
Article
Association of mitochondr
ial DNA copy number with
cardiometabolic diseases
Graphical abstract
Highlights
d mtDNA copy number in peripheral blood measured in large

multi-ancestry cohorts

d mtDNA copy number in blood cells declined with age after

age 65

d Lower mtDNA copy number was associated with

cardiometabolic disease traits
Liu et al., 2021, Cell Genomics 1, 100006
October 13, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.xgen.2021.100006
Authors

Xue Liu, Ryan J. Longchamps,

Kerri L. Wiggins, ..., Claudia L. Satizabal,

Dan E. Arking, Chunyu Liu

Correspondence
liuc@bu.edu

In brief

Liu et al. examined the association of

mitochondrial DNA (mtDNA) copy number

(CN) with cardiometabolic traits in

408,361 individuals from TOPMed and UK

Biobank, representing the most

comprehensive cross-ancestry analyses

for these traits. They identify a decline in

mtDNA CN in participants older than 65

years and, at lower mtDNA CN levels,

age-independent associations with

obesity, diabetes, hypertension, and

hyperlipidemia.
ll

mailto:liuc@bu.edu
https://doi.org/10.1016/j.xgen.2021.100006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2021.100006&domain=pdf


OPEN ACCESS

ll
Article

Association of mitochondrial DNA copy number
with cardiometabolic diseases
Xue Liu,1 Ryan J. Longchamps,2 Kerri L. Wiggins,3 Laura M. Raffield,4 Lawrence F. Bielak,5 Wei Zhao,5

Achilleas Pitsillides,1 Thomas W. Blackwell,6 Jie Yao,7 Xiuqing Guo,7 Nuzulul Kurniansyah,8 Bharat Thyagarajan,9

Nathan Pankratz,10 Stephen S. Rich,11 Kent D. Taylor,7 Patricia A. Peyser,5 Susan R. Heckbert,12 Sudha Seshadri,13,14,15

L. Adrienne Cupples,1 Eric Boerwinkle,16,17 Megan L. Grove,16 Nicholas B. Larson,18 Jennifer A. Smith,5

(Author list continued on next page)

1Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
2McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

3Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
4Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
5Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
6TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
7The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical
Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
8Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
9Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
10Department of Computational Pathology, University of Minnesota, Minneapolis, MN 55455, USA
11Department of Public Health Services, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
12Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA 98101, USA
13Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San
Antonio, TX 78229, USA
14Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
15Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
16Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, the University of Texas Health
Science Center at Houston, Houston, TX 77030, USA
17Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
18Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
19Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University School of Medicine, Boston, MA
02118, USA
20Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
21Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98195, USA

(Affiliations continued on next page)
SUMMARY
Mitochondrial DNA (mtDNA) is present in multiple copies in human cells. We evaluated cross-sectional
associations of whole-blood mtDNA copy number (CN) with several cardiometabolic disease traits in
408,361 participants of multiple ancestries in TOPMed and UK Biobank. Age showed a threshold association
with mtDNA CN: each additional 10 years of age was associated with a 0.03 SD higher level of mtDNA CN
(p = 0.0014) among younger participants (younger than 65 years) versus a 0.14 SD lower level of mtDNA
CN (p = 1.82 3 10�13) among older participants (65 years and older). At lower mtDNA CN levels, we
found age-independent associations with increased odds of obesity (p = 5.6 3 10�238), hypertension
(p = 2.8 3 10�50), diabetes (p = 3.6 3 10�7), and hyperlipidemia (p = 6.3 3 10�56). The observed decline in
mtDNA CN after 65 years of age may be a key to understanding age-related diseases.
INTRODUCTION

Mitochondria convert dietary calories to molecular energy

through oxidative phosphorylation (OXPHOS).1 In addition, mito-

chondria have essential roles in cellular differentiation, prolifera-

tion, reprogramming, and aging.2–7 Mitochondria contain their
C
This is an open access article under the CC BY-N
own genome (mtDNA), which encodes 37 genes.1 Multiple

copies of mtDNA are present per mitochondrion, and cells

contain up to 7,000 mitochondria per cell.8 The mtDNA copy

number (mtDNA CN) correlates with cellular energy generating

capacity and metabolic status9 and, therefore, varies greatly

across tissue and cell types.1,10,11
ell Genomics 1, 100006, October 13, 2021 ª 2021 The Author(s). 1
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Several previous studies have identified a lower level of

mtDNA CN in older individuals. This reduced mtDNA CN has

been associated with a general decline in health12–14 and an

increased risk of developing cardiovascular disease (CVD) out-

comes.15 Cardiometabolic diseases (CMDs), including obesity,

abnormal lipid level and glucose level in plasma, and high blood

pressure, are known risk factors for the development of

CVD.16,17 Thus, one mechanism by which a decrease in mtDNA

CN could adversely affect not only CVD but also health in general

is if the reduction in mtDNA CN was associated with an increase

in CMDs. However, the associations of mtDNA CNwith the CMD

traits have not been consistently reported.18–20 We investigated

associations of mtDNA CN with CMD traits in eight US cohorts

from the Trans-Omics for Precision Medicine (TOPMed), repre-

senting the most comprehensive cross-ancestry analyses for

these traits. These cohort studies included extensive cardiome-

tabolic phenotyping and mtDNA CN estimated from whole-

genome sequencing (WGS) data. For validation analyses, we

analyzed individuals with whole-exome sequencing (WES) from

the UK Biobank (Figure 1).

RESULTS

Characteristics of study participants
The current study included 26,891 participants of eight cohorts

from the TOPMed Consortium, including 13,378 European

Americans, 8,020 African Americans, 601 Chinese Americans,

and 4,892 Hispanic/Latino Americans, as well as 381,470 indi-

viduals of European ancestry from the UK Biobank.21–33 On

average, 55% of the study participants were women, and the

participants’ mean agewas 57 years (range, 20–100 years; Table

S1). We observed moderate to high heterogeneity in distribu-

tions of age, sex, and cardiometabolic phenotypes across

cohorts and ancestries. For example, hypertension (HTN),

obesity, diabetes, and hyperlipidemia were more prevalent in Af-

rican Americans than in participants of other ancestry groups

(Table S1).

A threshold effect between age and mtDNA CN
The standardized residuals of mtDNA CN were obtained by re-

gressing mtDNA CN on ‘‘blood collection year’’ (see STAR

Methods; Figure S1) to study the relationship of mtDNA CN (as
2 Cell Genomics 1, 100006, October 13, 2021
the outcome) with age at blood collection. We observed a

threshold effect of age on mtDNA CN (Figures 2A and S2–S4).

On average, age was associated with a slightly increased level

of mtDNA CN (0.032 SD/10 years [95% confidence interval

(CI) = 0.013, 0.052], p = 0.0014) from age 20 to 65 years. Howev-

er, after 65 years, every additional 10 years of age was associ-

ated with a 0.14 SD lower level of mtDNA CN (95% CI =

�0.18, �0.10; p = 1.82 3 10�13). The relationship between

mtDNA CN and age was similar in men and women, although

women had higher mtDNA CNs than men had (b = 0.23; 95%

CI = 0.20, 0.26; p = 7.4 3 10�60), as noted previously (Fig-

ure S5).14,34 The threshold effect between age and mtDNA CN

remained similar after adjusting for white blood cell (WBC) com-

positions and platelet count (Figure S2).

Association analyses in European American
participants
We generated cohort- and ancestry-specific mtDNA CN stan-

dardized residuals by regressing mtDNA CN on age, age-

squared, sex, and ‘‘blood collection year’’ in primary analyses

in TOPMed cohorts and UK Biobank (see STAR Methods). We

then performed cohort- and ancestry-specific association ana-

lyses of the standardized mtDNA residuals (as the main predic-

tor) with CMD traits (as the outcome), adjusting for age, age-

squared (for blood pressure phenotypes), sex, body mass index

(BMI, not for obesity), and smoking status (see STAR

Methods).35–37 Meta-analysis was performed using the fixed-ef-

fects inverse-variancemethod to summarize results based on an

a priori assumption that there is only one true treatment effect

between studies (n = 13,378) (Table 1; Figures 2B, S6, and S7).

Because low mtDNA CN was reported to be associated with

an increased CMD risk,18–20,38 we reported b estimates as the

change in a CMD outcome variable in response to 1 SD lower

mtDNA CN in all analyses. We found that 1 SD decrease in

mtDNA CN was significantly associated with 1.10-fold odds of

obesity (95% CI = 1.05,1.15; p = 1.0 3 10�4), 1.08-fold odds of

HTN (95% CI = 1.03, 1.12; p = 1.2 3 10�3), and 1.22-fold odds

of diabetes (95% CI = 1.13, 1.30; p = 2.8 3 10�8), whereas it

was not associated with hyperlipidemia (p = 0.13). For contin-

uous traits, 1 SD decrease in mtDNA CN was significantly asso-

ciated with a 0.030-unit (95% CI = 0.021, 0.039; p = 2.53 10�11)

increase in log-transformed triglyceride (TRIG) value and a
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https://doi.org/10.1016/j.xgen.2021.100006


Figure 1. Study design

Association analysis of mtDNA copy number (CN) with cardiometabolic disease traits was performed in cohorts from European Americans (n = 13,378), African

Americans (n = 8,020), Chinese Americans (n = 601), and Hispanic and Latino Americans (n = 4,892) in TOPMed and from the UK Biobank (n = 381,470) of

European ancestry participants. Meta-analysis was performed using the fixed-effects inverse-variance method to summarize the results among European

Americans and among African Americans in TOPMed. WGS, whole-genome sequencing; WES, whole-exome sequencing. See also Tables S1–S4 and Figures

S9–S11.
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0.20 kg/m2 (95%CI = 0.11, 0.29; p = 2.03 10�5) increase in BMI

andwas nominally associated with 0.43mmHg (95%CI = 0.077,

0.78; p = 0.019) increase in systolic blood pressure (SBP). In

contrast, a 1 SD decrease in mtDNA CN was significantly asso-

ciated with a 0.012-unit (95% CI = �0.017, �0.0071; p = 2.9 3

10�6) decrease in log-transformed high-density lipoprotein

(HDL) value and a 0.0075 unit decrease in low-density lipoprotein

(LDL) (95% CI= �0.013, �0.0022; p = 0.0058). mtDNA CN was

not significantly associated with either diastolic blood pressure

(DBP) or fasting plasma glucose (FBG; p > 0.05) in the initial

meta-analysis (Table 1; Figures S6 and S7).

