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	Supplemental	figures	
	

	
Figure	S1.	Genomic	comparison	of	Tara	Oceans	MAGs	and	genomes	 from	culture,	Related	to	
Figure	2.	The	figure	summarizes	the	Average	Nucleotide	Identity	(ANI)	and	percentage	of	genomic	
alignment	for	five	matches	between	a	MAG	and	a	standard	culture	genome.	
	



	
Figure	S2.	Phylogenomic	analysis	of	the	protein	sequences	of	255	BUSCO	genes	markers	from	
eukaryotic	 plankton,	 Related	 to	 Figure	 2.	 The	 maximum-likelihood	 phylogenomic	 tree	 of	 the	
BUSCO	gene	markers	(255	genes)	included	Tara	Oceans	MAGs	and	METdb	transcriptomes	(minimum	
of	 25%	 of	 completion)	 and	 was	 generated	 using	 a	 total	 of	 19,785	 sites	 in	 the	 alignment	 and	
LG+F+R10	model;	Opisthokonta	was	used	as	the	outgroup.	The	tree	was	decorated	with	additional	
layers	 using	 the	 anvi'o	 interface.	 Branches	 and	 names	 in	 red	 correspond	 to	 lineages	 lacking	
representatives	in	METdb.		
	



	
Figure	S3:	Phylogenetic	analysis	of	concatenated	DNA-dependent	RNA	polymerase	II	protein	
sequences	 from	 Opisthokonta	 MAGs	 and	 four	copepod	species,	 Related	 to	 Figure	 2.	The	
maximum-likelihood	 phylogenetic	 tree	 of	 the	 concatenated	 two	 largest	 subunits	 of	 the	 DNA-
dependent	 RNA	 polymerases	 II	 (two	 genes)	 included	Tara	Oceans	 MAGs	 and	
reference	copepod	genomes	 (source:	 NCBI)	 and	 was	 generated	 using	 a	 total	 of	2,112	 sites	 in	 the	
alignment	 and	 LG+R4	 model	 (determined	 by	 ModelFinder);	Acanthoecida	 were	 used	 as	 the	
outgroup.	Supports	 for	 selected	 clades	 are	 displayed.	 Phylogenetic	 supports	were	 considered	 high	
(aLRT>=80	 and	 UFBoot>=95),	 medium	 (aLRT>=80	 or	 UFBoot>=95)	 or	 low	 (aLRT<80	 and	
UFBoot<95)	(see	Methods).	
	
	
	
	
	
	
	



	
Figure	S4:	Biogeography	of	Micromonas	populations,	Related	to	Figure	2.	Top	panel	displays	the	
detection	of	20	Micromonas	MAGs	across	258	Tara	Oceans	metagenomes	for	which	at	least	one	MAG	
was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	and	the	
tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	organized	
based	on	similarities	in	their	biogeography.	MAGs	with	a	coefficient	of	determination	(R2)	>	0.9	for	
the	mean	coverage	values	across	metagenomes	and	average	nucleotide	identity	>95%	were	linked	to	
the	 same	 population	 Id.	 Populations	 “4”	 and	 “11”	 are	 represented	 by	 4	 MAGs	 and	 2	 MAGs,	
respectively.	Bottom	panel	displays	 the	detection	 (horizontal	 coverage)	and	mean	coverage	of	 two	
MAGs	affiliated	to	Micromonas	commoda	across	939	Tara	Oceans	metagenomes.	



	
Figure	S5:	Biogeography	of	Chloropicon	populations,	Related	 to	Figure	2.	The	 figure	 displays	
the	detection	of	11	Chloropicon	MAGs	across	323	Tara	Oceans	metagenomes	for	which	at	least	one	
MAG	was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	
and	the	tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	
organized	 based	 on	 similarities	 in	 their	 biogeography.	 There	 were	 no	MAGs	 with	 a	 coefficient	 of	
determination	(R2)	>	0.9	for	the	mean	coverage	values	across	metagenomes	and	average	nucleotide	
identity	>95%.	Thus,	each	MAG	was	linked	to	a	distinct	population	Id.		
	



