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Figure S1. Mouse DNA Methylation BeadArray Content, Related to Figure 1. (A) Design
categories of the mouse Infinium BeadChip array. (B) Comparison of three Infinium methylation
BeadChips in the number of targeted CpGs. (C) Number of probes with different targets in HM450,
EPIC, and mouse arrays. (D) Number of Infinium-I vs Infinium-Il comparing HM450, EPIC, and
mouse arrays. (E) Control probes and their design categories in the Infinium Mouse Methylation
Beadchip. (F) Comparison of the mouse array with HM450 and EPIC array in terms of converted
vs synthesized strand probe design. (G) Comparison of the mouse array with HM450 and EPIC
array in probe mappability. (H) Summary of the mouse array probes mapped to mm10 vs mm39.
(I) Probe redundancy for the mouse methylation BeadChip probes.
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Figure S2. Mouse DNA Methylation BeadArray Probe Design and Reproducibility, Related
to Figure 1. (A) Mouse array probe ID system illustration. (B) Enrichment of design category with
chromatin state. The enrichment is consistent with the design objective with most of the TSS, CGI
probes enriching for Tss chromatin state with the other probes largely falling into quiescent
chromatin and heterochromatin. (C) Mouse array probe distribution in different chromatin states
from different tissue types. (D) Circus plot showing distribution of mouse array-targeted CpGs in
the mouse genome. (E) Boxplot showing pairwise Pearson’s correlation coefficients within the
same lab (left) and between different labs (right) (F) Left: Probe success rate boxplot comparing
fresh frozen (FF) samples and Formalin-fixed and Paraffin-Embedded (FFPE) samples treated
for 24 and 48 hours. Right: Boxplot showing pairwise correlation coefficient between FF and FFPE
samples and between FFPE 24h and 48h samples.



Supplemental Figure S3 - Related to Figure 2
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Figure S3. Experimental and Biological Validation of DNA Methylation, Related to Figure 2.
(A) Line plot showing mean DNA methylation level across CpGs in different primary tissue
samples from mice with different Dnmt1 genotypes (X-axis). Each dot represents the median
methylation level across samples of the same tissue type (color). (B) Retention of methylation in
tissues from Dnmt1VR mice at 6,022 CpGs that are fully methylated across all tissues in Dnmt1**
mice. (C) DNA methylation level reduction in Dnmt1"% mice compared to the wild-type mice,
contrasting CpGs of different chromatin states (as characterized by chromHMM) and design
categories (X-axis). The top panel shows the methylation level difference between mice of the
two genotypes. The low panel shows the actual mean methylation fraction of CpGs in each
category. (D) Distribution of Solo-WCpGW methylation in mouse colon and testis tissues
comparing tissue type, sex, and four Dnmt1 genotypes. Dots represent the mean solo-WCGW
methylation level. The wedge indicates the expected trend of DNA methylation level change.
(E) Methylation level distribution of X-linked CpGs in colon samples from male and female mice
and testis samples from male mice. CpGs are stratified by whether they are part of a CpG island
and whether the associated gene (+- 3kb of the gene body) is predicted to escape from X
chromosome inactivation (XCI) (Yang et al., 2010).

Reference:

Yang, F., Babak, T., Shendure, J., and Disteche, C.M. (2010). Global survey of escape from X
inactivation by RNA-sequencing in mouse. Genome Res 20, 614-622. 10.1101/gr.103200.109.
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Figure S4. DNA Methylation Analysis of Genomic Features and Regions, Related to Figure
3. (A) Genomic distribution of DNA methylation levels centered on autosomal IncRNAs and
miRNAs. The density of CpGs (top row), the density of probes designed for the MM285 array
(middle row), and the average methylation level of samples stratified by tissue type (bottom row)
are shown accordingly. (B) Methylation level of CpGs associated with the 1gf2/H19 imprinting
region. (C) Overlap of four different groups of potential mono-allelic methylation-associated CpGs
on the mouse methylation array. Two groups (Group | and Il) are based on evidence of consistent
intermediate methylation across 138 somatic tissue samples. Group | probes require consistent
intermediate methylation in over 50% of the samples (methylation level between 0.3 and 0.7),
while Group Il requires intermediate methylation in over 90% samples and fully methylated and
unmethylated in three testis samples. Sex-chromosome probes are excluded. Group Il is
imprinting-associated probes designed based on genomic proximity, and Group IV is based on
localization of CpG at 13 manually curated imprinting control regions. Probe sets boxed in white
are used in the downstream analysis shown in this paper. (D) Scatter plot contrasting beta values
against age in month in 10 ICR probes most associated with age. (E) A heatmap showing DNA
methylation level of CpGs (rows) from 13 imprinting control regions in the mouse cell lines,
including the J1 embryonic stem cells and the C3H 10T1/2 cells of different Dnmt1 genotypes
with or without DAC treatment. CpGs are ordered by genomic coordinates. The associated
imprinting region is labeled on the right. (F) Table of the VMR (Variably Methylated Region) probe
representation in CpGs for which the methylation level is influenced by strain, tissue, sex, or age
(1 indicating an influence, 0 indicating no influence for that covariate). (G) Boxplots showing the
distribution of the DNA methylation level variance (left panel) and the mean beta value (right
panel) of VMR probes compared to non-VMR probes across 7 B-Cell samples (left panel). VMR
probes have significantly higher variance and mean beta value compared to non-VMR probes
(both P values < 2.2*10°'®, Wilcoxon rank-sum test).
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Figure S5. Tissue-Specific DNA Methylation, Related to Figure 4. (A) tSNE cluster map of
mouse methylomes colored by tissue, sex, experiment group, strain, cell line state, age, and mean
methylation level globally and at Polycomb target genes. (B) Uncertainty coefficients of six
different sample meta variable predicting DNA methylation-based sample clustering membership.
Uncertainty coefficient quantifies the fraction of total information in sample clustering predicted by
a random discrete variable. (C) Matrix representing hierarchical clustering of pairwise Spearman
correlation coefficients of global methylomes of 246 samples representing 22 different tissue
types. (D) Transcription factors enriched in tissue-specific hypomethylation with odds ratio of
enrichment shown on the Y-axis and the number of overlapping probes shown on the X-axis. (E)
Transcription factors enriched in tissue-specific hypermethylation with odds ratio of enrichment
shown on the Y-axis and the number of overlapping probes shown on the X-axis. (F) Heatmap of
DNA methylation level using tissue-specific probes (rows) in Dnmt1 hypomorphic mice (columns).