Meta-analysis with participants of European ancestry in
UK Biobank
We tested seven associations with p < 0.01 from the initial meta-

analysis in TOPMed for association in participants of European

ancestry in the UK Biobank. Five of those seven associations

were validated in the direction of association in the UK Biobank

(Table 1; Figures 2B and S6–S8). Compared with those in the

initial meta-analysis, analyses in the UK Biobank data yielded

larger effect sizes for associations of mtDNA CN with five traits

(Table 1). For example, a 1 SD decrease in mtDNA CNwas asso-

ciated with a 1.14-fold (95% CI = 1.13, 1.15) odds of obesity in

the UK Biobank versus a 1.10-fold (95% CI = 1.05–1.15) odds

of obesity in the initial meta-analysis in TOPMed. mtDNA CN

was not significantly associated with hyperlipidemia in TOPMed,

whereas it was significantly associated with 1.08-fold odds of

hyperlipidemia (95% CI = 1.07, 1.09; p = 2.2 3 10�56) in

the UK Biobank. Similarly, mtDNA CN displayed significant as-

sociation with DBP (mm Hg) (b = 0.24; 95% CI = 0.20, 0.28;

p = 5.9 3 10�39) and FBG (mg/dL) (b = 0.23; 95% CI = 0.19,

0.26; p = 1.1 3 10�32) in the UK Biobank, whereas it was not

associated with those traits in TOPMed. A low level of mtDNA

CN was associated with low levels of log-transformed LDL and

HDL in TOPMed, but a 1 SD unit decrease in mtDNA CN was
significantly associated with a 0.0034-unit (95% CI = 0.0026,

0.0042; p = 3.0 3 10�17) increase in log-transformed HDL and

a 0.0066-unit increase in log-transformed LDL (95% CI =

0.0057, 0.0075; p = 1.73 10�43) in the UK Biobank. The associ-

ation of mtDNA CN with TRIG, however, displayed consistent

directionality in both TOPMed and the UK Biobank data (Table 1;

Figures S4 and S5). Because of a much larger sample size in the

UK Biobank, a meta-analysis combining all participants of

European ancestry (total n = 394,848) in the TOPMed and UK

Biobank yielded results similar to those of the UK-Biobank-

only analysis for all 11 traits (Table 1; Figures S4 and S5).

Comparison of directionality of associations between
European and other ancestries
The directionality of associations of mtDNA CN with CMD traits

was consistent in African Americans (n = 8,020) (Table S2;

Figure S9), Hispanic/Latino Americans (n = 4,892), and Asian

Americans (n = 601) comparedwith that of the participants of Eu-

ropean ancestry for most of the CMD traits (Table S3; Figures

S10 and S11). In the meta-analysis of African American partici-

pants, 1 SD decrease in mtDNA CN was significantly associated

with 1.14-fold odds of diabetes (95% CI = 1.07, 1.23; p =

2.0 3 10�4), a 0.75 mm Hg increase in SBP (95% CI = 0.27,

1.22; p = 2.0 3 10�3), and a 0.0077 unit increase in TRIG (95%

CI = 0.0024, 0.013; p = 0.0039). In Asian-only participants (n =

601), 1 SD decrease in mtDNA CN was significantly associated

with 1.43-fold odds of hyperlipidemia (95% CI = 1.19, 1.72; p =

0.00014). In Hispanic-only TOPMed participants (n = 4,892), 1

SD decrease in mtDNA CN was significantly associated with

an increase of odds of diabetes (odds ratio [OR] = 1.14; 95%

CI = 1.05, 1.24; p = 0.002), and significantly associated with a

0.016-unit decrease in LDL (95% CI = �0.027, �0.0050; p =

4.3 3 10�3) (Table S3). A pan-ancestry meta-analysis of all

participants (n = 408,361), combining the TOPMed and the UK

Biobank data, gave rise to similar results for all CMD traits to
Cell Genomics 1, 100006, October 13, 2021 3
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Figure 2. Association of mtDNA CN and cardiometabolic disease traits

(A) The relationship of mtDNA CN with age in TOPMed European American and African American participants (n = 21,398).

(B) Association and meta-analyses of mtDNA CN (n = 394,748) with obesity, hypertension (HTN), diabetes, and hyperlipidemia in TOPMed European Americans

(n = 13,378) and in UK Biobank European ancestry participants (n = 381,470). ARIC, Atherosclerosis Risk in Communities study; CARDIA, Coronary Artery Risk

Development in Young Adults Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis. A hor-

izontal line represents the 95% confidence intervals of an odds ratio (represented by the box in themiddle of the line) for a cohort ormeta-analysis; N, sample size;

X axis, odds ratio; a number with a square bracket represents an odds ratio with 95% confidence intervals for a meta-analysis.

(C) Comparison of odds ratio of cardiometabolic disease traits in participants with and without adjusting for white blood cell and platelet counts. Meta-analysis

(n = 386,526) using inverse-varianceweighting, combining the TOPMed European American participants and UKBiobank participants, with cell counts. The odds

ratio (OR) corresponds to a 1-SD decrease in the mtDNA CN level.

(D) Age-specific meta-analysis (age younger than 65 years, n = 315,708; age 65 years and older, n = 79,782) combining European ancestry participants in

TOPMed and UKBiobank. The effect size estimates are in units of cardiometabolic traits corresponding to a 1-SD decrease in mtDNA CN. See Tables S6–S8 and

Figures S2–S8 and S12–S16.
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those using the UK-Biobank-only data because of a much larger

sample size from the UK Biobank (Table S4).

Accounting for WBC compositions and platelets as
covariates
WBC compositions and platelets were available in a subset of

participants in TOPMed (n = 12,402) and in all participants of

the UK Biobank (n = 381,470). We investigated the relationship

of mtDNA CN with WBC compositions (e.g., neutrophil and

lymphocyte) and platelet count (see STAR Methods).39–42

mtDNA CN was inversely associated with the total WBC count

and neutrophil count and positively associated with platelet

count (Table S5). Moreover, we found that WBC compositions

and platelets together explained about 10%–14% of the varia-

tion in mtDNA CN, and these blood cell components explained

about 0.5%–6% of the variations in CMD traits across a few co-
4 Cell Genomics 1, 100006, October 13, 2021
horts (Table S5). Therefore, WBC compositions and platelets are

strong confounders for associations between mtDNA CN and

several CMD traits. Thus, we compared results between models

with and without WBC compositions and platelet count as addi-

tional covariates in the same participants. Directionality re-

mained the same for all associations after adjusting for WBC

and platelet count in the meta-analysis of participants of Euro-

pean ancestry in the TOPMed and UK Biobank data (Figure 2C;

Table S6) and in the ancestry-specific participants and the UK-

Biobank-only analyses (Figures S12–S15). Most non-lipid traits,

e.g., HTN/SBP and obesity/BMI, displayed a great attenuation in

their associations with mtDNA CN after adjusting for WBC com-

positions and platelet count. In contrast, the associations of

mtDNA CN with hyperlipidemia, HDL, and LDL became moder-

ately strengthened after adjusting for WBC and platelet counts

(Figure 2C; Table S6).
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Interaction analyses
Because of a large sample size, age showed significant interac-

tion with mtDNA CN for multiple traits, including obesity/

BMI, FBG, HDL, LDL, and TRIG, and sex showed a significant

interaction with mtDNA CN for HTN and BMI in meta-analyses

of all participants (Table S7). Because of the threshold

effect of age on mtDNA CN, we further performed stratified

analyses in younger (younger than 65 years) and older (65 years

and older) participants. Hyperlipidemia/lipid traits and HTN

displayed consistent effect sizes in associations of mtDNA CN

between younger and older age groups. The effect sizes of

obesity/BMI and DBP were larger in younger individuals,

whereas the effect sizes for type 2 diabetes (T2D)/FBG and

SBP were larger in older individuals, although the directionality

remained the same between the two age groups (Figures 2D

and S16; Table S8).

DISCUSSION

We demonstrate associations of low levels of mtDNA CN in

peripheral blood with an increased risk of CMDsin 408,361 indi-

viduals of multiple ancestries in TOPMed and UK Biobank, with

adjustments made for traditional clinical covariates as well as for

blood cell compositions. Cardiometabolic factors are known

risks for the development of CVD. Therefore, our association

findings further suggest that altered levels of mitochondrial en-

ergy production may be involved in the development of a cluster

of conditions that increase the risk of CVD. More specifically, the

CMD traits that were significantly associated with low levels

mtDNA CN—increased odds for obesity, HTN, diabetes, and hy-

perglycemia—are all components of the metabolic syndrome.43

Because the metabolic syndrome is the clinical surrogate for in-

sulin resistance, these data suggest that decreasing mtDNA CN

may contribute to the insulin resistance accompanying aging.44

We identified a threshold effect of age on mtDNA CN, with a

large decline in mtDNA CN observed from 65 years of age.