	
Figure	S6:	Biogeography	of	Bathycoccus	populations,	Related	 to	Figure	2.	The	 figure	 displays	
the	detection	of	8	Bathycoccus	MAGs	across	231	Tara	Oceans	metagenomes	 for	which	at	 least	one	
MAG	was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	
and	the	tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	
organized	based	on	similarities	in	their	biogeography.	MAGs	with	a	coefficient	of	determination	(R2)	
>	0.9	for	the	mean	coverage	values	across	metagenomes	and	average	nucleotide	identity	>95%	were	
linked	to	the	same	population	Id.	Populations	“3”	and	“5”	are	represented	by	2	MAGs	and	3	MAGs,	
respectively.	
	
	
	



	
Figure	 S7:	 Phylogenetic	 analysis	 of	 concatenated	 DNA-dependent	 RNA	 polymerase	 protein	
sequences	from	eukaryotic	plankton,	Related	to	Figure	2.	The	maximum-likelihood	phylogenetic	
tree	of	the	concatenated	two	largest	subunits	from	the	three	DNA-dependent	RNA	polymerases	(six	
genes	 in	 total)	 included	Tara	 Oceans	MAGs	 and	 SAGs	 along	with	METdb	 transcriptomes	 and	was	
generated	using	a	total	of	7,243	sites	in	the	alignment	and	LG+F+R10	model;	Here	large	groups	were	
collapsed	 to	 better	 visualize	 the	 diversity	 of	 MAST	 lineages.	 SAGs	 were	 affiliated	 to	 taxonomic	
lineages	based	on	18S	rRNA	gene	analyses.	
	



	
Figure	 S8:	 Phylogenetic	 analysis	 of	 concatenated	 DNA-dependent	 RNA	 polymerase	 protein	
sequences	from	eukaryotic	plankton,	Related	to	Figure	2.	The	maximum-likelihood	phylogenetic	
tree	of	the	concatenated	two	largest	subunits	from	the	three	DNA-dependent	RNA	polymerases	(six	
genes	 in	 total)	 included	Tara	 Oceans	MAGs	 and	 SAGs	 along	with	METdb	 transcriptomes	 and	was	
generated	using	a	total	of	7,243	sites	in	the	alignment	and	LG+F+R10	model;	Opisthokonta	was	used	
as	 the	 outgroup.	 Support	 for	 the	 putative	 new	 group	 is	 displayed.	 Phylogenetic	 supports	 were	
considered	 high	 (aLRT>=80	 and	 UFBoot>=95),	 medium	 (aLRT>=80	 or	 UFBoot>=95)	 or	 low	
(aLRT<80	and	UFBoot<95)	(see	Methods).		
	
	
	



	
Figure	S9:	Functional	clustering	based	on	MAGs,	SAGs	and	seven	culture	genomes,	Related	to	
Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	Ward’s	 linkage)	of	
MAGs,	SAGs	and	seven	closely	related	standard	culture	genomes	(predicted	proteins	were	imported	
from	 NCBI)	 based	 on	 the	 occurrence	 of	 the	 functions	 identified	 with	 EggNOG,	 rooted	 with	 small	
animals	 (Chordata,	 Crustacea	 and	 copepods)	 and	 decorated	 with	 layers	 of	 information	 using	 the	
anvi’o	interactive	interface.	As	for	the	previous	analyses,	removed	from	the	analyses	were	Ciliophora	
MAGs	(gene	calling	is	problematic	for	this	lineage),	and	functions	occurring	more	than	500	times	in	
the	gigabase-scale	MAG	and	 linked	 to	 retrotransposons	 connecting	otherwise	unrelated	MAGs	and	
SAGs.		
	
	
	
	



	
Figure	S10:	Functional	 clustering	based	on	MAGs	and	SAGs	with	high	 completion	estimates,	
Related	to	Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	Ward’s	
linkage)	 of	 483	 MAGs	 and	 SAGs	 >25%	 complete	 (BUSCO	 estimation)	 based	 on	 the	 occurrence	 of	
27,415	 functions	 identified	 with	 EggNOG,	 rooted	 with	 small	 animals	 (Chordata,	 Crustacea	 and	
copepods)	and	decorated	with	layers	of	information	using	the	anvi’o	interactive	interface.	As	for	the	
previous	analyses,	removed	from	the	analyses	were	Ciliophora	MAGs	(gene	calling	is	problematic	for	
this	lineage),	and	functions	occurring	more	than	500	times	in	the	gigabase-scale	MAG	and	linked	to	
retrotransposons	connecting	otherwise	unrelated	MAGs	and	SAGs.		
	
