQTL signals between cell types, as 
it does not take LD structure into account: i.e. if two variants are in perfect LD but one 
is found as the lead eSNP for cell type A and the other is found as the lead eSNP for 
cell type B, the authors would not describe these two eQTL signals as “shared”. To 
address this issue, colocalization methods (see 
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004383) would 
provide a more meaningful estimation of the number of cell type-specific eQTL 
signals. 
The justification that the authors provide in the Discussion “This strategy, as 
opposed to testing for eGene overlap, helps ensure that the estimated proportion of 
shared eQTL is not inflated due to occurrences where the same gene’s expression is 
associated with two independent eQTL in different cell types” should be reformulated 
once the differences between cell types have been addressed taking LD structure into 
account. 
We thank the reviewer for the suggestion on how to address the involvement of LD structure in 
overlapping eQTL signals between cell types. We have now further refined our approach by 
performing conditional eQTL analysis on eGenes with an eQTL in more than one subpopulation, and 
have updated the manuscript to accommodate these new findings. 
We implemented the following methodology and have inserted the following text into the 
manuscript: 
To identify eGenes with overlapping eQTL signals in more than one subpopulation, 
we performed multi-directional conditional analysis on pairs of subpopulations. If a 
gene had an eQTL in subpopulation A and subpopulation B, we tested whether the 
allelic effects of eSNPA and eSNPB were dependent on each other by including eSNPA 



 

as a fixed covariate in the linear model for subpopulation B, and eSNPB in the linear 
model for subpopulation A. eSNPs were independent if the association remained 
significant. To determine if eSNPs tag the same causal variant in both subpopulations 
or were in LD, we tested the change in allelic effect between this model and the original 
model for significance. If the change was not significant, then the eSNPs tag 
independent causal variants for the same gene in different cell subpopulations. 
The following text has been inserted into the results section of the manuscript: 
647 out of 3091 genes with an eQTL - eGenes, were detected in more than one cell 
type, and only 215 of these eGenes had an eQTL observed in two or more cell types 
(Figure 3B, 3C, Table S8). RPE and RPC14 did not have any overlapping eQTL with 
any other cell types, while RPC1 and RGC1 had the greatest number of overlapping 
eQTL (27) (Pearson’s correlation: r2 = 0.46, p value = 0.02) (Figure 3B). As the 
majority subpopulations are retinal progenitors, non-RPC subpopulations share more 
eQTL signals with RPC subpopulations than each other. Two genes had an eQTL in 
all subpopulations but RPC2 - RPS26 and GSTT1 (Figure 3D). Only GSTT1 had 
overlapping eQTL in 16 subpopulations that indicates the variants associated with this 
eQTL are either in linkage disequilibrium with each other or are targeting the same 
causal variant. Approximately half of the eGenes detected in the retinal ganglion cell 
subpopulations (RGC1: 46.9%, RGC2: 58.9% and RGC3: 51.1%) were exclusive to 
this cell type, and only seven of these eGenes - PPP1R17, RASD1, NXPH1, IGFBPL1, 
SAPCD2, KRTAP5-AS1 and TK1 were found in at least one RGC subpopulation 
(Figure 3D). 

 

Referees’ report, third round of review 

Reviewer #3 (Comments to authors)  
The authors addressed my concern about taking LD structure into account when examining overlapping 
eQTL signals between cell types. 
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