Cell Genomics, Volume 2

Supplemental information

SNPs, short tandem repeats, and structural variants

are responsible for differential gene expression

across C57BL/6 and C57BL/10 substrains

Milad Mortazavi, Yangsu Ren, Shubham Saini, Danny Antaki, Celine L. St. Pierre, April Williams, Abhishek Sohni, Miles F. Wilkinson, Melissa Gymrek, Jonathan Sebat, and Abraham A. Palmer

Figure S1. Variant frequency and validation rates, related to STAR Methods. A: Fraction of variants observed in substrains (five C57BL/10 and nine C57BL/6 substrains) in each variant category. The spike at 5 reflects polymorphisms that separated C57BL/10 (n=5) from C57BL/6 (n=9) substrains. The smaller spike at 14 represents instances where none of the substrains (including C57BL/6J, which is the basis for mm10) matched the mm10 reference genome. **B:** Validation rates of WGS variants in the protein coding regions using RNA-Seq data. WGS SNPs and INDELs which intersect with protein coding exon and UTR annotations (from Ensembl) and have at least 3X coverage in RNA-Seq dataset are considered for validation. Variants from RNA-Seq data were called by GATK best practices[S1] for each substrain separately (see also STAR Methods). Validation rate between different categories of variants are compared. The total number of variants in each category is indicated on top of each bar. Overall 97% of all SNPs and 67% of all INDELs were validated using RNA-Seq data.

Figure S2. Concordance of C57BL/10-specific hotspot segments with other mouse strains, related to Figure 1. Concordance of 24 C57BL/10-specific haplotypes (SNP hotspots) with SNPs of other strains from *domesticus* and *musculus* origin. Y-axis shows

segments with C57BL/10-specific SNP hotspots. X-axis shows strains that have at least 300 common loci and at least 90% concordance with C57BL/10-specific SNPs in each segment. The SNP data for the strains is obtained from MGI[S2]. The segments are color coded with the concordance value. The strain labels on the x-axis are color coded with blue: *domesticus* origin, and red: *musculus* origin[S3].

Figure S3. Distribution of genomic variations in 14 C57BL substrains, related to Figure 1. A: SNP distribution, **B**: INDEL distribution, **C**: STR distribution, and **D**: SV distribution for nine C57BL/6 and five C57BL/10 substrains show clusters of variants that are specific to C57BL/10 substrains on chromosomes two, four, eight, nine, eleven, thirteen, fourteen and fifteen.

Figure S4. Association of all genomic variants and expression of DEGenes, related to Figure 2. Association tests of DEGene expressions of C57BL/6 and C57BL/10 substrains with all genomic variants (SNPs, INDELs, STRs and SVs) was performed by linear regression model with Limix[S4] **A**: Association of DEGene expressions with all variants (SNPs, INDELs, STRs and SVs) in the *cis*-region defined as 1Mb upstream and 1Mb downstream of the DEGene. The p-values are plotted at the genomic locations of the corresponding DEGenes. **B**: Association of *Kcnc2* expression with all genomic variants across the genome shows that variants with the same strain distribution pattern have identical p-values. The flat horizontal line at about -log10(p)=8.4 reflects features that have the same strain distribution pattern and therefore all yield identical p-values when tested for association with the gene expression data.

		CNVn	ator	Lumpy								
Strain	Substrain	DEL	DUP	DEL	DUP	INV						
	C57BL/6J	27	461	11	97	2						
C57BL/6	C57BL/6NJ	5	456	65	105	2						
	C57BL/6ByJ	11	426	82	90	5						
	C57BL/6JeiJ	14	469	42	91	4						
	C57BL/6Ntac	27	465	64	77	4						
	C57BL/6NCrl	9	420	66	92	2						
	C57BL/6NHsd	127	488	73	86	3						
	B6N-TyrC/BrdCrCrI	7	445	63	96	3						
	C57BL/6JbomTac	13	447	50	78	3						
C57BL/10	C57BL/10ScSnJ	95	430	1204	129	15						
	C57BL/10SnJ	89	420	1195	125	13						
	C57BL/10ScCr	269	481	1196	103	15						
	C57BL/10J	74	437	1193	115	16						
	C57BL/10ScNHsd	72	426	1192	123	14						
	TOTAL	448	1308	1369	279	21						

Table S1. Number of SVs found in C57BL substrains, related to Methods details.

