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Referees’ reports, first round of review 
  

Reviewer 1 

Garcia-Perez et. al. have implemented a statistical framework to assess the 
contribution of multiple population traits and clinical traits to the gene expression 
and alternative splicing variation based on the GTEx data. Extensive tests are 
done, and the results cover many aspects, including the extent of DEG sharing, 
the contribution of cis-eQTL and cis-sQTL, the additive contribution and trait 
interaction, and the association between traits and cell type composition. 
 
I believe this work is carried out carefully. I just have one major concern in terms 
of phrasing. The impact or effect of traits on transcriptome is often mentioned, 
for example, "we took advantage of the GTEx multi-tissue data to assess how type 
1 and 2 diabetes affect the transcriptome of multiple tissues", while the tests are 
for association. It might be better to rephrasing it to avoid possibly giving the 
reader impression that it is about causation. 
 
One minor point is, from the method part, it seems that two PEER factors are 
used. It might be better to add some explanation on how the number of PEER 
factors is decided. 
 
Another minor point is, on the top of page 8, in the sentence: 
"DEGs between populations and between sexes are the most tissue- shared (Fig. 
3e and Supplementary Fig. 3f)," 
Fig. 3e doesn't seem to illustrate the point of this sentence. Supplementary Fig. 3e 
is the correct one? 

 

Reviewer 2 

In this paper, the authors have done an excellent job in systematically 
characterising how changes in gene expression and splicing correlate with major 
demographic features (age, sex, ancestry, BMI) as well as number of other traits 
and diseases. The authors replicate a number of previous findings (mostly from 



 

 

studies conducted with whole blood samples) and expand their analysis to the 
most comprehensive collection of cell types and tissues available from the GTEx 
Consortium. Importantly, they also identify a novel and interesting association 
between diabetes and gene expression changes in the nerve tissues that 
correspond to diabetic neuropathy. The paper is well written and all of the 
analyses have been performed extremely thoroughly and carefully. I don't have 
any major concerns. 
 
My only minor concern is that inferring percentage-spliced-in (PSI) values from 
transcript expression estimates (RSEM TPMs) carries a small risk of detecting false 
positive splicing events. This is caused by the fact that existing transcript 
annotations often couple together different splicing events that are likely to be 
regulated independently. For more detailed examples, see Supplemental Figure 1 
in the Whippet preprint (https://doi.org/10.1101/158519) and Figure 1 in Alasoo 
et al, 2019 (https://doi.org/10.7554/eLife.41673). To be clear, I believe that this 
issues will only add some noise to your quantification results and will not actually 
invalidate any of your major conclusions which are based on aggregating signal 
across many independent splicing events. Furthermore, it is not obvious that 
using any of the alternative approaches will actually give you more accurate PSI 
estimates for the splicing events of interest. Thus, I think that is perfectly ok for 
your to keep using the SUPPA2 PSI estimates. However, I think it would be helpful 
to validate some of the the splicing associations that you see (e.g. the ribosomal 
genes RPLP2 and RPL10) using complementary approaches such as Leafcutter 
junction read counts (should be available from GTEx) or read coverage plots (e.g. 
from ggcoverage, Sashimi Plot, wiggleplotr or others). 
 
Kaur Alasoo 

 

Reviewer 3 

Mele et al implemented a statistical framework to assess the contribution of 
multiple demographic and clinical traits on transcriptome and alternative splicing 
in human tissues using Genotype Tissue Expression (GTEx) data. Mele et al 
suggest that type 1 and type 2 diabetes contribute to multiple tissue 
transcriptome variation with the strongest signal for tibial nerve. 
The authors should be commended for their approach to study a large array of 
human tissues. The study design is well-thought, and the analyses are a tour de 
force. The disease/diabetes results and discussion sections seem less strong and 



 

 

do not fully support the conclusions (see below). 
 
Major comments: 
 
The readability of the figures is unfortunately limited by the abbreviations used 
for the different tissues (e.g. MSCLSK, ESPMCS, etc, see Fig. 1a and throughout) 
and ancestry (see Fig. 2b). The paper would be much easier to read if the tissues 
were readily identifiable. Why was kidney not included (see Suppl Fig 1a)? 
 
