Cell Genomics, Volume 1

Supplemental information

Association of mitochondrial DNA copy number

with cardiometabolic diseases

Xue Liu, Ryan J. Longchamps, Kerri L. Wiggins, Laura M. Raffield, Lawrence F. Bielak, Wei Zhao, Achilleas Pitsillides, Thomas W. Blackwell, Jie Yao, Xiuqing Guo, Nuzulul Kurniansyah, Bharat Thyagarajan, Nathan Pankratz, Stephen S. Rich, Kent D. Taylor, Patricia A. Peyser, Susan R. Heckbert, Sudha Seshadri, L. Adrienne Cupples, Eric Boerwinkle, Megan L. Grove, Nicholas B. Larson, Jennifer A. Smith, Ramachandran S. Vasan, Tamar Sofer, Annette L. Fitzpatrick, Myriam Fornage, Jun Ding, Adolfo Correa, Goncalo Abecasis, Bruce M. Psaty, James G. Wilson, Daniel Levy, Jerome I. Rotter, Joshua C. Bis, TOPMed mtDNA Working Group in NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Claudia L. Satizabal, Dan E. Arking, and Chunyu Liu

SUPPLEMENTAL INFORMATION

Association of mitochondrial DNA copy number with cardiometabolic diseases

Xue Liu, Ryan J. Longchamps, Kerri L. Wiggins, Laura M. Raffield, Lawrence F. Bielak, Wei Zhao, Achilleas Pitsillides, Thomas W. Blackwell, Jie Yao, Xiuqing Guo, Nuzulul Kurniansyah, Bharat Thyagarajan, Nathan Pankratz, Stephen S. Rich, Kent D. Taylor, Patricia A. Peyser, Susan R. Heckbert, Sudha Seshadri, L Adrienne Cupples, Eric Boerwinkle, Megan L. Grove, Nicholas B. Larson, Jennifer A. Smith, Ramachandran S. Vasan, Tamar Sofer, Annette L. Fitzpatrick, Myriam Fornage, Jun Ding, Adolfo Correa, Goncalo Abecasis, Bruce M. Psaty, James G. Wilson, Daniel Levy, Jerome I. Rotter, Joshua C. Bis, TOPMed mtDNA Working Group in NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium. Claudia L. Satizabal, Dan E. Arking, and Chunyu Liu.

Supplemental Note

The TOPMed mtDNA Working Group in the TOPMed Consortium

Gonçalo Abecasis¹, Avinash Abhyankar², Micheala A. Aldred³, Dan E. Arking⁴, Allison E. Ashley-Koch⁵, Abraham Aviv⁶, Kathleen Barnes⁷, Emily Barron-Casella⁸, David Beame⁹, Stephanie Battle⁴, Thomas W. Blackwell¹, Michael Bowers⁹, Christina A. Castellani^{4,10}, Suzy Comhair¹¹, Adolfo Correa¹², Mariza de Andrade¹³, Dawn L. DeMeo¹⁴, Jun Ding¹⁵, Serpil C. Erzurum¹⁶, Samar Farha¹⁷, Jessica L. Fetterman¹⁸, Mao Fu¹⁹, Einat Granot-Hershkovitz¹⁴, Charles C. Gu²⁰, Ryan Hernandez²¹, Yi-Hsiang Hsu²², Anne E. Justice²³, Addison Keely²⁴, Leslie Lange⁷, Daniel Levy^{25,26}, Honghuang Lin^{25,27}, Chunyu Liu^{25,28}, Ryan J. Longchamps⁴, Jiantao Ma²⁹, JoAnn E. Manson¹⁴, Merry-Lynn McDonald³⁰, Stephen T McGarvey³¹, Julie L. Mikulla³², Courtney Montgomery³³, Rajeeva L. Musunuri³⁴, Jeffrey R. O'Connell³⁵, Nathan Pankratz³⁶, Jennifer A. Purnell⁹, Yong Qian¹⁵, Jerome I. Rotter³⁷, Jessica R. Shaw³⁸, Albert V. Smith¹, Tamar Sofer^{14,39}, Elizabeth A. Streeten⁴⁰, Weihong Tang⁴¹, Kent D. Taylor³⁷, Marilyn Telen⁴², Hemant Tiwari⁴³, Emily S. Wan⁴⁴, Heming Wang³⁹, Penglong Wang²⁶, Kate Wehr⁹, Bruce Weir⁹, Keoki L. Williams⁴⁵, James G. Wilson⁴⁶, Shujie Xiao⁴⁵, Weiling Xu¹⁶, Yu-Chung Yang⁴⁷, Wei Zhao⁴⁸