Reduced mitochondrial function is considered one of the hall-

marks of aging.45 Therefore, the observed age-related decline

in mtDNACN is potentially important in studying age-related dis-

eases. Our stratified analysis in younger (younger than 65 years)

and older (65 years and older) participants found that the effect

sizes of associations varied by age groups for six traits in partic-

ipants of European ancestry.

WBC compositions and platelets are blood biomarkers of sys-

temic inflammation.8,46 It has been increasingly recognized that

a chronic low-grade inflammatory state accompanies CMD

risk47 and is associated with an increasing risk of obesity,48,49

diabetes,47,50,51 and HTN,52–54 whereas it is heterogeneously

related to lipid levels.55 Complementary to those previous

findings, this study found complex relationships between WBC

compositions/platelets and CMD traits with respect to their het-

erogeneous directionalities and strengths in the associations of

blood compositions with CMD traits. Similarly, WBC composi-

tions (e.g., neutrophils and lymphocytes) and platelets displayed

different directionalities in their associations with mtDNA CN,

although we observed that a high WBC count was associated

with a low level of mtDNA CN, which is consistent with previous

findings.46,56–60 These results indicate that mtDNA CN, WBC
Cell Genomics 1, 100006, October 13, 2021 5
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compositions, and platelets may represent an interplay for CVD

risk by contributing to those CMD risk factors that are compo-

nents of the metabolic insulin-resistance syndrome. Further

studies are needed to investigate the underlying molecular

mechanisms and potential causal pathway among mtDNA CN,

inflammation, and CMD risk.

Strengths of the study
This study included a large sample of men and women of mul-

tiple ancestries across a wide age range. In TOPMed, mtDNA

CN was jointly estimated from WGS. A comprehensive exami-

nation showed that the mtDNA CN derived from WGS produced

comparable or better results with known correlates (e.g., age

and sex) compared with qPCR or other methods (e.g., mtDNA

CN estimated from genotyping arrays and whole-exome

sequencing).61 We also performed careful phenotype harmoni-

zation and examined several potential confounding variables of

mtDNA CN in an association analysis with CMD traits. The UK

Biobank, a large prospective cohort study, applied a range of

approaches to its sample collection, processing, and assay

data monitoring to minimize measurement error in traits and

biomarker data.62 This may partially explain why we observed

larger effect sizes in association of mtDNA CN with five of

the CMD traits in the UK Biobank data than we did in the

TOPMed data. Our combined analyses using TOPMed and

UK Biobank provided a large dataset with the comprehensive

data collection and quality control needed to enable testing of

associations between mtDNA CN and CMD traits through the

adult life.

Limitations of the study
Several limitations of the study should be noted. In this study, we

used mtDNA CN estimated from whole blood, because periph-

eral blood is easily accessible, and changes in mtDNA in whole

blood are likely to reflect metabolic health across multiple

systems. However, this may not be the most-relevant tissue for

cardiometabolic targets (e.g., cardiac muscle, skeletal muscle,

or adipose tissue) and aging-related (e.g., brain) disease pheno-

types. A previous study compared mtDNA CN in whole blood

and plasma in the same participants with T2D and found a signif-

icant correlation betweenmtDNACN of whole blood and plasma

in those patients.63 Another study investigated mtDNA CN in

skeletal muscle and cardiac muscle samples through autopsy

and heart bypass surgery.8 However, none of those studies

directly compared the mtDNA CN measured from both whole

blood and skeletal muscles in the same human samples. A

more recent study found that blood-derived mtDNA CN was

associated with gene expression across multiple tissues and is

predictive for incident neurodegenerative disease, which pro-

vides evidence supporting the hypothesis that changes in

mtDNA in whole blood may reflect metabolic health across mul-

tiple systems.64

Second, although we accounted for confounders and known

batch effects in mtDNA CN and harmonized metabolic traits,

we still observed a moderate to high heterogeneity in the associ-

ation coefficients in meta-analysis of most of the phenotypes in

both ancestry-specific analyses and in TOPMed cohorts.

Different distributions of age, sex, and phenotypes across study
6 Cell Genomics 1, 100006, October 13, 2021
cohorts may partially explain the heterogeneity in those associ-

ations. Unobserved confounding factors, such as experimental

conditions for blood draws, DNA extraction, and storage, may

also have contributed to the heterogeneity. Finally, we were un-

able to determine causal relationships between mtDNA CN and

CMD traits because of the cross-sectional nature of the study. A

reverse causation from a CMD endpoint to mtDNA CN is also

possible. A recent study found that mtDNA CN was associated

with prevalent diabetes but not with incident diabetes, indicating

that diabetes is likely to result in lower levels of mtDNACN, rather

than a lower level mtDNA CN resulting in diabetes.65 In further

studies, it would be of interest to include analyses of mtDNA

CN and CMD traits at two time points to provide further insight

into associations of aging-related mtDNA CN change with

CMD traits.
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This study only included human participants from prospective cohort studies. We included eight cohorts from the NHLBI’s TOPMed

program.21 These eight cohorts included Atherosclerosis Risk in Communities study (ARIC) (n = 2,964), Coronary Artery Risk Devel-

opment in Young Adults Study (CARDIA) (n = 3,452), The Cardiovascular Health Study (CHS) (n = 3,493), The Framingham Heart
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Study (FHS) (n = 4,124), The Genetic Epidemiology Network of Arteriopathy (GENOA) (n = 1,234), Hispanic Community Health Study/

Study of Latinos (HCHS/SOL) (n = 3,868), The Jackson Heart Study (JHS) (n = 3,160), andMulti-Ethnic Study of Atherosclerosis Study

(MESA) (n = 4,596). ARIC is a prospective epidemiologic study conducted in four communities which are Forsyth County, NC; Jack-

son, MS; the northwest suburbs of Minneapolis, MN; andWashington County, MD.33 Focusing on cardiovascular disease outcomes,

event adjudication through 2017 consisted of expert committee review of death certificates, hospital records and telephone inter-

views. Buffy coat was purified using the Gentra Puregene Blood Kit (QIAGEN) using blood samples collected from several health

exam visits. mtDNA-CNwas available for 2,964 participants of European Americans and African Americans withWGS from TOPMed.

CARDIA is a prospective cohort study which was initiated in 1984 to investigate life-style and other factors that influence cardiovas-

cular disease and their risk factors during young adulthood. The study recruited and examined 5,116 African American and European

ancestry women and men aged 18-30 years in four urban areas: Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota,

and Oakland, California.22 The initial examination included carefully standardized measurements of major risk factors as well as as-

sessments of psychosocial, dietary, and exercise-related characteristics that might influence them, or that might be independent risk

factors. mtDNA CN was available for 3,452 participants with WGS sequencing in TOPMed. CHS is a population based, longitudinal,

multicenter study of coronary heart disease and stroke in 5,888 elderly adults aged 65 years and older. The CHS originated in 1988 to

recruit participants from four U.S. communities.23 The original cohort recruited 5,201 participants and 687 predominately African-

American participants were recruited at three of the four field centers in 1992. The first exam began in June 1989. A second compre-

hensive exambegan 3 years after the first exam. A total of n = 3,493 CHS participants (mean age 74 and 58%women) withWGSwere

included in this study. The FHS is a single-site, community-based, prospective study that was initiated in 1948 to investigate the risk

factors for CVD.24 The second generation25 was recruited in 1971 and the third generation26 was recruited between 2002 and 2005.

The first generation has been examined every two years. The second generation has been examined every 4-8 years. The third gen-

eration has had three examinations. A small number of spouse individuals of the second generation was examined at the same time

when the third generation had their first examination. A total of 4,196 FHS participants were whole genome sequenced by TOPMed;

of those, 376 were the first generation, 2218 were the second generation and 95were spouses of the second generation participants;

and 1507were the third generation participants. This study included 4,124 FHS participants. GENOA study enrolled sibships in which

at least 2 siblings had essential hypertension diagnosed prior to age 60 years. From 1995 to 2000, the first exam enrolled 1583 non-

Hispanic white Americans from Rochester, Minnesota, and 1854 African Americans from Jackson, Mississippi.27 All siblings within

the sibship were invited to participate, including both normotensive and hypertensive siblings. The second exam re-recruited 80% of

participants from 2000 to 2005. The GENOA data consists of biological samples (DNA, serum, urine) as well as demographic, anthro-

pometric, environmental, clinical, biochemical, physiological, and genetic data for understanding the genetic predictors of diseases

of the heart, brain, kidney, and peripheral arteries. This study included 1,234 participants of African Americans. HCHS/SOL is a lon-

gitudinal cohort study established in 2008 following Hispanics/Latinos from four US cities: Bronx, NY; Chicago, IL; Miami, FL; San

Diego, CA. This study was approved by the IRB in all field centers.28 This study included 3,868 participants with available whole-

genome sequencing data from blood drawn in their first field center visit. Detailed information on HCHS/SOL was provided previ-

ously.28 Statistical methods used to analyze the present data account for the complex study design, including stratified sampling,

clustering, and sampling probabilities. We also adjusted for 11 principal components, estimated from the TOPMed DCC. This study

included 3,868 individuals with WGS and matched metabolic phenotypes. The JHS cohort is one of the largest prospective, epide-

miologic investigation of CVD among African Americans residing in the three counties (Hinds, Madison, and Rankin) that make up the