	

	



Figure	S11.	Relative	proportion	of	known	COG	categories	in	annotated	functions	versus	those	
that	were	significantly	differentially	occurring	between	the	four	functional	groups,	Related	to	
Figure	3.		
	

	
Figure	S12.	Functional	 landscape	of	unicellular	eukaryotes	 in	the	sunlit	ocean	by	combining	
EggNOG	and	Agnostos	for	gene	processing,	Related	to	Figure	3.	The	figure	displays	a	hierarchical	
clustering	(Euclidean	distance	with	Ward’s	linkage)	of	681	MAGs	and	SAGs	based	on	the	occurrence	
of	 ~39,705	 groups	 of	 genes	 (total	 of	 5,178,829	 genes)	 identified	 by	 combining	 EggNOG58–60	 with	
Agnostos65,	rooted	with	MAGs	dominated	by	small	animals	(Chordata,	Crustacea	and	copepods)	and	
decorated	 with	 layers	 of	 information	 using	 the	 anvi’o	 interactive	 interface.	 Removed	 from	 the	
analysis	were	Ciliophora	MAGs	(gene	calling	is	problematic	for	this	lineage),	and	functions	occurring	
more	 than	 1,000	 times	 in	 the	 gigabase-scale	 MAG	 and	 linked	 to	 retrotransposons	 connecting	
otherwise	unrelated	MAGs	and	SAGs,	or	occurring	in	less	than	2%	of	the	MAGs	and	SAGs.		
	



	
Figure	S13.	The	genomic	unknown	functional	landscape	of	unicellular	eukaryotes	in	the	sunlit	
ocean,	Related	to	Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	
Ward’s	 linkage)	 of	 681	 MAGs	 and	 SAGs	 based	 on	 the	 occurrence	 of	 ~28,000	 gene	 clusters	 of	
unknown	 function	 (total	 of	 1.3	million	 genes)	 identified	by	 solely	with	Agnostos65	 (environmental	
unknowns	 plus	 genomic	 unknowns),	 rooted	 with	 MAGs	 dominated	 by	 small	 animals	 (Chordata,	
Crustacea	 and	 copepods)	 and	 decorated	 with	 layers	 of	 information	 using	 the	 anvi’o	 interactive	
interface.	 Removed	 from	 the	 analysis	 were	 Ciliophora	 MAGs	 (gene	 calling	 is	 problematic	 for	 this	
lineage),	 and	 functions	 occurring	more	 than	 1,000	 times	 in	 the	 gigabase-scale	MAG	 and	 linked	 to	
retrotransposons	 connecting	otherwise	unrelated	MAGs	and	SAGs,	or	occurring	 in	 less	 than	2%	of	
the	MAGs	and	SAGs.		
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Methods	S1:	supplemental	methods,	related	to	the	STAR	
Methods.		
	
	
#1:	Genome-resolved	metagenomics	with	anvi’o.	
	