¹TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA; ²New York Genome Center, New York, NY 10013, USA; ³School of Medicine, Indiana University, Indianapolis, IN 46202, USA; ⁴McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA; ⁵Department of Medicine, Duke University, Durham, NC 27708, USA; ⁶Department of Pediatrics, Rutgers University, Newark, NJ 07101, USA; ⁷School of Medicine, University of Colorado, Aurora, CO 80045, USA; ⁸Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA; ⁹Genetic Analysis Center, Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; ¹⁰Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; ¹¹Cleveland Clinic, Immunity and Immunology, Cleveland, Ohio 44195, USA; ¹²Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; ¹³Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA; ¹⁴Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA; ¹⁵Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA; ¹⁶Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; ¹⁷Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; ¹⁸Evans Department of Medicine and Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 20118, USA; ¹⁹School of Medicine, University of Maryland, Baltimore, MD 21201, USA; ²⁰Division of Biostatistics, School of Medicine, Washington University, St Louis, MO 63130, USA; ²¹Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA; ²²HSL Institute for Aging Research, Harvard Medical School, Harvard University, Boston, MA 02115, USA; ²³Department of Population Health Sciences, Geisinger Health System, Danville, PA, 17822, USA; ²⁴Deapartment of Biostatistics, University of Washington, Seattle, WA 91895, USA; ²⁵Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA; ²⁶Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA; ²⁷Department of Computational Biomedicine, School of Medicine, Boston University, Boston, MA 02115, USA; ²⁸Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA; ²⁹Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; ³⁰Department of Pulmonary, Allergy, and Critical Care, University of Alabama, Birmingham, AL 35487, USA; 31 Department of Epidemiology, Brown University, Providence, RI 02912, USA; ³²Office of Clinical Research, NHLBI/NIH, Bethesda, MD 20892, USA; ³³ Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; ³⁴New York Genome Center, New York, NY 10013, USA; ³⁵Department of Medicine, University of Maryland, Baltimore, MD 21201, USA; ³⁶Department of Computational Pathology, University of Minnesota, Minneapolis, MN 55455, USA; ³⁷The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; ³⁸Linda Crnic Institute, School of Medicine, University of Colorado, Denver, CO 80204, USA; ³⁹Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; ⁴⁰Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; ⁴¹Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; 42Department of Medicine, School of Medicine, Duke University,

Durham, NC 27708, USA; ⁴³Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, AL, 35401, USA; ⁴⁴Pulmonary Division, Brigham and Women's Hospital, Boston, MA 02115, USA; ⁴⁵Henry Ford Health System, Detroit, MI 48109, USA; ⁴⁶Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA; ⁴⁷Division of Blood Diseases and Resources, NHLBI/NIH, Bethesda, MD 20892, USA; 48Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

Cohort Acknowledgements

Atherosclerosis Risk in Communities study (ARIC) (n=2,964): The Atherosclerosis Risk in Communities study has been funded in whole or in part with federal funds from the National Heart, Lung, and Blood Institute, National Institute of Health, Department of Health and Human Services, under contract numbers (HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I, and HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their important contributions. WGS for "NHLBI TOPMed: Atherosclerosis Risk in Communities" (phs001211.v3.p2.c1) was performed at the Baylor College of Medicine Human Genome Sequencing Center (3U54HG003273-12S2 / HHSN268201500015C). Core support including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). Core support including phenotype harmonization, data management, sampleidentity QC, and general program coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological samples and data for TOPMed.