Jackson, Mississippi metropolitan area.29,30 Data and biologic materials have been collected from 5,306 participants, including a

nested family cohort of 1,498 members of 264 families. The age at enrollment for the unrelated cohort was 35-84 years; the family

cohort included related individuals > 21 years old. Participants provided extensive medical and social history and had an array of

physical and biochemical measurements and diagnostic procedures during a baseline examination (2000-2004), two follow-up ex-

aminations (2005-2008 and 2009-2012), and ancillary studies. Samples for genomic DNA were collected during the first two exam-

inations. Consent for genetic studies and broad sharing of genetic data was provided by 3,482 participants. After all quality control

procedures, whole genome sequence data are available for 3,406 participants. Follow-up information on vital status, major illnesses

or injuries, and hospitalizations to identify intervening clinical events is done annually by phone. Medical records of cardiovascular

disease related hospitalizations and death certificates are abstracted and used for adjudication of cardiovascular events and related

deaths. MESA (n = 4,596) is a study of the characteristics of subclinical cardiovascular disease and the risk factors that predict pro-

gression to clinically overt cardiovascular disease or progression of the subclinical disease. MESA researchers study a diverse, pop-

ulation-based sample of 6,814 men and women 45-84 years of age and free of prevalent clinical CVD when recruited from six field

centers across the United States in 2000-2002.31 Event adjudication through 2015 consists of expert committee review of death cer-

tificates, hospital records and telephone interviews. DNA for mtDNA-CN analyses was isolated from exam 1 peripheral leukocytes

using the Gentra Puregene Blood Kit. mtDNA-CNwas available for 4,596 individuals (24.1%Black, 22.3%Hispanic, 13.1%Chinese,

40.5%White) derived from TOPMedWGS sequencing. Several of the TOPMed cohorts contained a small number of duplicated par-

ticipants. After removing the duplicates, this study included 26,890 individuals withWGS from the TOPMed program (67.4%women;

age range of 20-100 years; 45.4%European Americans, 32.6%African Americans, 19.6%Hispanic/Latino Americans and 2.4%Chi-

nese Americans) (Table S1). Additionally, we included 381,470 participants of European ancestry from the UK Biobank with WES

(54% women; 40-75 years) for validation (Table S1). The UK Biobank is a prospective cohort study, with the aim of improving the

prevention, diagnosis and treatment of a wide range of serious and life-threatening illnesses – including cancer, heart diseases,
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stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia. UK Biobank recruited 500,000 individuals

from across the United Kingdom aged between 40-69 years in 2006-2010, who have undergonemeasures, provided blood, urine and

saliva samples for future analysis.32 381,470 participants with whole exome sequencing and matched metabolic phenotypes were

included in this study. This research has been conducted using the UK Biobank Resource under application number UKBB: 17731.

All study participants provided written informed consent for genetic studies. The protocols for WGS and WES were approved by

the institutional review boards (IRB) of the participating institutions (supplemental information).

METHOD DETAILS

mtDNA copy number estimation
mtDNA CN estimation in WGS

Whole blood derived DNA was used for WGS from TOPMed sequencing centers. In analyzing sequencing data, the coverage was

defined as the number of reads that were mapped to a given nucleotide in the reconstructed sequence. The average coverage was

�39x across samples in TOPMed. The program fastMitoCalc of the software packagemitoAnalyzer34 was used to estimate mtDNA

copy number across TOPMed participants. Because nuclear DNA (nDNA) is diploid, ordinarily inheriting the DNA from two parents,

while mitochondrial DNA is haploid, coming only from the mother, the average mtDNACN per cell was estimated as twice the ratio of

the average coverage of mtDNA to the average coverage of the nuclear DNA (nDNA).34

mtDNA CN estimation in UK BioBank

Whole blood derived DNA was used for WES from the UK BioBank. In UK Biobank, we started with 49,997 Exome SPB CRAM

files (version Jul 2018) downloaded from the UKB data repository, and used Samtools (ver1.9) to extract read summary statistics

(‘idxstats’ command). A custom perl script was used to aggregate the summary statistics from each individual file into the following

categories (see perl script and example stats file): 1) Total Reads (sum of columns 3 and 4, across all rows), 2) Mapped Reads (sum of

column 3, across all rows), 3) Unmapped Reads (some of column 4 across all rows), 4) Autosomal Reads (sum of column 3, rows

1-22), 5) Chr X, 6) Chr Y, 7) Chr MT, 8) ‘Random’ Reads (sum of column 3, across rows 26-67), 9) ‘Unknown’ Reads (sum of column

3 across rows 68-194), 10) EBV Reads, 11) ‘Decoy1’ Reads (sum of column 3 across rows 196-582), 12) ‘Decoy20 Reads (sum of

column 3 across rows 583-2580). Linear regression models were used to adjust for total DNA and potential technical artifacts. Spe-

cifically, we used 10-fold cross validation for variable selection, using the ‘leaps’ R package (version 3.0), with an initial model with

chrMT read count as the dependent variable, and ‘Total’, ‘Mapped’, ‘unknown’, ‘random’, ‘decoy1’ and ‘decoy20 read counts as the

independent variables. For each of the independent variables, we included a natural spline with df = 4 to allow for non-linear effects.

The independent variables ‘Total’, ‘unknown’, ‘decoy1’ and ‘decoy20 read counts were selected.We then increased the natural spline

df to 15, and then used backward selection to reduction model complexity, requiring p < 0.005 to keep a term in the model. The final

regression model residuals were generated with the following R (version 3.6.0) code: WES.mtDNA = residuals(lm(chrMT

�ns(Total,df = 3) + ns(unknown,df = 4) + ns(decoy1,df = 7) + decoy2)). Mitochondrial SNP probe intensities were obtained from

the ‘‘ukb_chrMT_l2r.txt’’ file downloaded from the UKBiobank, and samples were stratified by array type (UK BiLEVE, Axiom). To

correct for potential artifacts and/or batch effects, we generated 250 principal components (PCs) using the ‘rpca’ command from

the ‘rsvd’ package (version 1.0.3) from autosomal nuclear probes by randomly sampling 5% of probes from either even or odd chro-

mosomes that were required to be present on both array types (n�19,500 probes). Note that we generated the two independent sets

of PCs so that we could ensure that probe selection for PCA did not bias results. Prior to PCA, all probe intensities were rank trans-

formed to reduce the impact of any outliers. For each array type, all mitochondrial SNP probes (UKBelieve, n = 181; Axiom, n = 244)

along with the 250 PCswere regressed on the ‘WES.mtDNA’ metric derived as described above. Beta estimates from these analyses

were then used to generate fitted values in the full UKBiobank dataset using the ‘predict’ function (‘array.mtDNA’). Given the known

impact of age, sex, and cell counts onmtDNA-CN, we first used visual inspection to identify outliers for cell counts: Log(WBC)% 1.25

orR 3; Log(RBC)% 1.4 orR 2; Platelet% 10 orR 500; Log(Lymphocyte)% 0.10 orR 2; Log(Mono)R 0.9; Log(Neutrophil)% 0.75 or

R 2.75; Log(Eos)R 0.75; Log(Baso)R 0.45.We then excluded non-Whites, related individuals (used.in.pca.calculation = 0), and cell

count outliers and then adjusted for age, sex, and cell counts using a backward regression, starting with a natural spline (df = 4) for

each covariate. The final model obtained was (‘‘log_’’ indicates log-transformed variable):

mtDNA�CN= residuals

2
666666664
lm

0
BBBBBBBB@

array:mtDNA � nsðage;df= 4Þ+
sex+ nsðlog WBC;df= 4Þ+
nsðlog RBC;df= 4Þ+ nsðplatelet;df= 4Þ+
ns

�
log lymph;df= 4

�
+ ns

�
log neutrophil;df= 4

�
+ log Eos+ log Baso+ log NucRBC

1
CCCCCCCCA

3
777777775

Beta estimates from these analyses were then used to generate fitted values in the full UK Biobank dataset (n = 381,470)

using the ‘predict’ function. For all analyses, mtDNA-CN was standardized by subtracting the mean and dividing by the standard

deviation.
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In ARIC, mtDNA CN has also been estimated from low-pass WGS and Affymetrix Genome-Wide Human SNP Array 6.0.61 We pro-

vided association results of mtDNA CN estimated from these two platforms to provide additional information on whether mtDNA CN

estimated from different technologies gave rise to consistent results compared to that estimated fromWGS (Table S9; supplemental

information). These results were not included in any of the meta-analyses and comparisons in the main text.

Cardiometabolic disease phenotypes
Metabolic disease phenotypes were mapped to the health exams when blood was drawn for DNA extraction for mtDNA CN esti-

mates. Our primary analysis focused on four CMD phenotypes – obesity, hypertension (HTN), diabetes, and hyperlipidemia. We

analyzed binary traits in the primary analyses for reducing the multiple testing burden. Obesity was defined as body mass index

(BMI) R 30 (kg/m2). For the majority, but not all, of the TOPMed cohorts, a therapeutic indication was provided for a medication

treatment, but this was not clear for the UK BioBank. T2D was defined as having a fasting blood glucose level of R 126 mg/dL

or currently receiving medications to lower blood glucose levels to treat diabetes. Hypertension (HTN) was defined as

SBP R 140 mmHg, or DBP R 90 mmHg, or use of antihypertensive medication(s). Hyperlipidemia was defined as fasting total

cholesterol (TC) R 200 mg/dL or TRIG R 150 mg/dL, or use of any lipid-lowering medication.