#	A	set	of	single	copy	core	genes	to	identify	eukaryotic	MAGs		
	
As	 initially	 outlined	 in	 a	 blog	 post	 published	 at	 the	 beginning	 of	 this	 project	 to	
benefit	 others1,	 we	 have	 defined	 a	 set	 of	 83	 single	 copy	 core	 genes	 from	BUSCO2	
compatible	 with	 the	 gene	 calling	 workflow	 of	 anvi’o3	 to	 best	 estimate	 the	
completion	 of	 eukaryotic	 metagenome-assembled	 genomes	 (MAGs).	 Figure	 S14	
describes	 the	 efficacy	 of	 this	 collection	 to	 estimate	 completion	 of	 MAGs	 from	
Micromonas	 and	Ostreococcus.	Note	 that	 those	estimates	are	only	 initial,	 since	 this	
stage	 of	 the	 workflow	 uses	 a	 gene	 calling	 (Prodigal4)	 that	 is	 not	 optimal	 for	
eukaryotes.	 However,	 the	 results	 are	 sufficiently	 robust	 to	 effectively	 guide	 the	
manual	binning	and	curation	of	eukaryotic	MAGs	without	the	need	to	first	 identify	
eukaryotic	 contigs	 in	 the	 assembly	 output.	 While	 the	 identification	 of	 eukaryotic	
contigs	 prior	 to	 binning	 as	 been	 benchmarked	 by	 the	 group	 of	 Jill	 banfield5,	 false	
positives	 and	 false	 negatives	 associated	with	 this	 critical	 step	 can	 be	 problematic	
and	 are	 entirely	 avoided	 in	 our	 workflow.	 We	 found	 that	 binning	 metagenomes	
containing	multiple	domains	of	 life	can	be	done	smoothly	within	anvi’o,	as	 long	as	
proper	 single	 copy	 core	 gene	 collections	 are	 used	 to	 efficiently	 affiliate	 MAGs	 to	
Bacteria,	Archaea	and	Eukarya.	Note	that	this	dedicated	collection	for	eukaryotes	is	
the	 main	 improvement	 within	 anvi’o	 compared	 to	 the	 workflow	 outlined	 for	 the	
characterization	of	~1,000	bacterial	and	archaeal	MAGs	from	small	size	fractions	of	
TARA	Oceans6.	It	is	now	an	integral	component	of	the	anvi’o	metagenomic	flow	used	
by	a	growing	number	of	scientists	interested	in	genome-resolved	metagenomics.		
	



	
Figure	S14:	Completion	estimates	for	Micromonas	and	Ostreococcus	MAGs	using	a	set	of	83	
BUSCO	single	copy	core	genes,	as	a	function	of	the	length	of	the	MAGs.		
	
#	A	summary	of	the	workflow	to	bin	and	curate	eukaryotic	MAGs	
	

	
Figure	S15:	The	manual	genome-resolved	metagenomic	framework	of	anvi’o	dedicated	to	the	
eukaryotes.	This	workflow	is	to	be	applied	to	each	assembly	outcome.		
	
We	followed	the	workflow	outlined	in	the	figure	s15	for	each	of	the	11	metagenomic	
co-assemblies	 outlined	 in	 the	 study	 (see	Table	 S2).	 Briefly,	we	 used	 the	 sequence	
composition	 of	 contigs	 and	 their	 differential	 coverage	 across	 metagenomes	 to	
perform	a	first	automatic	binning	step	with	CONCOCT7	by	constraining	the	number	
of	 created	 clusters	 (thereafter	dubbed	metabins)	 to	 a	number	 substantially	below	
the	 number	 of	 genomes	 in	 the	 assembly.	 This	 number	 ranged	 from	 50	 to	 400	
depending	 on	 the	 assembly	 volume.	 Note	 that	 CONCOCT	 is	 used	 because	 the	
interactive	 interface	 of	 anvi’o	 cannot	work	 efficiently	when	 loading	 >25k	 contigs.	



For	each	metabin,	we	then	used	the	anvi’o	interactive	interface	to	manually	identify	
and	curate	eukaryotic	MAGs.	This	step	took	about	10	months	of	manual	work.	
	
#	An	holistic	interactive	interface	now	compatible	with	eukaryotes	
	
Within	the	framework	of	our	study,	the	anvi’o	interactive	interface	took	advantage	
of	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	 across	
metagenomes,	 taxonomic	 signal	 using	 a	 reference	 database	 that	 includes	 METdb,	
and	HMM	models	for	single	copy	core	gene	collections	(Bacteria,	Archaea,	Eukarya).	
When	selecting	a	cluster	of	contigs	corresponding	to	a	MAG	in	the	interface,	anvi’o	
identified	 its	domain	affiliation	 in	real	 time	using	random	forest,	and	displayed	 its	
completion	and	redundancy	values	accordingly.	This	way,	it	was	possible	to	focus	on	
the	eukaryotic	MAGs	within	an	assembly	containing	also	many	abundant	bacterial	
and	archaeal	MAGs.		In	the	figure	S16,	we	provide	the	example	of	one	metabin	from	
the	 Mediterranean	 Sea	 metagenomic	 co-assembly	 (95	 metagenomes)	 containing	
eukaryotic	 MAGs	 for	 Ostreococcus	 and	 Micromonas	 (left	 panel).	 In	 this	 simple	
example,	we	 selected	 those	 two	clusters	 in	 the	 interface,	 saved	 the	 collection,	 and	
subsequently	 manually	 curated	 them	 as	 presented	 here	 for	 Ostreococcus	 (right	
panel).	 This	 MAG	 exhibited	 a	 completion	 of	 100%	 and	 a	 redundancy	 of	 3%.	 One	
metagenome	(most	outer	blue	layer)	was	particularly	useful	 in	this	particular	case	
since	the	Micromonas	MAG	was	more	detected	compared	to	the	Ostreococcus	MAG,	
allowing	 an	 effective	 binning	 outcome.	 Given	 the	 complexity	 of	 marine	
metagenomes,	 differential	 coverage	 across	 dozens	 of	 metagenomes	 strongly	
benefited	to	the	outcome	of	our	genome-resolved	metagenomic	survey.	
	