Type 1 and 2 diabetes are characterized by dysregulation of blood glucose levels. 
Pancreatic islets and in particular pancreatic beta cells play a key role in the 
development and progression of diabetes. Pancreatic islets make up few (around 
2) percent of pancreas weight. Not surprisingly then, transcriptomic and related 
association studies have shown that pancreas is not a good proxy for islets and 
fails to capture islet-specific disease signatures (Alonso et al., 2021; Vinuela et al., 
2020). The lack of a tissue that is key to diabetes pathogenesis (i.e. pancreatic 
islets) in GTEx and the fact that pancreas is not a good proxy thereof are 
limitations that need to be clearly spelled out. Mele et al could consider adding 
transcriptome studies in pancreatic islets, which would strengthen their diabetes-
related claims. Hundreds of islet transcriptomes are available, see (Fadista et al., 
2014; Marselli et al., 2020; van de Bunt et al., 2015; Vinuela et al., 2020) among 
others. 
 
Taking the above into account, the approach and analyses taken by Mele et al are 
rather poised to detect consequences of type 1 and type 2 diabetes, i.e. chronic 
micro- and macrovascular complications caused by long-term exposure to 
hyperglycemia. Again, this does not clearly appear in the manuscript and should 
be mentioned. The finding that a strong transcriptomic overlap for type 1 and 
type 2 diabetes is found in tibial nerve is of interest, and it begs the question why 
other chronic micro- and macrovascular complications are, apparently, not shared 
in the tissue transcriptomes (heart, arteries, kidney, etc). This deserves further 
data analysis and should be discussed. The GTEx data for tibial nerve have been 
used in previous work on the impact of gender, diabetes etc on transcriptomes 
(Ray et al., 2019). The existing literature should be acknowledged, the present 
data compared against it and novelty claims toned down accordingly. 
 
As the number of type 1 diabetes samples is a lot smaller than that of type 2 



 

 

diabetes, the statistical power for the former is much lower. A threshold free 
method like Rank-Rank Hypergeometric Overlap (RRHO) is probably more suitable 
to detect similarities. The authors should consider using RRHO tools for these 
comparisons, or at least mention the limitation related to sample numbers. 
 
In the star methods, a "Differential gene expression analysis with demographic 
traits" is included but no section about clinical/phenotypic traits. Did the authors 
consider confounding ancestry and demographic factors (BMI, age, …) when 
analyzing type 1 and type 2 diabetes vs controls? This is important as ancestry 
contributes significantly to pancreas transcriptome variation (Fig 1a). 
 
Additional comments 
 
p.11: "found 79 and 309 DEGs in two or more tissues with either type 1 or type 2 
diabetes". Is this correct? We counted 387 lines and 378 distinct genes in Suppl 
Table 6f. 
 
The finding that INS, IAPP and MAFA are markedly differentially expressed in 
pancreas in type 1 diabetes is simply the consequence of the (near complete) loss 
of pancreatic beta cells in this disease. Fig 6e hence does not seem to depict a 
major discovery. 
 
No data is provided on the expression levels of genes (e.g. mean expression (TPM) 
in diabetes and controls), while this would be very useful to know for 
differentially expressed genes. This information should be added to Suppl Table 6f 
and 6i. 
 
"Functional enrichment analyses revealed that upregulated genes in the tibial 
nerve are enriched in immune receptor activity, whereas downregulated genes 
are enriched in ion channel activity (Fig. 6f; Supplementary Table 6h; STAR 
methods)". Fig 6f does not look like functional enrichment. 
 
Some spelling mistakes need to be corrected, e.g. Abstract: ancestr. 
 
Alonso, L., Piron, A., Morán, I., Guindo-Martínez, M., Bonàs-Guarch, S., Atla, G., 
Miguel-Escalada, I., Royo, R., Puiggròs, M., Garcia-Hurtado, X., et al. (2021). TIGER: 
The gene expression regulatory variation landscape of human pancreatic islets. 
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effects on gene expression in human pancreatic islets and their implications for 
T2D. Nat Commun 11, 4912. 
 

Authors’ response to the first round of review 

 

We would like to thank all the reviewers for their time invested and positive 
feedback, which we found to be very helpful. We have now revised the paper and 
made the required changes according to the reviewer’s comments, as we detail 
below.  

Reviewer 1: Garcia-Perez et. al. have implemented a statistical framework to 
assess the contribution of multiple population traits and clinical traits to the gene 
expression and alternative splicing variation based on the GTEx data. Extensive 
tests are done, and the results cover many aspects, including the extent of DEG 
sharing, the contribution of cis-eQTL and cis-sQTL, the additive contribution and 
trait interaction, and the association between traits and cell type composition.  