We also analyzed the association of mtDNA CN with continuous cardiometabolic traits that defined the binary traits: BMI, SBP,

DBP, FBG, HDL cholesterol, LDL cholesterol, and TRIG levels. In the analysis of FBG, we excluded individuals with diabetes, defined

as glucose value R 126 mg/dL and/or taking glucose-lowering or diabetes medications.35 SBP and DBP values (mmHg) were

derived from the averages of two measurements. We added 15 mmHg and 10 mmHg to SBP and DBP, respectively, for individuals

taking any BP loweringmedications.36 The TCmeasurements were divided by 0.8 for individuals using lipid treatment medications.37

LDL (mg/dL) was calculated as (TC - HDL - TRIG/5) in individuals with TRIG < 400 mg/dL using imputed TC values.37 In analyses of

FBG and lipid levels, we excluded individuals whose fasting status was not established. TRIG, LDL and HDL values were log-trans-

formed to approximate normality. Other continuous outcome variables were not transformed.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used mtDNA CN as the primary independent variable in all association analyses with CMD traits. To identify confounders and

covariates, we first examined whether mtDNA CN levels were associated with the ‘blood collection year’ (i.e., the year when blood

was drawn, as a surrogate of batch effects for blood-derived DNA samples) in all participating cohorts. We discovered that ‘blood

collection year’ explained a 0.9% to 16% variation in mtDNA CN (Figure S1). White blood cell (WBC) count, blood differential count

and platelets were previously reported to be associated with mtDNA CN.14,39 To further understand possible confounding effects of

these blood components on association analyses, we investigated whether mtDNA CN and CMD traits were associated with total

WBC count, blood differential count, and platelet count that were measured or imputed using the Houseman method or a partial

least-squares method40,41 (Table S5). We further examined the effect of age (Figure S2) and sex (Figure S3) on mtDNA CN after

adjusting for ‘blood collection year’.

Based on observing significant associations of mtDNACN in relation to ‘blood collection year’, age, and sex, we generatedmtDNA

CN residuals by regressing mtDNA CN on age, age squared, sex and blood collection year (as a factored variable) in each cohort for

primary analyses. The residuals were standardized to a mean of zero and standard deviation (s.d.) of one, and used as the main

predictor in all regression models. In the primary analysis, we used logistic regression (for unrelated individuals) and mixed effects

logistic regression model (related individuals) to analyze binary outcomes (i.e., obesity, HTN) in relation to mtDNA CN residuals.

Because age, sex, and BMI are important confounders or covariates for cardiometabolic traits, we further adjusted for sex and

age as covariates in the analysis of obesity, and adjusted for sex, age, age-squared (only for HTN) and BMI as covariates in the anal-

ysis of T2D, hyperlipidemia, andHTN. Smokingwas a traditional covariate in association analysis of mtDNAwith disease phenotypes.

Although we included smoking as an additional covariate, we found that the impact of smoking on associations of mtDNA CN with

CMD traits wasminimal (supplemental information; Figure S17). We excluded any value in mtDNACN or a trait measurement if it was

beyond 4 standard deviation of the mean of mtDNA CN residuals or a trait. We used linear effects models to analyze continuous

outcome variables, adjusting for the same set of covariates as for the respective binary outcomes. For cohorts with family structure,

we accounted for maternal lineage as random effects in linear or logistic mixed models. A maternal lineage was defined to include a

founder woman with all of her children, and all grandchildren from daughters of the founder woman.42

We performed an initial meta-analysis in European American participants in TOPMed with fixed effects inverse variance method

based on an a priori assumption that there is only one true treatment effect between studies.14,15 We performed validation analyses

using data for European ancestry participants in the UKBiobank (Figure 1).We further comparedmeta-analysis results in participants

of European ancestry to those from other ancestry origins in TOPMed cohorts. Finally, we performed fixed inverse-variance meta-

analysis to combine results from the TOPMed and UK Biobank. We used p = 0.0125 (0.05/4) for significance to account for multiple

testing for the primary results from the four binary traits, and used p = 0.05/9�0.006 for significance in analysis of continuous

outcomes.
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We compared associations between mtDNA CN and individual outcomes in the same participants with and without WBC count,

differential count, and platelet count as additional covariates. We further investigated whether sex or age modified the association

between mtDNA CN and outcome variables, adjusting for the same set of covariates described in the primary analyses. In these

analyses, we generated mtDNA CN residuals by regressing the mtDNA CN on the blood collection year (as a factored variable) in

each cohort for the primary analyses. We included an interaction term between mtDNA CN and sex/age in the association analyses.

We also performed age-group stratified analyses between mtDNA CN and CMD traits in younger (< 65 years) and older (R65 years)

participants (supplemental information). The statistical software R (version 3.6.0) was used for all statistical analyses.
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Table S1. Participant characteristics, Related to Figure 1 and Table 1. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

AA, African ancestry; EA, Participants of European ancestry; EAS, East Asian (Chinese) ancestry. HA, Hispanic and Latino 
Americans. ARIC, Atherosclerosis Risk in Communities study; CARDIA, Coronary Artery Risk Development in Young Adults 
Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; GENOA, Genetic Epidemiology Network of 
Arteriopathy Study; Hispanic Community Health Study/Study of Latinos (HCHS/SOL); JHS, Jackson Heart Study; MESA, 
Multi-Ethnic Study of Atherosclerosis; UKB, the UK Biobank. 
 

 

 

Variable 
Mean (sd) or N (%) 

ARIC  
(n=2763) 

CARDIA 
(n=1840) 

CHS  
(n=2788) 

FHS  
(n=4124) 

MESA  
(n=1863) 

UKB  
(n=381,470) 

Ancestry EA EA EA EA EA EA 

mtDNA CN (men) 271 (77) 197 (71) 249 (119) 145 (50) 238 (70) -0.19 (0.98) 

mtDNA CN (women) 313 (75) 221 (94) 281 (136) 151 (49) 255 (74) 0.14 (0.98) 

Age 59 (6) 45 (7) 74 (6) 60 (16) 62 (10) 57 (8) 

Women (1425) 51% 989 (54%) 1589 (57%) 2227 (54%) 911 (49%) 206031 (54%) 

Obesity 750 (27%) 500 (27%) 502 (18%) 1116 (28%) 519 (28%) 91415 (24%) 

HTN 1013 (37%) 275 (15%) 1868 (67%) 1909 (48%) 781 (42%) 191963 (50%) 

DIAB 362 (13%) 88 (5%) 390 (14%) 441 (11%) 96 (5%) 18277 (5%) 

Hyperlipidemia 1911 (69%) 943 (51%) 1979 (71%) 2616 (66%) 1240 (67%) 308822 (81%) 

Variable 
Mean (sd) or (%) 

ARIC  
(n=201) 

CARDIA  
(n=1612) 

CHS 
(n=705) 

GENOA 
(n=1234) 

JHS  
(n=3160) 

MESA  
(n=1108) 

Ancestry AA AA AA AA AA AA 

mtDNA CN (men) 304.2 (86) 220 (83) 278 (118) 238 (77) 122 (42) 243 (71) 

mtDNA CN (women) 292 (77) 247 (112) 283 (121) 255 (76) 134 (48) 268 (84) 

Age 59 (6) 44 (7) 74 (6) 62 (10) 55 (13) 63 (10) 

Women 118 (59%) 948 (59%) 444 (63%) 877 (70%) 1960 (62%) 499 (45%) 

Obesity 80 (40%) 822 (51%) 247 (35%) 677 (54%) 1699 (54%) 510 (46%) 

HTN 128 (64%) 557 (35%) 557 (79%) 977 (78%) 1886 (60%) 676 (61%) 

DIAB 66 (33%) 169 (10%) 169 (24%) 363 (29%) 725 (23%) 199 (18%) 

Hyperlipidemia 138 (69%) 707 (44%) 444 (63%) 852 (68%) 1706 (59%) 499 (45%) 

Variable 
Mean (sd) or (%) 

MESA  
(n=601) 

MESA   
(n=1024) 

HCHS/SOL   

(n=3868) 

Ancestry EAS HA HA 

mtDNA CN (men) 227 (64) 232 (64) 202 (36) 

mtDNA CN (women) 245 (70) 254 (69) 218 (40) 

Age 62 (10) 62 (11) 47 (14) 

Women 299 (50%) 526 (51%) 2294 (60%) 

Obesity 33 (4%) 455 (39%) 1760 (46%) 

HTN 301 (39%) 508 (43%) 839 (22%) 

DIAB 401 (13%) 219 (19%) 827 (21%) 

Hyperlipidemia 419 (54%) 762 (65%) 634 (16%) 
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Table S2. Meta-analysis combining results among TOPMed participants of African ancestry, 

Related to Table 1, Figure 1 

Traits TOPMed participants of African 
ancestry (n=8,020) 

Beta SE P-value 

Obese 0.017 0.027 0.52 

HTN 0.052 0.030 
 

0.085 

Diabetes 0.14 0.036 2.0 × 10-4 

Hyperlipid -0.0061 0.028 0.83 

BMI 0.061 0.077 0.43 

DBP 0.071 0.028 0.013 

SBP 0.75 0.24 2.0 × 10-3 

FBG 0.14 0.11 0.23 

HDL -0.00010 0.0032 0.97 

LDL 0.0010 0.0046 0.83 

TRIG 0.0077 0.0027 0.0039 

Association analysis of mtDNA CN with CMD traits was performed in each cohort of TOPMed participants of African ancestry 
(ARIC, CARDIA, CHS, GENOA, JHS, and MESA). Meta-analysis using fixed effects inverse variance method was applied 
to summarize the results. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA 
CN. DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; FBG, fasting blood glucose; HDL, 
high density lipoprotein; LDL, low density lipoprotein; TRIG, triglyceride; Obese, obesity; HTN, hypertension; Diabetes, 
Diabetes; Hyperlipid, hyperlipidemia.  
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Table S3. Association analysis between mtDNA CN and metabolic phenotypes in participants 

of Hispanic and Latino Americans and Chinese ancestry, Related to Table 1, Figure 1 