Coronary Artery Risk Development in Young Adults Study (CARDIA) (n=3,452): for the NHLBI TOPMed program: CARDIA (phs001612) was performed at the Baylor Human Genome Sequencing Center (HHSN268201600033I). Centralized read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626- 02S1). Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1). We gratefully acknowledge the studies and participants who provided biological samples and data for TOPMed. The CARDIA is also supported by contracts HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, and HHSN268200900041C from the NHLBI, the Intramural Research Program of the National Institute on Aging (NIA), and an intraagency agreement between NIA and NHLBI (AG0005)." as noted in dbGaP. The authors also wish to thank the staffs and participants of the CARDIA.

The Cardiovascular Health Study (CHS) (n=3,493): Cohort acknowledgement/support: The CHS (phs001368.v1.p1) was supported by contracts 75N92021D00006, HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295, R01HL105756, and U01HL130114 from the NHLBI, with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. Sequencing was supported and conducted in collaboration with Baylor University (HHSN268201600033I, 3U54HG003273-12S2, HHSN268201500015C) contracts from NHLBI.

The Framingham Heart Study (FHS) (n=4,124): The WGS for FHS (phs000974) was performed at the Broad Institute of MIT and Harvard (3R01HL092577-06S1 and 3U54HG003067-12S2). The FHS acknowledges the support of contracts NO1-HC-25195, HHSN268201500001I and 75N92019D00031 from the National Heart, Lung and Blood Institute and grant supplement R01 HL092577-06S1 for this

research. We also acknowledge the dedication of the FHS study participants without whom this research would not be possible. Dr. Vasan is supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine. X.L., S.S., C.L.S, and C.L. are also supported by R01AG059727. C.L.S and S.S are also supported by AG052409, AG054076 and AG059421.

The Genetic Epidemiology Network of Arteriopathy (GENOA) (n=1,234): Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457, HL054464, HL054481, HL141292, HL119443, and HL087660) of the National Institutes of Health. Sequencing for the GENOA (phs001345.v1.p1) was performed by the University of Washington Northwest Genomics Center (3R01HL055673-18S1 from the NHLBI and at the Broad Institute of MIT and Harvard (HHSN268201500014C)). The authors also wish to thank the staff and participants of GENOA.

Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (n=3,868): HCHS/SOL of Latinos is a collaborative study supported by contracts from the NHLBI to the University of North Carolina (HHSN268201300001I / N01-HC-65233), University of Miami (HHSN268201300004I / N01-HC-65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-65235), University of Illinois at Chicago – HHSN268201300003I / N01-HC-65236 Northwestern University), and San Diego State University (HHSN268201300005I / N01-HC-65237). The WGS of HCHS/SOL (phs001395) was performed at Baylor Human Genome Sequencing Center (HHSN268201600033I). The following Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, National Institute on Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements.

The Jackson Heart Study (JHS) (n=3,160): The JHS (phs000964.v1.p1) is supported and conducted in collaboration with Jackson State University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health (HHSN268201800015I) and the University of Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from the NHLBI and the National Institute on Minority Health and Health Disparities (NIMHD). WGS was performed at University of Washington (HHSN268201100037C). The authors also wish to thank the staffs and participants of the JHS.

Multi-Ethnic Study of Atherosclerosis Study (MESA) (n=4,596): Cohort acknowledgement/support: WGS for the TOPMed program was supported by the NHLBI. WGS for the NHLBI's TOPMed (phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling, along with variant quality metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1). Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1). MESA and the MESA SHARe project (phs001416.v1.p1) are conducted and supported by the NHLBI in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-

95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, and DK063491. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0. Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

The UK Biobank (n=381,470): This research has been conducted using the UK Biobank Resource under Application Number 17731 (https://www.ukbiobank.ac.uk/).

Table S1. Participant characteristics, Related to Figure 1 and Table 1.