I believe this work is carried out carefully.  



 

 

We would like to thank the reviewer for their positive evaluation of our work.  

I just have one major concern in terms of phrasing. The impact or effect of traits 
on transcriptome is often mentioned, for example, "we took advantage of the 
GTEx multi-tissue data to assess how type 1 and 2 diabetes affect the 
transcriptome of multiple tissues", while the tests are for association. It might be 
better to rephrasing it to avoid possibly giving the reader impression that it is 
about causation.  

We have revised the text and changed the phrasing according to the reviewer’s 
suggestion. Specifically, we have changed statements that used 
effect/affect/impact to refer to significant associations between demographic 
and/or clinical traits and transcriptome variation. We have highlighted those 
changes in dark blue in the new manuscript version.  

One minor point is, from the method part, it seems that two PEER factors are 
used. It might be better to add some explanation on how the number of PEER 
factors is decided.  

We have included in the methods section a brief explanation on the rationale 
used to select two PEER factors. Now, it reads as follows:  

“To control for unknown sources of variation we explored the expression variance 
captured by the PEER factors (GTEx Consortium, 2020) and explained by known 
sample and donor covariates, as well as by the xCell enrichment scores (Kim-
Hellmuth et al., 2020). We also investigated the ef ect of including progressively 
increasing numbers of PEER factors in our model in the identification of DEGs. As 
previously noted, we found that the first PEER factor was mostly correlated with 
cell type heterogeneity (see Supplementary Fig. 4a from (Kim-Hellmuth et al., 
2020)), and the second PEER factor was mostly correlated with the sequencing 
batch (see Supplementary Fig. 8a from (GTEx Consortium, 2015). We also noted 
that, conversely to eQTL discovery, the ef ect of including additional PEER factors 
on the DEG discovery was variable across tissues and led to reduced power to 
detect expression dif erences. Thus, to control for unknown sources of variation 
mainly related to dif erences in tissue composition and sequencing batch, we 
included the first two PEER factors.”  

Below we include the figures mentioned above, Supplementary Fig. 4a from (Kim-
Hellmuth et al., 2020) and Supplementary Fig. 8a from (GTEx Consortium, 2015), 
that show the association between Response to Reviewers PEER factors 1 and 2 
and cell type heterogeneity and batch effects, respectively. 

 



 

 

 

 

 

 
 

 
 

 



 

 

 

Another minor point is, on the top of page 8, in the sentence:  

"DEGs between populations and between sexes are the most tissue- shared (Fig. 
3e and Supplementary Fig. 3f),"  

Fig. 3e doesn't seem to illustrate the point of this sentence. Supplementary Fig. 3e 
is the correct one?  

The reviewer is right. We have now changed the reference to the correct 
Supplementary Figures, namely, Supplementary Fig. 3e, that shows the tissue-
sharing of genes with additive contributions for each pairwise combination of 
traits, and Supplementary Fig. 3f, that shows the expression patterns of DEGs 
between populations and between sexes in each of the tissues where they are DE.  

Reviewer 2: In this paper, the authors have done an excellent job in systematically 
characterising how changes in gene expression and splicing correlate with major 
demographic features (age, sex, ancestry, BMI) as well as number of other traits 
and diseases. The authors replicate a number of previous findings (mostly from 
studies conducted with whole blood samples) and expand their analysis to the 
most comprehensive collection of cell types and tissues available from the GTEx 
Consortium. Importantly, they also identify a novel and interesting association 
between diabetes and gene expression changes in the nerve tissues that 
correspond to diabetic neuropathy. The paper is well written and all of the 
analyses have been performed extremely thoroughly and carefully. I don't have 
any major concerns.  

We truly appreciate the reviewer’s comments on our manuscript.  