			7BL/6J	7BL/6NJ	7BL/6ByJ	7BL/6JEiJ	7BL/6NTac	7BL/6NCrl	7BL/6NHsd	N-TyrC_BrdCrCrl	7BL/6JBomTac	7BL/10ScSnJ	7BL/10SnJ	7BL/10ScCr	7BL/10J	7BL/10ScNHsd
Variant information	FDR	Gene	ပ္ပ	C5	S	ပ္ပ	ပ္ပ	ပ္ပ	ပ္ပ	B6	S	S	S	S	S	C5
SV_DEL_chr4_66815109_66889841_exon	2.73E-02	Tlr4														
SV_DUP_chr5_121767693_121843545_exon	2.73E-02	Sh2b3														
SV_DUP_chr6_28420693_28493886_exon	3.05E-02	Arf5														
SV_DUP_chr6_28420693_28493886_exon	3.21E-02	Gcc1														
SV_DUP_chr16_24378934_24444153_exon	4.53E-02	Lpp														
SV_DUP_chr19_36911370_37379559_exon	4.53E-02	Btaf1														
SV_DUP_chr19_36911370_37379559_exon	2.73E-02	Fgfbp3														
SV_DUP_chr19_36911370_37379559_exon	2.73E-02	lde														
INDEL_chr1_139237085_139237087_frameshift	2.02E-02	Crb1														
INDEL_chr9_103499764_103499767_frameshift	4.25E-02	Tmem108														
INDEL_chr10_112455818_112455821_frameshift	2.02E-02	Kcnc2														
INDEL_chr16_10741835_10741842_frameshift	4.25E-02	Clec16a														
SD_chr1_79715430_79722709	1.63E-03	Wdfy1														
SD_chr2_174958961_175012684	1.09E-02	Gm14444														
SD_chr2_175176236_175476161	3.35E-03	Gm4631								Ì						
SD_chr2_175176236_175476161	1.63E-03	Gm14391														
SD_chr2_175600000_175900699	2.60E-03	Gm6710														
SD_chr2_175600000_175900699	1.95E-03	Gm14288														
SD_chr2_175863477_175993394	4.45E-03	Zfp966														
SD_chr2_176598872_176698447	2.38E-03	Zfp973														
SD_chr2_176702042_176736143	1.67E-03	Gm14305														
SD_chr2_176742479_176799992	1.63E-03	Gm14295														
SD_chr2_176834443_177060914	1.63E-03	Gm14296														
SD_chr2_176936335_177079562	2.50E-03	Gm14401														
SD_chr2_177131439_177205055	1.63E-03	Gm14410														
SD_chr2_177332425_177443112	1.63E-03	Gm14418														
SD_chr2_177382170_177490852	1.63E-03	Zfp970														
SD_chr2_177714087_177765961	1.91E-03	Gm14322														
SD_chr2_177837513_177900857	1.63E-03	Gm14325														

SD_chr2_177900735_177965213	1.63E-03	Gm14326							
SD_chr2_177954479_178027444	1.63E-03	Zfp971							
SD_chr4_41882892_42033952	1.63E-03	Gm13302							
SD_chr4_41882892_42033952	1.63E-03	Gm20878							
SD_chr4_41882892_42033952	1.63E-03	Gm21093							
SD_chr4_41888084_42115916	1.63E-03	Gm37530							
SD_chr4_41967677_42175681	3.35E-03	Gm13306							
SD_chr4_42035272_42214541	1.63E-03	Gm17167							
SD_chr4_42232133_42238731	1.63E-03	Gm5859							
SD_chr4_42232133_42238731	1.63E-03	Gm10600							
SD_chr4_42232133_42238731	1.63E-03	Gm13301							
SD_chr4_42652191_42844101	1.63E-03	Gm12394							
SD_chr4_42652191_42844101	1.34E-02	Gm21955							
SD_chr12_55078703_55124935	1.63E-03	Fam177a							
SD_chr12_55200000_55291223	1.63E-03	Srp54c							
SD_chr14_6654813_6774339	1.63E-03	Gm3636							
SD_chr14_6838781_6891591	4.45E-03	Gm3667							
SD_chr14_7208412_7350351	3.87E-03	Gm3739							
SD_chr17_6253548_6260484	3.14E-02	Tmem181a							
SD_chr17_6325771_6473130	1.63E-03	Tmem181b-ps							
SD_chr17_6497992_6645878	1.05E-02	Dynlt1c							
SD_chr17_15014588_15045963	4.33E-03	Ermard							
SD_chrX_169969770_170000000	2.95E-02	G530011O06Rik							
SD_chrX_169969770_170000000	2.07E-02	Gm15726							

Table S2. Significant associations and genotype patterns, related to Figure 2. Significant associations between DEGene expression and large effect variants with FDR<0.05 is presented. A linear mixed model is used with a Genomic Relatedness Matrix (GRM) to control for population structure as a random effect and parental strain (C57BL/6 versus C57BL/10) as a fixed effect to identify associations within C57BL/6 and C57BL/10 substrains. Variant information column indicates variant type (SD: segmental duplication), genomic coordinates and variant consequences (for SVs and INDELs). Colors represent genotype patterns for the variants. For bi-allelic variants (SVs and SNP/INDELs), red and blue colors represent two genotypes, while for multiallelic copy number variants the normalized read depth varies between 0 and 1 where 0: blue, 0.5: white, and 1: red represent three genotypes. The same genotype patterns are clustered together for chromosomes such as 2 and 4, which shows that nearby genes in these regions have been affected by the same copy number variation patterns. Bold horizontal lines segregate nearby variants with similar genotype patterns. References:

[S1] Van der Auwera, G.A., and O'Connor, B.D. (2020). Genomics in the Cloud (O'Reilly Media, Inc.).

[S2] MGI Search Mouse SNPs. <u>http://www.informatics.jax.org/snp</u>.

[S3] Yang, H., Wang, J.R., Didion, J.P., Buus, R.J., Bell, T.A., Welsh, C.E., Bonhomme,F., Yu, A.H., Nachman, M.W., Pialek, J., et al. (2011). Subspecific origin and haplotype diversity in the laboratory mouse. Nature genetics *43*, 648-655.

[S4] Lippert, C., Casale, F.P., Rakitsch, B., and Stegle, O. (2014). LIMIX: genetic analysis of multiple traits. bioRxiv, 10.1101/003905.