AA, African ancestry; EA, Participants of European ancestry; EAS, East Asian (Chinese) ancestry. HA, Hispanic and Latino Americans. ARIC, Atherosclerosis Risk in Communities study; CARDIA, Coronary Artery Risk Development in Young Adults Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; GENOA, Genetic Epidemiology Network of Arteriopathy Study; Hispanic Community Health Study/Study of Latinos (HCHS/SOL); JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; UKB, the UK Biobank.

Table S2. Meta-analysis combining results among TOPMed participants of African ancestry, Related to Table 1, Figure 1

Association analysis of mtDNA CN with CMD traits was performed in each cohort of TOPMed participants of African ancestry (ARIC, CARDIA, CHS, GENOA, JHS, and MESA). Meta-analysis using fixed effects inverse variance method was applied to summarize the results. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN. DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; FBG, fasting blood glucose; HDL, high density lipoprotein; LDL, low density lipoprotein; TRIG, triglyceride; Obese, obesity; HTN, hypertension; Diabetes, Diabetes; Hyperlipid, hyperlipidemia.

Table S3. Association analysis between mtDNA CN and metabolic phenotypes in participants of Hispanic and Latino Americans and Chinese ancestry, Related to Table 1, Figure 1

Association analysis of mtDNA CN with CMD traits was performed in Hispanic and Latino American participants in MESA and SOL study, and participants of Chinese ancestry in MESA study. Meta-analysis using fixed effects inverse variance method was used to summarize the Hispanic and Latino Americans results. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN.

Table S4. Meta-analysis combining results in participants of all ancestries from TOPMed and UK Biobank, Related to Table 1, Figure 1

Association analyses of mtDNA CN with CMD traits was performed in cohorts of European ancestry (n=13,378), African ancestry (n=8,020), Hispanic and Latino Americans (N=4,892), and Chinese ancestry (n=601) in TOPMed and in UK Biobank participants of European ancestry (n=381,470). Meta-analysis using fixed (P_Q≥0.01) effects inverse variance method was used to summarize the results. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN.

Table S5. Association analyses of mtDNA CN with white blood cell count and platelets, Related to STAR Methods

5B. Association analysis of mtDNA CN with white blood cell count and platelets

mtDNA CN residuals were obtained by regressing mtDNA CN on batch effect (i.e., year at blood collection), age (at blood collection), age-squared, and sex. We performed a regression model with mtDNA CN residuals as a dependent variable and all blood compositions as independent variables. The effect size estimates are changes in s.d. of mtDNA CN level in response to one unit increase in WBCs. R^2 represents the variance in mtDNA CN that is jointly explained by blood cell compositions in the table.

Trait	FHS (n=2643)						
	White blood cell count		Neutrophils		Platelets		R^2 (%)
	Beta	Р	Beta	P	Beta	P	
DBP	0.59	9.7×10^{-4}	0.0099	0.75	-0.010	0.078	0.51
SBP	1.69	8.7×10^{-7}	0.12	0.044	-0.0068	0.54	1.7
BMI	0.65	6.8×10^{-15}	0.0085	0.55	0.0020	0.45	3.4
FBG	0.67	0.00017	0.061	0.047	-0.0095	0.099	1.3
InHDL	-0.042	0.2×10^{-17}	1.0×10^{-4}	0.87	0.0016	2.2×10^{-24}	5.7
InLDL	0.015	0.0016	-0.0015	0.068	0.0005	0.0019	0.92
InTrig	0.0095	2.4×10^{-32}	-0.0048	0.00038	-0.0018	8.2×10^{-13}	5.8

5C. Association of continuous CMD traits with white blood cell count/platelets

We performed a regression analysis with a continuous CMD trait as a dependent variable, and white blood cell count, neutrophil, and platelet count jointly as independent variables. The effect size estimates are in units of CMD traits corresponding to one unit increase in a cell composition. $R²$ represents the variance in a CMD trait that is jointly explained by the three blood cell compositions in the table.