My only minor concern is that inferring percentage-spliced-in (PSI) values from 
transcript expression estimates (RSEM TPMs) carries a small risk of detecting false 
positive splicing events. This is caused by the fact that existing transcript 
annotations often couple together different splicing events that are likely to be 
regulated independently. For more detailed examples, see Supplemental Figure 1 
in the Whippet preprint (https://doi.org/10.1101/158519) and Figure 1 in Alasoo 
et al, 2019 (https://doi.org/10.7554/eLife.41673). To be clear, I believe that this 
issues will only add some noise to your quantification results and will not actually 
invalidate any of your major conclusions which are based on aggregating signal 
across many independent splicing events. Furthermore, it is not obvious that 
using any of the alternative approaches will actually give you more accurate PSI 
estimates for the splicing events of interest. Thus, I think that is perfectly ok for 
your to keep using the SUPPA2 PSI estimates. However, I think it would be helpful 



 

 

to validate some of the the splicing associations that you see (e.g. the ribosomal 
genes RPLP2 and RPL10) using complementary approaches such as Leafcutter 
junction read counts (should be available from GTEx) or read coverage plots (e.g. 
from ggcoverage, Sashimi Plot, wiggleplotr or others).  

We agree with the reviewer and to further validate our findings we have now 
included coverage plots for the highly tissue-shared splicing events in the 
ribosomal proteins RPL10 and RPLP2 as suggested (see below and in 
Supplementary Fig. 6d). In the figure we can see that African Americans have 
higher coverage than European Americans in the events differentially spliced 
between populations. 

 
 

We have also added a new section in the methods describing the data and 
approach used to create these plots (see below).  

“We downloaded the available RNAseq bam files for the samples from the 
SkinSunExposedLowerleg and SkinNotSunExposedSuprapubic tissues, which are 



 

 

part of the GTEx protected data stored in dbGap (accession number 
phs000424.v8.p2). We used deeptools (Ramírez et al., 2016) to generate 
normalized coverage tracks (counts per million (CPM)) in 50 base-pairs windows 
considering uniquely mapped reads. We used the R package Gviz (Hahne and 
Ivanek, 2016) to plot the average read coverage per population (Supplementary 
Fig. 6d).”  

Reviewer #3: Mele et al implemented a statistical framework to assess the 
contribution of multiple demographic and clinical traits on transcriptome and 
alternative splicing in human tissues using Genotype Tissue Expression (GTEx) 
data. Mele et al suggest that type 1 and type 2 diabetes contribute to multiple 
tissue transcriptome variation with the strongest signal for tibial nerve. The 
authors should be commended for their approach to study a large array of human 
tissues. The study design is well-thought, and the analyses are a tour de force. The 
disease/diabetes results and discussion sections seem less strong and do not fully 
support the conclusions (see below).  

We thank the review for their thorough review, positive comments and 
suggestions that we believe have contributed to improving the manuscript.  

Major comments: The readability of the figures is unfortunately limited by the 
abbreviations used for the different tissues (e.g. MSCLSK, ESPMCS, etc, see Fig. 1a 
and throughout) and ancestry (see Fig. 2b). The paper would be much easier to 
read if the tissues were readily identifiable.  

We understand the reviewer's concern. However, we decided to use tissue 
abbreviations for two main reasons. First, we wanted to better use the space in 
the figures, since all of them include multiple panels. Second, this is the consensus 
approach used in all recent GTEx consortium papers (see for example (GTEx 
Consortium, 2020; Kim-Hellmuth et al., 2020; Oliva et al., 2020) and the main 
GTEx leaders that are also co-authors in this publication (Kristin Ardlie and 
François Aguet) suggested that we keep these abbreviations. Supplementary Fig. 
1a shows tissue abbreviations mapped to their corresponding tissue names.  

The reviewer is right in pointing to the missing legend for ancestry in Fig. 2d. We 
have now corrected this figure so it clearly states what AA and EA stand for (AA: 
African American; EA: European American).  

Why was kidney not included (see Suppl Fig 1a)?  

The number of kidney tissue samples available was 73. This number is lower than 
the conservative 100 RNA-seq samples necessary to obtain reliable splicing 
results. Because we wanted to perform expression and splicing analysis on the 



 

 

same samples to be able to compare them, we excluded kidney tissue from all 
analysis.  

In the Methods’ section “GTEx data” we state the criteria used to select the 
tissues and samples used in this study.  

“Here, we analyzed data from the 46 tissue sources with at least 100 RNA-seq 
samples. We only included samples (n=13,684) from donors (n=781) with available 
metadata for the covariates included in our dif erential expression and splicing 
analysis, as well as demographic trait information for the donors’ genetic inferred 
ancestry (we only included European American and African American donors), sex, 
age, and body mass index (BMI).”  