 Hispanic/Latino Americans 
(n=4,892) 

Chinese ancestry  
(n=601) 

Traits Beta/SE P Beta/SE P 

Obese 0.017/0.025 0.49 -0.069/0.22 0.75 

HTN 0.046/0.042 0.28 -0.036/0.099 0.71 

DIAB 0.13/0.043 0.002 0.20/0.14 0.16 

Hyperlipid -0.011/0.047 0.81 0.36/0.094 0.00014 

BMI 0.27/0.12 0.026 -0.16/0.14 0.24 

DBP 0.11/0.21 0.61 -0.10/0.49 0.83 

SBP 0.21/0.33 0.53 -0.87/0.94 0.36 

FBG -0.021/0.19 0.91 -0.068/0.46 0.88 

HDL -0.015/0.0079 0.06 0.0001/0.0093 0.99 

LDL -0.016/0.0056 4.30 × 10-3 0.020/0.011 0.068 

TRIG 0.020/0.0093 0.037 0.027/0.020 0.18 

Association analysis of mtDNA CN with CMD traits was performed in Hispanic and Latino American participants in MESA 
and SOL study, and participants of Chinese ancestry in MESA study. Meta-analysis using fixed effects inverse variance 
method was used to summarize the Hispanic and Latino Americans results. The effect size estimates are in units of CMD 
traits corresponding to one s.d. decrease in mtDNA CN.  
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Table S4. Meta-analysis combining results in participants of all ancestries from TOPMed and 

UK Biobank, Related to Table 1, Figure 1 

 All ancestries (n=408,361) 

Traits Beta SE P-value 

Obese 0.13 0.0039 8.90 × 10-227 

HTN 0.057 0.0038 1.08 × 10-49 

Diabetes 0.041 0.0079 2.01 × 10-7 

Hyperlipid 0.073 0.0047 1.40 × 10-54 

BMI 0.29 0.0075 9.9 × 10-336 

DBP 0.18 0.015 3.60 × 10-32 

SBP 0.62 0.032 8.80 × 10-86 

FBG 0.22 0.018 1.06 × 10-31 

lnHDL 0.0030 4.00 × 10-4 1.96 × 10-14 

lnLDL 0.0062 5.00 × 10-4 1.01 × 10-40 

lnTRIG 0.020 8.00 × 10-4 5.77 × 10-152 

Association analyses of mtDNA CN with CMD traits was performed in cohorts of European ancestry (n=13,378), African 
ancestry (n=8,020), Hispanic and Latino Americans (N=4,892), and Chinese ancestry (n=601) in TOPMed and in UK 
Biobank participants of European ancestry (n=381,470). Meta-analysis using fixed (PQ≥0.01) effects inverse variance 
method was used to summarize the results. The effect size estimates are in units of CMD traits corresponding to one s.d. 
decrease in mtDNA CN.  
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Table S5. Association analyses of mtDNA CN with white blood cell count and platelets, 
Related to STAR Methods 
 

5A. Methods to obtain white blood cell count and platelets 

Cohort Directly measured Imputed based on gene expression or DNA methylation data 

 ARIC  Yes   

 FHS*   Yes. Imputed based on using gene expression data with partial least squares. 

 GENOA   Yes. Imputed based on using DNA methylation data with the Houseman method. 

 JHS  Yes  

 SOL  Yes   

 UKB Yes  

 

5B. Association analysis of mtDNA CN with white blood cell count and platelets 
Independent 
variable 
(count) 

FHS (n=2,643) GENOA (n=878) JHS (n=2,840) UKB (n=381,470) SOL (n=3,613) 

Coef P-value Coef P-value Coef P-value Coef P-value Coef P-value 

White blood 
cell -0.11 5.1 × 10-13 

na na 
-0.055 7.0 × 10-8 

na na -0.60  6.7 × 10-44 

Neutrophil -0.020 0.094 na na na na -0.072 <2e-16 -0.55 5.7 × 10-47 

Lymphocyte 0.0062 0.49 na na 0.024 8.5 × 10-42 0.026 <2e-16 0.021 0.11 

Eosinophil -0.0011 0.94 na na 1.8 × 10-4 0.98 -0.024 0.040 0.1 0.38 

Basophil 0.11 0.18 na na 0.048 0.27 -0.11 0.0022 -0.0017 0.043 

Monocyte  na na 10.45 0.14 -.014 0.067 -0.055 4.4 × 10-8 -0.035 1.8 × 10-4 

Platelet 0.0036 3.2 × 10-14 na na 0.0011 1.7 × 10-5 0.00074 <2e-16 0.4756 3.5 × 10-28 

Red blood cell 0.062 0.21 na na -0.018 0.55 0.22 0.0077 -0.0074 1.4 × 10-13 

CD8T  na na -12.80 0.063 na na na na na na 

CD4T na na -11.89 0.087 na na na na na na 

Natural killer 
cell na na -11.71 0.066 

na na na na na na 

B lymphocytes 
cell  na na -11.72 0.088 

na na na na na na 

Granulocytes 
cell na na -14.79 0.032 

na na na na na na 

Adjusted R2 10.4% 10.6% 11.6% 14.3%  

mtDNA CN residuals were obtained by regressing mtDNA CN on batch effect (i.e., year at blood collection), age (at blood 
collection), age-squared, and sex. We performed a regression model with mtDNA CN residuals as a dependent variable 
and all blood compositions as independent variables. The effect size estimates are changes in s.d. of mtDNA CN level in 
response to one unit increase in WBCs. R2 represents the variance in mtDNA CN that is jointly explained by blood cell 
compositions in the table.  
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5C. Association of continuous CMD traits with white blood cell count/platelets 
 

Trait 

FHS (n=2643) 

White blood cell count Neutrophils Platelets 
R2 (%) 

Beta P Beta P Beta P 

DBP 0.59 9.7 × 10-4 0.0099 0.75 -0.010 0.078 0.51 

SBP 1.69 8.7 × 10-7 0.12 0.044 -0.0068 0.54 1.7 

BMI 0.65 6.8 × 10-15 0.0085 0.55 0.0020 0.45 3.4 

FBG 0.67 0.00017 0.061 0.047 -0.0095 0.099 1.3 

lnHDL -0.042 0.2 × 10-17 1.0 × 10-4 0.87 0.0016 2.2 × 10-24 5.7 

lnLDL 0.015 0.0016 -0.0015 0.068 0.0005 0.0019 0.92 

lnTrig 0.0095 2.4 × 10-32 -0.0048 0.00038 -0.0018 8.2 × 10-13 5.8 

    

Trait 

JHS (n=2740) 

White blood cell count Lymphocytes Platelets 
R2 (%) 

Beta P Beta P Beta P 

DBP 0.039 0.75 0.0083 0.70 -0.0034 0.28 7 

SBP 0.54 0.026 -0.11 0.013 -0.024 0.00013 0.9 

BMI 0.56 1.5 × 10-11 0.085 8.0 × 10-9 0.015 4.2 × 10-12 4.9 

FBG -0.11 0.41 -0.047 0.035 -0.0066 0.039 0.34 

lnHDL -0.012 0.00050 -0.0011 0.084 0.0002 0.025 0.43 

lnLDL -0.014 0.00019 0.0005 0.45 0.0003 0.0058 0.76 

lnTrig 0.044 2.3 × 10-12 0.004 0.00036 -0.0001 0.45 1.9 

 
 

 

 

 

 

 

 

 

 
 
 

We performed a regression analysis with a continuous CMD trait as a dependent variable, and white blood 
cell count, neutrophil, and platelet count jointly as independent variables. The effect size estimates are in 
units of CMD traits corresponding to one unit increase in a cell composition. R2 represents the variance in 
a CMD trait that is jointly explained by the three blood cell compositions in the table.

Trait 

UKB (n=381,470) 

White blood cell count Neutrophils Platelets R2 

(%) Beta P Beta P Beta P 

DBP 0.16 3.0 × 10-34 0.39 6.6 × 10-87 0.0001 0.63 0.57 

SBP 0.23 3.4 × 10-21 1.07 2.2 × 10-192 -0.01 7.3 × 10-87 0.83 

BMI 0.28 7.5 × 10-607 0.14 5.5 × 10-74 -0.0007 1.2 × 10-8 2.5 

FBG -0.16 1.2 × 10-38 0.45 2.4 × 10-119 -0.0036 1.1 × 10-37 0.17 

lnHDL -0.014 2.6 × 10-474 -0.012 7.2 × 10-143 0.00047 1.1 × 10-1326 3.3 

lnLDL 0.0035 1.4 × 10-45 -0.020 9.3 × 10-455 0.00054 1.3 × 10-1558 1.9 

lnTrig 0.033 6.3 × 10-754 0.012 6.1 × 10-51 -1.1 × 10-5 0.38 3.1 



  

15 

 

Table S6. Comparison of results adjusting for white blood cell count and platelet in 

participants of European ancestry in TOPMed and UK Biobank. Related to Figure 2C. 

 

 

 

  

 

 

 

 

 

 

 

 

WGS, whole genome sequencing; WES, whole exome sequencing. Association analysis of mtDNA CN with CMD traits was 
performed in the participants with imputed cell counts in participants of European ancestry in TOPMed and UK Biobank. 
The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN.  