Table S6. Comparison of results adjusting for white blood cell count and platelet in participants of European ancestry in TOPMed and UK Biobank. Related to Figure 2C.

WGS, whole genome sequencing; WES, whole exome sequencing. Association analysis of mtDNA CN with CMD traits was performed in the participants with imputed cell counts in participants of European ancestry in TOPMed and UK Biobank. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN.

Table S7. The investigation of effect modification by sex or age on associations of mtDNA CN with CMD traits, Related to Table 1, Figure 1.

Association analysis of mtDNA CN with CMD traits was performed to test interaction with age or sex in each cohort of European ancestry participants (N=13,378) and African ancestry (N=8,020) in TOPMed and also in UK Biobank participants of European ancestry (N=381,470). Fixed-effect inverse variance meta-analysis was used to summarize the results in European ancestry or African ancestry in TOPMed. An interaction term of mitoage (residual mtDNA CN*age) or mitosex (residual mtDNA CN*sex) was included in the model to investigate whether age or sex was effect modifier of the association between mtDNA CN and CMD traits. Residual mtDNA CN was obtained by regressing mtDNA CN on batch effect, obtained the residuals then multiply age or sex. The "age" and "sex" columns indicate p-values of the interaction terms in the model. EA, European ancestry; AA, African ancestry; UKB, UK Biobank.

Table S8. Age-specific meta-analysis in participants of European ancestry in TOPMed and UK Biobank. Related to Figure 2D.

Association and inverse variance weighting meta-analyses of mtDNA CN with CMD traits was performed in participants of European ancestry in TOPMed and UK Biobank. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN.

Table S9. Comparison of results of mtDNA CN with CMD disease phenotypes in WGS, Affymetrix, and low-pass in non-overlap participants in ARIC, Related to STAR Methods.

The beta estimates are in units of CMD traits corresponding to one s.d. lower mtDNA CN. Association analysis of mtDNA CN with CMD traits was performed in ARIC with WGS, Affymetrix Genome-Wide Human SNP Array 6.0 and low-pass whole genome sequencing. mtDNA CN can be measured by qPCR or estimated by genotyping or sequencing, and the performance of several technologies (e.g., qPCR, different genotyping array, WGC) in estimating mtDNA CN was evaluated previously.¹ In a previous study, mtDNA CN was determined using the Genvisis15 software package for the Affymetrix Genome-Wide Human SNP Array 6.0. A list of high-quality mitochondrial SNPs were hand-curated by employing BLAST to remove SNPs without a perfect match to the annotated mitochondrial location and SNPs with off-target matches longer than 20bp. The probe intensities of the remaining mitochondrial SNPs (25 Affymetrix, 58 Illumina Exome Chip) were determined using quantile sketch normalization (apt-probeset-summarize) as implemented in the Affymetrix Power Tools software. The median of the normalized intensity, log R ratio (LRR) for all homozygous calls was GC corrected and used as initial estimates of mtDNA CN for each sample. Technical covariates such as DNA quality, DNA quantity, and hybridization efficiency were captured via surrogate variable analysis described2. Surrogate variables were applied to the BLAST filtered, GC corrected LRR of the remaining autosomal SNPs (43,316 Affymetrix, 47,512 Exome Chip). These autosomal SNPs were selected based on the following quality filters: call rate > 98%, HWE p value > 0.00001, PLINK mishap for non-random missingness p value > 0.0001, association with sex p value > 0.00001, linkage disequilibrium pruning (r2 < 0.30), with maximal spacing between autosomal SNPs of 41.7 kb. Low-pass whole genome sequencing data for ARIC was generated at the Baylor College of Medicine Human Genome Sequencing Center using Nano or PCR-free DNA libraries on the Illumina HiSeq 2000. Sequence reads were mapped to the hg19 reference genome using BWA.² Quality control was performed as previously described.³ A count for the total number of reads in a sample was scraped from the NCBI sequence read archive using the R package RCurl⁴ while reads aligned to the mitochondrial genome were downloaded directly through Samtools (version 1.3.1). A raw measure of mtDNA CN was calculated as the ratio of mitochondrial reads to the number of total aligned reads. The final mtDNA CN phenotype for all measurement techniques is represented as the standardized residuals from a linear model adjusting the raw measure of mtDNA CN for age, sex, DNA collection center, any technical covariates. As mtDNA CN was standardized, the effect size estimates are in units of standard deviations, with positive betas corresponding to an increase in mtDNA CN.