Below we explain one of the preliminary analyses we did to determine the 
minimum number of samples needed to accurately perform differential splicing 
analysis. We used tissue subsets with different numbers of samples from 
SkinNotSunExposedSuprapubic and estimated a false positive rate (FPR = False 
positives (FP) / Positives (P)) for each sample size, where FP are the number of 
differentially spliced events discovered at a 5% FDR using permuted labels (e.g. 
randomly shuffling samples’ ancestry) and P are the number of differentially 
spliced events discovered at a 5% FDR using the correct labels.We set the 
threshold at the number of RNA-seq samples (100 samples) for which the 
estimated false positive rate was lower than 5%. 

 

 
 



 

 

 

Type 1 and 2 diabetes are characterized by dysregulation of blood glucose levels. 
Pancreatic islets and in particular pancreatic beta cells play a key role in the 
development and progression of diabetes. Pancreatic islets make up few (around 
2) percent of pancreas weight. Not surprisingly then, transcriptomic and related 
association studies have shown that pancreas is not a good proxy for islets and 
fails to capture islet-specific disease signatures (Alonso et al., 2021; Vinuela et al., 
2020). The lack of a tissue that is key to diabetes pathogenesis (i.e. pancreatic 
islets) in GTEx and the fact that pancreas is not a good proxy thereof are 
limitations that need to be clearly spelled out. Mele et al could consider adding 
transcriptome studies in pancreatic islets, which would strengthen their diabetes-
related claims. Hundreds of islet transcriptomes are available, see (Fadista et al., 
2014; Marselli et al., 2020; van de Bunt et al., 2015; Vinuela et al., 2020) among 
others.  

Taking the above into account, the approach and analyses taken by Mele et al are 
rather poised to detect consequences of type 1 and type 2 diabetes, i.e. chronic 
micro- and macrovascular complications caused by long-term exposure to 
hyperglycemia. Again, this does not clearly appear in the manuscript and should 
be mentioned.  

Following the reviewer’s suggestion, we have now clearly stated the limitation of 
studying diabetes in pancreas as well as the fact that the diabetes associated 
signals we observe in other tissues are likely due to continuous high glucose blood 
levels.  

“When comparing the DE signal across tissues, we found that the tibial nerve is 
the most af ected tissue in both types of diabetes. Pancreas had fewer DEGs than 
nerve, likely due to the fact that pancreatic islets, central to the etiology of both 
types of diabetes (Eizirik et al., 2020; Krentz and Gloyn, 2020), represent only ~3% 
of the tissue, and thus, the whole pancreas is not representative of pancreatic 
islets (Alonso et al., 2021; Viñuela et al., 2020). The observation that there are 
many genes associated with diabetes in other tissues may reflect the 
consequences of long-term exposure to hyperglycemia across tissues.”  

We have also acknowledged these limitations in the discussion section:  

“We also have reduced statistical power to detect transcriptomic changes 
associated with certain clinical traits due to both reduced sample sizes and 
analysis of bulk tissue transcriptomes rather than specific cell types such as 
pancreatic islet cells for type 1 diabetes (Alonso et al., 2021).“  



 

 

The finding that a strong transcriptomic overlap for type 1 and type 2 diabetes is 
found in tibial nerve is of interest, and it begs the question why other chronic 
micro- and macrovascular complications are, apparently, not shared in the tissue 
transcriptomes (heart, arteries, kidney, etc). This deserves further data analysis 
and should be discussed.  

We agree with the reviewer that this is an intriguing finding. Although we found 
DEGs with type 1 and type 2 diabetes in the heart atrial appendage and heart left 
ventricle (HRTAA and HRTLV, respectively) as well as in the aorta and tibial 
arteries (ARTAORT and ARTTBL, respectively) (Supplementary Fig. 7e), the number 
of DEGs is much lower than those in the tibial nerve. Also, contrary to what we 
observed in the tibial nerve, the overlaps between DEGs with type 1 and type 2 
diabetes in these tissues were not statistically significant. The number of 
individuals with type 1 and 2 diabetes is lower in these tissues compared to the 
sample size in the tibial nerve, and thus, we might have reduced power to detect 
statistically significant expression changes -and hence overlaps- in these tissues. 
Whereas diabetic treatment is known to reduce the risk of diabetic complications 
(Hicks and Selvin, 2019; Nathan and DCCT/EDIC Research Group, 2014), different 
treatments vary in their capacity to prevent specific diabetic complications (Call et 
al., 2022). The treatments between diabetes types also differ, resulting in 
different reductions of cardiovascular complications (Rawshani et al., 2017). One 
could also hypothesize that specific diabetic treatment reverses the 
cardiovascular complications associated with hyperglycemia to non-diabetic levels 
in hearts and arteries but maybe not so much in the tibial nerve. This could 
explain why we detect a stronger signal in the tibial nerve compared to heart and 
arteries. Unfortunately, there is no available information about the drugs 
prescribed to GTEx donors. Following the reviewer's suggestion we have 
discussed these limitations in the discussion.  