Supplemental Figure S6 - Related to Figure 5
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Figure S6. Comparative Epigenomics and Species-Specific Methylation, Related to Figure
5. (A) 4-way Venn diagram showing the predicted probe functionality in human, mouse, rat and
hamster genomes. Validation of the mean signal intensity of probes from different sequence-
based utility categories for human, hamster, rat, and mouse DNA. Probes are classified by
whether they are functional in human, hamster, and rat. Probes are always functional in mouse
by design. Strong signal is only observed when the probe category is predicted to work in the
corresponding species. (B) Enrichment of evolutionarily conserved probes in each design group.
Evolutionary conservation is defined by having 60-way PhastCons score greater than 0.8. X-axis
plots log2 fold enrichment compared to background probe fraction on the array. Log2 fold
enrichment is capped at -4 from the bottom. (C) A Heatmap showing the significance (p-value)
distinguishing different factors (rows). Wilcoxon rank sum test was used to evaluate the
significance of the difference. For tissue, we performed a one-vs-rest pairwise comparison.
Percentage of variance explained is shown on top of the heatmap. PC1 is entirely linked to
species, while the other PCs are by tissue or a combination of tissue and species. (D) Heatmap
showing the pairwise Spearman’s correlation coefficients of 8 human (rows) and 8 mouse tissues
(columns). (E) A scatter plot showing the magnitude of tissue-associated variation (X-axis) and
species-associated variation (Y-axis) in DNA methylation for each human- mouse syntenic probe
(dot). Tissue-specific CpGs (Blue) are defined as probes with delta beta value (regression slope,
tissue) > 0.4, delta beta value (tissue) / delta beta value (regression slope, species) > 0.3.
Species-specific CpGs (Red) are defined as probes with delta beta value (species) > 0.4, delta
beta value (species) / delta beta value (tissue) > 0.3. (F and G) LOESS curves fitted between the
signal ratios (Y-axis) and the known proportions of human blood DNA mixed in mouse fat (light
gold) or spleen (red) DNA samples (X-axis). The signal ratios were calculated using (F) the 19
syntenic probes with SNVs at the extension bases between human and mouse and (G) the non-
syntenic probes in the mouse (n=259,626) and human (n=733,164) arrays. (H and 1) Standard
curves derived using the mean of the two LOESS fitted values from the fat and spleen DNA for
the two methods based on (H) the syntenic human-mouse variant probes and () the non-syntenic
probes in the mouse and human arrays.



Supplemental Figure S7 - Related to Figures 6 and 7
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Figure S7. Age-Associated Methylation and Epigenetic Clock, Related to Figures 6 and 7.
(A) Heatmap showing the likelihood of samples (columns) being predicted to candidate strains
(rows) using strain-specific SNPs. (B) Distribution of age effect for each probe used in the
epigenetic clock, showing roughly equal representation of clock CpGs that gain and lose
methylation with age. (C) Enrichment of clock CpGs in H3K27me3-marked chromatin. X-axis
shows odds ratio and y-axis shows p-value of enrichment. Each dot represents an ENCODE
H3K27me3 dataset of a distinct tissue type (color). (D) Boxplot showing the distribution of age
prediction error stratified by tissue. The figure shows the error is largely unbiased and tissue
invariant except for testis for which age tends to be over-estimated.