Figure S1. The effect of the year at blood collection on mtDNA CN estimated from whole genome sequencing in TOPMed, Related to STAR Methods. The year of blood collection was provided as calendar year (treated as a batch variable) in each TOPMed cohort. A number in the parenthesis in the title of each plot indicates the variance in mtDNA CN that can be explained by "blood collection year" in a cohort. Due to a study design, R² was unavailable in HCHS/SOL.

Figure S2. The relationship of mtDNA CN with age after adjusting for white blood cell count and platelets. Related to Figure S1, STAR Methods. mtDNA CN residuals were obtained by regressing mtDNA CN on batch effect and cell count/platelets.

Figure S3. The relationship of mtDNA CN residuals with age in each of the TOPMed cohorts, **Related to STAR Methods**.

Age effect on mtDNA CN in participants <50, 55, 60, 65, 70, 75

Age effect on mtDNA CN in participants ≥50, 55, 60, 65, 70, 75

Figure S4. Identification of threshold effect of age on mtDNA copy number, Related to Figure 2B, STAR Methods. We analyzed the relationship of mtDNA CN with age in participants who were younger than 50 years, and again who were younger than 55 years, and similarly for 60, 65, 70, and 75 years of age; and in contrast, we analyzed the relationship in those who were at least 50 years, and again who were at least 55 years, and similarly for 60, 65, 70, and 75 years of age. We found that age displayed a positive effect on mtDNA CN (top figure) in participants who were younger than 50, 55, 60, 65, 70, and 75 years old with similar effects at <60 and <65 years old. In contrast, age displayed negative effects on mtDNA CN (bottom figure) in participants who were at least 50, 55, 60, 65 (with the lowest effect size), 70, 75 and 80 years of age. In addition, most medical studies consider participants aged 65+ as older individuals in studying age-related diseases (e.g., cardiovascular disease or Alzheimer's disease). Therefore, we chose to use 65 years as a cutoff to evaluate the age threshold effect in association analyses based on these findings and common social norms.

Figure S5. The relationship of mtDNA CN with sex, Related to STAR methods. mtDNA CN residuals was obtained by regressing mtDNA CN on batch effect and age in each cohort.

HDL

Figure S6. Forest plot of beta estimates in association analyses of mtDNA with CMD continuous traits in participants of European ancestry in TOPMed and UK Biobank, Related to Table 1, Figure 2B. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN. In meta-analyses of TOPMed cohorts, the observed heterogeneity measure (1^2) was 75.2% for BMI, 65.5% for FBG, 73.8% for DBP, 61.8% for SBP, 86.1% for HDL, 81.5% for LDL, 72.8% for TRIG, 40.5% for obesity, 64.7% for HTN, 77.3% for diabetes, and 48.3% for hyperlipidemia. In combining TOPMed and the UK Biobank data, the heterogeneity measure ¹² was 79.8% for BMI, 70.2% for FBG, 71.4% for DBP, 24.0% for SBP, 97.1% for HDL, 96.2% for LDL and 71.0% for TRIG.

Figure S7. Forest plot of beta estimates in association analyses of mtDNA with CMD binary traits in participants of European ancestry in TOPMed and UK Biobank, Related to Table 1, Figure 2B. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN. In meta-analyses of TOPMed cohorts, the observed heterogeneity measure (1^2) was 69.8% for obesity, 0% for HTN, 95.0% for diabetes, and 73.1% for hyperlipidemia.