 

 

Traits 

TOPMed WGS EA and UK Biobank WES EA (n=386,526) 

w/o adjusting for cell counts Adjusting for cell counts 

Beta/SE P-value Beta/SE P-value 

Obesity 0.13/0.0041 6.4 × 10-238 0.043/0.004 4.7 × 10-27 

HTN 0.059/0.0039 1.2 × 10-50 0.0065/0.0039 0.098 

Diabetes 0.028/0.0055 3.5 × 10-7 0.048/0.0057 1.3 × 10-17 

Hyperlipid 0.078/0.0049 1.1 × 10-56 0.12/0.0049 6.2 × 10-125 

BMI 0.30/0.0077 1.7 × 10-336 0.11/0.0076 3.0 × 10-48 

DBP 0.24/0.018 4.1 × 10-39 0.11/0.018 2.6 × 10-9 

SBP 0.65/0.033 1.6 × 10-87 0.24/0.032 6.3 × 10-14 

FBG 0.23/0.019 5.0 × 10-33 0.15/0.019 7.5 × 10-15 

lnHDL 0.0031/0.0004 3.4 × 10-15 0.010/0.0004 3.5 × 10-146 

lnLDL 0.0064/0.0005 6.1 × 10-42 0.019/0.0005 9.1 × 10-344 

lnTrig 0.022/0.0008 1.0 × 10-153 0.012/0.0008 5.1 × 10-51 
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Table S7. The investigation of effect modification by sex or age on associations of mtDNA CN 

with CMD traits, Related to Table 1, Figure 1. 

 

Association analysis of mtDNA CN with CMD traits was performed to test interaction with age or sex in each cohort of 
European ancestry participants (N=13,378) and African ancestry (N=8,020) in TOPMed and also in UK Biobank participants 
of European ancestry (N=381,470). Fixed-effect inverse variance meta-analysis was used to summarize the results in 
European ancestry or African ancestry in TOPMed. An interaction term of mitoage (residual mtDNA CN*age) or mitosex 
(residual mtDNA CN*sex) was included in the model to investigate whether age or sex was effect modifier of the association 
between mtDNA CN and CMD traits. Residual mtDNA CN was obtained by regressing mtDNA CN on batch effect, obtained 
the residuals then multiply age or sex. The “age” and “sex” columns indicate p-values of the interaction terms in the model. 
EA, European ancestry; AA, African ancestry; UKB, UK Biobank.  

 CARDIA EA CHS EA FHS EA MESA EA UKB European ancestry META results 

Traits age sex age sex age sex age sex age sex age sex 

BMI 0.94  0.86  0.08  0.44  0.46  0.48  0.90  0.83  0.0016 0.00013 0.00057 0.000088 

DBP 0.50  0.31  0.80  0.71  0.51  0.29  0.41  0.45  0.49 0.071 0.41 0.053 

SBP 0.95  0.16  0.77  0.27  0.29  0.62  0.84  0.57  0.0093 0.077 0.022 0.051 

FBG 0.27  0.79  0.01  0.14  0.98  0.07  0.53  0.10  0.00042 0.85 0.00031 0.91 

HDL 0.06  0.93  0.62  0.93  0.13  0.47  0.56  0.90  7.0 × 10-4 0.79 0.00084 0.85 

LDL 0.72  0.45  0.74  0.22  0.19  0.58  0.85  0.21  6.0 × 10-4 0.81 0.00035 0.96 

TRIG 0.03  0.46  0.57  0.43  0.12  0.61  0.66  0.10  8.6 × 10-5 0.07 0.00029 0.076 

Obesity 0.75  0.80  0.11  0.26  0.60  0.84  0.39  0.48  0.0045 0.12 0.0038 0.11 

HTN 0.32  0.73  0.78  0.95  0.40  0.31  0.52  0.61  0.42 0.0041 0.57 0.0027 

DIAB 0.22  0.06  0.25  0.21  0.01  0.94  0.58  0.54  0.19 0.64 0.66 0.55 

Hyperlipid 0.25  0.44  0.34  0.58  0.96  0.59  0.83  0.19  0.78 0.50 0.78 0.64 

 CARDIA AA CHS AA GENOA AA JHS AA MESA AA META results 

Traits age sex age sex age sex age sex age sex age sex 

BMI 0.73  0.26  0.77  0.12  0.51  0.34  0.74  0.21  0.90  0.91  0.47 0.52 

DBP 0.74  0.25  0.92  0.17  0.27  0.53  0.13  0.51  0.41  0.16  0.47 0.69 

SBP 0.48  0.46  0.69  0.38  0.51  0.73  0.56  0.14  0.84  0.91  0.57 0.81 

FBG 0.48  0.67  0.31  0.15  0.94  0.89  0.01  0.82  0.53  0.27  0.49 0.86 

HDL 0.02  0.60  0.63  0.28  0.39  0.66  0.60  0.94  0.56  0.91  0.66 0.85 

LDL 0.05  0.47  0.02  0.66  0.92  0.37  0.56  0.10  0.85  0.08  0.46 0.10 

TRIG 0.28  0.40  0.04  0.71  0.38  0.57  0.14  0.76  0.66  0.94  0.17 0.75 

Obesity 0.15  0.69  0.79  0.23  0.63  0.69  0.52  0.11  0.38  0.23  0.85 0.43 

HTN 0.61  0.61  0.62  0.85  0.24  0.24  0.65  0.05  0.52  0.98  0.28 0.60 

DIAB 0.89  0.51  0.86  0.11  0.70  0.60  0.07  0.79  0.58  0.99  0.06 0.81 

Hyperlipid 0.56  0.35  0.01  0.86  0.32  0.86  0.10  0.17  0.83  0.09  0.02 0.073 
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Table S8. Age-specific meta-analysis in participants of European ancestry in TOPMed and UK 

Biobank. Related to Figure 2D. 

 

 

 

 

 

 

 

 

 
Association and inverse variance weighting meta-analyses of mtDNA CN with CMD traits was performed in participants of 
European ancestry in TOPMed and UK Biobank. The effect size estimates are in units of CMD traits corresponding to one 
s.d. decrease in mtDNA CN.   

Traits Participants of European ancestry in TOPMed and UK Biobank 

<65 years (n=315,708) >65 years (n=79,782) 

Beta/SE P-value Beta/SE P-value 

Obesity 0.14/0.0045 1.3 × 10-218 0.098/0.0090 1.7 × 10-27 

HTN 0.058/0.0043 5.0 × 10-41 0.057/0.0091 4.7 × 10-10 

Diabetes 0.031/0.010 0.0022 0.065/0.015 1.1 × 10-5 

Hyperlipid 0.077/0.0052 4.1 × 10-50 0.080/0.013 1.0 × 10-9 

BMI 0.32/0.0086 2.1 × 10-300 0.22/0.016 4.7 × 10-42 

DBP 0.24/0.02 2.9 × 10-32 0.22/0.042 3.1 × 10-7 

SBP 0.63/0.035 1.7 × 10-71 0.70/0.080 2.0 × 10-18 

FBG 0.20/0.021 9.6 × 10-22 0.31/0.044 1.3 × 10-12 

lnHDL 0.0030/0.00040 9.6 × 10-12 0.0033/0.0009 3.0 × 10-4 

lnLDL 0.0065/0.00050 4.9 × 10-36 0.0057/0.001 4.7 × 10-8 

lnTrig 0.023/0.0009 1.3 × 10-136 0.019/0.0017 2.3 × 10-28 
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Table S9. Comparison of results of mtDNA CN with CMD disease phenotypes in WGS, 
Affymetrix, and low-pass in non-overlap participants in ARIC, Related to STAR Methods. 
 
 Traits TOPMed WGS 

(n=2,768) 

 

Affymetrix 
(n=5,194) 

Low-pass sequencing 
(n=1,441) 

Beta SE P-value Beta SE P-value Beta SE P-value 

B
in

a
ry

 