“We also have reduced statistical power to detect transcriptomic changes 
associated with certain clinical traits due to both reduced sample sizes and 
analysis of bulk tissue transcriptomes, rather than specific cell types, such as 
pancreatic islet cells for type 1 diabetes (Alonso et al., 2020). These limitations 
might explain why we only find the same genes associated with type 1 and type 2 
diabetes in the tibial nerve but not in other tissues af ected by long term 
hyperglycemia, such as the heart or arteries (Nathan and DCCT/EDIC Research 
Group, 2014; Zheng et al., 2018), Alternatively, disease treatment is known to 
mitigate diabetic complications (Call et al., 2022; Nathan and DCCT/EDIC Research 
Group, 2014; Rawshani et al., 2017) and could thus have an ef ect on the number 



 

 

of genes we observe DE in specific tissues. Hence, collecting information about 
donor prescribed drugs would be desirable in future studies.  

The GTEx data for tibial nerve have been used in previous work on the impact of 
gender, diabetes etc on transcriptomes (Ray et al., 2019). The existing literature 
should be acknowledged, the present data compared against it and novelty claims 
toned down accordingly.  

We thank the reviewer for this suggestion. We have toned down the novelty 
claims and explicitly cited previous papers that reported transcriptomic changes 
with diabetes in the tibial nerve. The final paragraph of the section “Type 1 and 
type 2 diabetes are associated with transcriptome variation in multiple tissues, 
particularly the tibial nerve” now reads as follows:  

“Taken together, our findings expand previous work (Gu et al., 2018; Ray et al., 
2019; Singh et al., 2017) and suggest that despite their dif erent etiologies, type 1 
and 2 diabetes are more strongly associated with transcriptome changes in tibial 
nerve than in other tissues. These changes are consistent with the high prevalence 
of diabetic neuropathy in patients (Feldman et al., 2019) due to hyperglycemia 
and provide novel gene candidates associated with diabetic neuropathy.”  

As suggested by the reviewer, we also tried to compare our results with those 
reported by Ray et al. We directly contacted the authors since the list of DEGs 
with diabetes was not available in the paper. Unfortunately, they replied that 
since the focus of the paper was not the identification of DEGs with diabetes but 
rather of DEGs with sex, that gene list was not available. However, we did 
replicate our findings in a different dataset that used diabetic mice to identify 
diabetes associated changes in the nerves. This section is in the results section of 
the paper and it reads as follows:  

“The genes DE in the tibial nerve significantly overlap with those reported as 
dysregulated in the sciatic nerve of diabetic mice (two-tailed Fisher’s exact test, p-
value = 1.195e-06)(Gu et al., 2018).”  

As the number of type 1 diabetes samples is a lot smaller than that of type 2 
diabetes, the statistical power for the former is much lower. A threshold free 
method like Rank-Rank Hypergeometric Overlap (RRHO) is probably more suitable 
to detect similarities. The authors should consider using RRHO tools for these 
comparisons, or at least mention the limitation related to sample numbers.  

As suggested by the reviewer, we have now acknowledged our limitation to 
identify DEGs with type 1 diabetes compared to DEGs with type 2 diabetes in the 
text as well as in the discussion.  



 

 

“The dif erence in the number of DEGs is likely due to decreased statistical power 
related to the lower number of individuals with type 1 diabetes.”  

“We also have reduced statistical power to detect transcriptomic changes 
associated with certain clinical traits due to both reduced sample sizes and 
analysis of bulk tissue transcriptomes rather than specific cell types such as 
pancreatic islet cells for type 1 diabetes (Alonso et al.).“  

In the star methods, a "Differential gene expression analysis with demographic 
traits" is included but no section about clinical/phenotypic traits. Did the authors 
consider confounding ancestry and demographic factors (BMI, age, …) when 
analyzing type 1 and type 2 diabetes vs controls? This is important as ancestry 
contributes significantly to pancreas transcriptome variation (Fig 1a).  