Figure S8. Comparison of regression coefficients of mtDNA CN with CMD traits in participants of European ancestry in TOPMed (n=13,378) vs UK Biobank (n=318,470), Related to Table 1, Figure 2B. Comparison of beta of CMD traits in the participants of European ancestry between TOPMed and UK Biobank.

Figure S9. Comparison of beta of metabolic traits in participants of European Ancestry (n=13,378) and African Ancestry (n=8,020) in TOPMed, Related to Table 1, Figure 1. The beta estimates corresponds to one s.d. decrease in the mtDNA CN level.

Figure S10. Comparison of regression coefficients of mtDNA CN with CMD traits in participants of European Ancestry (13,378) vs Hispanic/Latino (n=4,892) Americans in TOPMed, Related to Table 1, Figure 1. Comparison of beta of CMD traits in the participants of European ancestry and Hispanic Latino Americans in TOPMed.

Figure S11 Comparison of regression coefficients of mtDNA CN with CMD traits in participants of European Ancestry (n=13,378) vs Chinese Ancestry (n=601) in TOPMed, Related to Table 1, Figure 1. Comparison of beta of CMD traits in the participants of European ancestry and Chinese ancestry in TOPMed.

Figure S12. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed participants of European Ancestry not adjusting for cell counts vs adjusting for cell counts, Related to Figure 2C. Comparison of beta of CMD traits of model not adjusting for cell counts vs adjusting for cell counts in the same participants of European ancestry in TOPMed (n=5,056).

Figure S13. Comparison of regression coefficients of mtDNA CN with CMD traits in the UK Biobank participants of European ancestry not adjusting for cell counts vs adjusting for cell counts, Related to Figure 2C. Comparison of beta of CMD traits not adjusting for cell counts vs adjusting for cell counts in the participants of European ancestry in UK Biobank (UKB) (n=381,470).

Figure S14. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed participants of African Ancestry not adjusting for cell counts vs adjusting for cell counts, Related to Figure 2C.Comparison of beta of CMD traits of model not adjusting for cell counts vs adjusting for cell counts in the participants of African ancestry in TOPMed (n=3,733).

Figure S15. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed Hispanic and Latino American participants not adjusting for cell counts vs adjusting for cell counts, Related to Figure 2C. Comparison of beta of CMD traits of model not adjusting for cell counts vs adjusting for cell counts in the participants of Hispanic and Latino Americans in TOPMed (n=3,613).

Figure S16. Comparison of regression coefficients of mtDNA CN with CMD traits in participants of European ancestry <65 years (n=315,708) vs >65 years (n=79,782) in TOPMed and UK BioBank after meta-analysis, Related to Figure 2D.

Figure S17. Sensitivity analysis of adjusting smoking as an additional covariate, Related to STAR Methods. We performed a sensitivity analysis with and without adjusting for smoking as an additional covariate to investigate whether smoking altered associations between mtDNA CN and CMD traits in FHS, JHS and MESA. Four of seven continuous traits displayed minor changes (<10%) in their beta estimates with mtDNA CN while three continuous traits and four binary traits appeared to have consistent beta estimates between models with and without smoking as a covariate The FHS consists of European ancestry (EA) and the JHS consists of African ancestry (AA). The MESA consists of both EA and AA.

Reference:

- 1. Longchamps, R.J., Castellani, C.A., Yang, S.Y., Newcomb, C.E., Sumpter, J.A., Lane, J., Grove, M.L., Guallar, E., Pankratz, N., Taylor, K.D., et al. (2020). Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 15, e0228166.
- 2. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
- 3. Morrison, A.C., Voorman, A., Johnson, A.D., Liu, X., Yu, J., Li, A., Muzny, D., Yu, F., Rice, K., Zhu, C., et al. (2013). Wholegenome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet 45, 899-901.
- 4. team, D.T.L.a.t.C. (2018). RCurl: General Network Client Interface for R. R package version 1.95-4.11. https://CRAN.Rproject.org/package=RCurl.