o
u
tc

o
m

e
s
 

Obese 0.12 0.044 0.0086 0.078 0.033 0.017 0.16 0.063 0.011 

HTN 0.16 0.044 3.7 × 10-4 0.092 0.032 4.4 × 10-3 0.081 0.061 0.18 

Diabetes 0.40 0.063 2.4 × 10-10 0.25 0.045 2.9 × 10-8 0.34 0.1 0.00091 

Hyperlipid 0.097 0.043 0.025 -0.015 0.03 0.61 0.012 0.059 0.84 

C
o
n
ti
n
u

o
u
s
 o

u
tc

o
m

e
s
 

BMI 0.31 0.098 0.0018 0.18 0.07 0.012 0.41 0.14 0.0034 

DBP 0.43 0.22 0.046 0.37 0.15 0.015 0.23 0.29 0.42 

SBP 1.13 0.38 0.0029 1.00 0.26 1.6 × 10-4 0.74 0.51 0.15 

FBG 0.10 0.20 0.60 0.12 0.13 0.37 0.024 0.28 0.93 

HDL -0.030 0.005 4.3 × 10-8 -0.022 0.0041 5.5 × 10-8 -0.0085 0.0077 0.27 

LDL 0.51 0.82 0.54 -0.079 0.56 0.89 -1.44 1.09 0.19 

TRIG 0.053 0.0091 6.9 × 10-9 0.024 0.0069 6.4 × 10-4 0.0097 0.013 0.47 

The beta estimates are in units of CMD traits corresponding to one s.d. lower mtDNA CN. Association analysis of mtDNA 
CN with CMD traits was performed in ARIC with WGS, Affymetrix Genome-Wide Human SNP Array 6.0 and low-pass whole 
genome sequencing. mtDNA CN can be measured by qPCR or estimated by genotyping or sequencing, and the 
performance of several technologies (e.g., qPCR, different genotyping array, WGC) in estimating mtDNA CN was evaluated 
previously.1 In a previous study, mtDNA CN was determined using the Genvisis15 software package for the Affymetrix 
Genome-Wide Human SNP Array 6.0. A list of high-quality mitochondrial SNPs were hand-curated by employing BLAST to 
remove SNPs without a perfect match to the annotated mitochondrial location and SNPs with off-target matches longer than 
20bp. The probe intensities of the remaining mitochondrial SNPs (25 Affymetrix, 58 Illumina Exome Chip) were determined 
using quantile sketch normalization (apt-probeset-summarize) as implemented in the Affymetrix Power Tools software. The 
median of the normalized intensity, log R ratio (LRR) for all homozygous calls was GC corrected and used as initial estimates 
of mtDNA CN for each sample. Technical covariates such as DNA quality, DNA quantity, and hybridization efficiency were 
captured via surrogate variable analysis described2. Surrogate variables were applied to the BLAST filtered, GC corrected 
LRR of the remaining autosomal SNPs (43,316 Affymetrix, 47,512 Exome Chip). These autosomal SNPs were selected 
based on the following quality filters: call rate > 98%, HWE p value > 0.00001, PLINK mishap for non-random missingness 
p value > 0.0001, association with sex p value > 0.00001, linkage disequilibrium pruning (r2 < 0.30), with maximal spacing 
between autosomal SNPs of 41.7 kb. Low-pass whole genome sequencing data for ARIC was generated at the Baylor 
College of Medicine Human Genome Sequencing Center using Nano or PCR-free DNA libraries on the Illumina HiSeq 2000. 
Sequence reads were mapped to the hg19 reference genome using BWA.2 Quality control was performed as previously 
described.3 A count for the total number of reads in a sample was scraped from the NCBI sequence read archive using the 
R package RCurl4 while reads aligned to the mitochondrial genome were downloaded directly through Samtools (version 
1.3.1). A raw measure of mtDNA CN was calculated as the ratio of mitochondrial reads to the number of total aligned reads. 
The final mtDNA CN phenotype for all measurement techniques is represented as the standardized residuals from a linear 
model adjusting the raw measure of mtDNA CN for age, sex, DNA collection center, any technical covariates. As mtDNA 
CN was standardized, the effect size estimates are in units of standard deviations, with positive betas corresponding to an 
increase in mtDNA CN. 
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Figure S1. The effect of the year at blood collection on mtDNA CN estimated from whole genome 

sequencing in TOPMed, Related to STAR Methods. The year of blood collection was provided as 

calendar year (treated as a batch variable) in each TOPMed cohort. A number in the parenthesis in the 

title of each plot indicates the variance in mtDNA CN that can be explained by “blood collection year” 

in a cohort. Due to a study design, R2 was unavailable in HCHS/SOL. 
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Figure S2. The relationship of mtDNA CN with age after adjusting for white blood cell count and 

platelets. Related to Figure S1, STAR Methods. mtDNA CN residuals were obtained by regressing 

mtDNA CN on batch effect and cell count/platelets. 
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Figure S3. The relationship of mtDNA CN residuals with age in each of the TOPMed cohorts, 

Related to STAR Methods. 
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Figure S4. Identification of threshold effect of age on mtDNA copy number, Related to Figure 

2B, STAR Methods. We analyzed the relationship of mtDNA CN with age in participants who were 

younger than 50 years, and again who were younger than 55 years, and similarly for 60, 65, 70, and 

75 years of age; and in contrast, we analyzed the relationship in those who were at least 50 years, and 

again who were at least 55 years, and similarly for 60, 65, 70, and 75 years of age. We found that age 

displayed a positive effect on mtDNA CN (top figure) in participants who were younger than 50, 55, 60, 

65, 70, and 75 years old with similar effects at <60 and <65 years old. In contrast, age displayed 

negative effects on mtDNA CN (bottom figure) in participants who were at least 50, 55, 60, 65 (with the 

lowest effect size), 70, 75 and 80 years of age. In addition, most medical studies consider participants 

aged 65+ as older individuals in studying age-related diseases (e.g., cardiovascular disease or 

Alzheimer’s disease). Therefore, we chose to use 65 years as a cutoff to evaluate the age threshold 

effect in association analyses based on these findings and common social norms. 
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Figure S5. The relationship of mtDNA CN with sex, Related to STAR methods. mtDNA CN 
residuals was obtained by regressing mtDNA CN on batch effect and age in each cohort. 
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Figure S6. Forest plot of beta estimates in association analyses of mtDNA with CMD continuous 
traits in participants of European ancestry in TOPMed and UK Biobank, Related to Table 1, 
Figure 2B. The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA 
CN. In meta-analyses of TOPMed cohorts, the observed heterogeneity measure (I2) was 75.2% for BMI, 65.5% 
for FBG, 73.8% for DBP, 61.8% for SBP, 86.1% for HDL, 81.5% for LDL, 72.8% for TRIG, 40.5% for obesity, 
64.7% for HTN, 77.3% for diabetes, and 48.3% for hyperlipidemia. In combining TOPMed and the UK Biobank 
data, the heterogeneity measure I2 was 79.8% for BMI, 70.2% for FBG, 71.4% for DBP, 24.0% for SBP, 97.1% 
for HDL, 96.2% for LDL and 71.0% for TRIG.
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Figure S7. Forest plot of beta estimates in association analyses of mtDNA with CMD binary traits 
in participants of European ancestry in TOPMed and UK Biobank, Related to Table 1, Figure 2B. 
The effect size estimates are in units of CMD traits corresponding to one s.d. decrease in mtDNA CN. 
In meta-analyses of TOPMed cohorts, the observed heterogeneity measure (I2) was 69.8% for obesity, 
0% for HTN, 95.0% for diabetes, and 73.1% for hyperlipidemia. 
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Figure S8. Comparison of regression coefficients of mtDNA CN with CMD traits in participants 

of European ancestry in TOPMed (n=13,378) vs UK Biobank (n=318,470), Related to Table 1, 

Figure 2B. Comparison of beta of CMD traits in the participants of European ancestry between 

TOPMed and UK Biobank.  
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Figure S9. Comparison of beta of metabolic traits in participants of European Ancestry 

(n=13,378) and African Ancestry (n=8,020) in TOPMed, Related to Table 1, Figure 1. The beta 

estimates corresponds to one s.d. decrease in the mtDNA CN level.  
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Figure S10. Comparison of regression coefficients of mtDNA CN with CMD traits in participants 

of European Ancestry (13,378) vs Hispanic/Latino (n=4,892) Americans in TOPMed, Related to 

Table 1, Figure 1. Comparison of beta of CMD traits in the participants of European ancestry and 

Hispanic Latino Americans in TOPMed.  
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Figure S11 Comparison of regression coefficients of mtDNA CN with CMD traits in participants 

of European Ancestry (n=13,378) vs Chinese Ancestry (n=601) in TOPMed, Related to Table 1, 

Figure 1. Comparison of beta of CMD traits in the participants of European ancestry and Chinese 

ancestry in TOPMed.  
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Figure S12. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed 

participants of European Ancestry not adjusting for cell counts vs adjusting for cell counts, 

Related to Figure 2C. Comparison of beta of CMD traits of model not adjusting for cell counts vs 

adjusting for cell counts in the same participants of European ancestry in TOPMed (n=5,056).  
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Figure S13. Comparison of regression coefficients of mtDNA CN with CMD traits in the UK 

Biobank participants of European ancestry not adjusting for cell counts vs adjusting for cell 

counts, Related to Figure 2C. Comparison of beta of CMD traits not adjusting for cell counts vs 

adjusting for cell counts in the participants of European ancestry in UK Biobank (UKB) (n=381,470).  
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Figure S14. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed 

participants of African Ancestry not adjusting for cell counts vs adjusting for cell counts, 

Related to Figure 2C.Comparison of beta of CMD traits of model not adjusting for cell counts vs 

adjusting for cell counts in the participants of African ancestry in TOPMed (n=3,733).  
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Figure S15. Comparison of regression coefficients of mtDNA CN with CMD traits in TOPMed 

Hispanic and Latino American participants not adjusting for cell counts vs adjusting for cell 

counts, Related to Figure 2C. Comparison of beta of CMD traits of model not adjusting for cell counts 

vs adjusting for cell counts in the participants of Hispanic and Latino Americans in TOPMed (n=3,613).  
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Figure S16. Comparison of regression coefficients of mtDNA CN with CMD traits in participants 

of European ancestry <65 years (n=315,708) vs >65 years (n=79,782) in TOPMed and UK BioBank 

after meta-analysis, Related to Figure 2D.
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Figure S17. Sensitivity analysis of adjusting smoking as an additional covariate, Related to 

STAR Methods. We performed a sensitivity analysis with and without adjusting for smoking as an 

additional covariate to investigate whether smoking altered associations between mtDNA CN and CMD 

traits in FHS, JHS and MESA. Four of seven continuous traits displayed minor changes (<10%) in their 

beta estimates with mtDNA CN while three continuous traits and four binary traits appeared to have 

consistent beta estimates between models with and without smoking as a covariate The FHS consists 

of European ancestry (EA) and the JHS consists of African ancestry (AA). The MESA consists of both 

EA and AA. 
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