The reviewer asks a very important question, but we did include a methods 
section named “Differential expression, differential splicing, and hierarchical 
partition analysis with clinical traits”, in which we stated that “To identify DEGs 
with clinical traits we used the same approach described in the section Dif 
erential gene expression analysis, but further including the clinical traits as 
covariates in the linear models”. Thus, we did not only include in the models the 
technical covariates and demographics traits used in the first section of the paper, 
but in each tissue, we also included all the clinical traits with evidence of affecting 
the tissue transcriptome variation to ensure our results were not confounded by 
the different demographic traits nor by the different diseases. For example, in 
Lung, the model includes 6 different clinical traits on top of the technical 
covariates and demographic traits: type 1 and 2 diabetes, atelectasis, 
emphysema, fibrosis and pneumonia (see Figure 6a).  

expression (log2cpm) ~ HardyScale + IschemicTime + RIN + Cohort + 
NucAcIsoBatch + ExonicRate + PEER1 + PEER2 + Ancestry + Sex + Age + BMI + type 

1 diabetes + type 2 diabetes + atelectasis + emphysema + fibrosis + pneumonia 

We have included the model in the methods to make it more clear to the reader:  

expression (log2cpm)/splicing (PSI) ~ HardyScale + IschemicTime + RIN + Cohort + 
NucAcIsoBatch + ExonicRate + PEER1 + PEER2 + Ancestry + Sex + Age + BMI + 

clinical trait(s) 

Additional comments p.11:  

"found 79 and 309 DEGs in two or more tissues with either type 1 or type 2 
diabetes". Is this correct? We counted 387 lines and 378 distinct genes in Suppl 
Table 6f.  

Supplementary Table 6f includes the list of genes that are DE with either type 1 



 

 

diabetes or type 2 diabetes in two or more tissues. There are 78 DEGs with type 1 
diabetes in two or more tissues (we have corrected this number in the 
manuscript) and 309 DEGs with type 2 diabetes in two or more tissues. Nine of 
these genes are DE with type 1 and type 2 diabetes in two or more tissues but not 
necessarily in the same tissues (DMTN, DNAJC12, HADH, MT-ND4, NAT8L, 
SLC50A1, SPTB, TMEM39A and ZFYVE1). That is why there are 387 lines and 378 
genes in Supplementary Table 6f, because nine genes (387-378=9) are DE in two 
or more tissues with both diabetes.  

The finding that INS, IAPP and MAFA are markedly differentially expressed in 
pancreas in type 1 diabetes is simply the consequence of the (near complete) loss 
of pancreatic beta cells in this disease. Fig 6e hence does not seem to depict a 
major discovery.  

The reviewer is right. This is not a novel discovery, which we stated in Fig. 6e 
caption, “As expected, individuals with type 1 diabetes show no expression, and 
individuals with type 2 diabetes show decreased expression compared to healthy 
individuals”, but rather a validation showing our analyses identify previously 
known associated genes. Thus, we have removed this figure.  

No data is provided on the expression levels of genes (e.g. mean expression (TPM) 
in diabetes and controls), while this would be very useful to know for 
differentially expressed genes. This information should be added to Suppl Table 6f 
and 6i.  

As suggested by the reviewer, we have added the mean gene expression levels 
(TPM) in individuals with type 1 and type 2 diabetes in Supplementary Tables 6f 
and 6i.  

"Functional enrichment analyses revealed that upregulated genes in the tibial 
nerve are enriched in immune receptor activity, whereas downregulated genes 
are enriched in ion channel activity (Fig. 6f; Supplementary Table 6h; STAR 
methods)". Fig 6f does not look like functional enrichment.  

The reviewer is right. Fig. 6f (now Fig. 6e) showed that all the genes DE with type 
1 and type 2 diabetes are either upregulated or downregulated, and the 
upregulated and downregulated genes show different enrichments. 
Supplementary Table 6f shows the enrichment results. To avoid any confusion we 
have separated the two messages: we have removed the enriched terms from the 
figure and we now reference it before and rephrased the sentence that refers to 
Supplementary table 6f as follows.  

“Functional enrichment analysis (Supplementary Table 6h; STAR methods) 



 

 

revealed that upregulated genes in the tibial nerve are enriched in immune 
receptor activity, whereas downregulated genes are enriched in ion channel 
activity.”  

Some spelling mistakes need to be corrected, e.g. Abstract: ancestr.  

We have corrected this typo in the abstract.  
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