	
Figure	S16:	The	anvi’o	interactive	interface	to	manually	bin	and	curate	eukaryotic	MAGs.	The	
left	 panel	 displays	 the	 detection	 of	 contigs	 from	 a	 single	metabin	 across	 95	metagenomes,	
alongside	taxonomic	signal.	Clustering	was	done	using	sequence	composition	and	differential	
coverage.	Right	panel	displays	the	curated	Ostreococcus	MAGs	identified	from	the	left	panel.		
	
	



#	Example	of	environmental	signal	for	a	manually	curated	Ciliophora	MAG	
	
We	provide	an	example	of	manually	curated	MAG	(“TARA	MED	95	MAG	00445”),	for	
which	environmental	signal	is	described	using	both	detection	(horizontal	coverage,	
left	panel)	and	mean	coverage	(vertical	coverage,	right	panel):	

 
Figure S17: Example of a manually curated eukaryotic MAG as visualized in the anvi’o 
interactive. The selected MAG is named “TARA MED 95 MAG 00445”. It is affiliated to 
Ciliophora and contains 2,613 contigs for a length of 13.5 Mbp. Clustering of contigs was done 
using sequence composition alone. Then, the left and right panels respectively display the 
detection and mean coverage of contigs across the 95 Tara Oceans metagenomes, which were 
used to access the quality of this MAG and others.  
	
We	can	observe	 strong	environmental	 signal	 coherence	 for	 the	2,614	contigs.	The	
contigs	 correlated	 across	 the	 95	 metagenomes	 considered,	 with	 no	 particular	
outliers	when	it	comes	to	sequence	composition	either.	Critically,	the	coherence	of	
environmental	 signal	 is	 supportive	 of	 the	 quality	 of	 the	 MAGs,	 which	 were	 all	
manually	inspected	and	curated.		
	
#2:	Decontamination	of	single	cell	genomes	with	anvi’o.	
	
Eukaryotic	 single	 cell	 genomes	 (SAGs)	 can	 be	 heavily	 contaminated	 due	 to	 a	
combination	 of	 factors	 during	 cell	 sorting,	 DNA	 extraction	 and	 amplification,	 and	
multiplex	sequencing.	Here,	we	slightly	modified	the	anvi’o	metagenomic	workflow	
to	effectively	decontaminate	marine	eukaryotic	SAGs,	one	by	one.	Briefly,	we	used	
the	 anvi’o	 interactive	 interface	 to	manually	 curate	 eukaryotic	 SAGs	 by	 taking	 into	
consideration	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	
across	 100	 most	 relevant	 metagenomes	 (i.e.,	 those	 with	 highest	 mapping	
recruitment	 scores	 within	 the	 scope	 of	 TARA	 Oceans),	 taxonomic	 signal	 using	 a	
reference	database	that	includes	METdb,	and	HMM	models	for	single	copy	core	gene	
collections	 (Bacteria,	 Archaea,	 Eukarya).	 Note	 that	 compared	 to	 the	metagenomic	
co-assemblies,	the	number	of	contigs	under	consideration	was	orders	of	magnitude	



smaller.	Since	all	contigs	could	be	 loaded	in	the	 interactive	 interface,	 there	was	no	
need	to	use	the	pre-clustering	step	with	CONCOCT.	However,	CONCOCT	could	also	
be	used	here	if	some	SAG	assemblies	include	more	than	~25k	contigs.		
	

	
Figure	S18:	The	manual	metagenomic	framework	of	anvi’o	dedicated	to	the	decontamination	
of	SAGs.	This	workflow	was	applied	to	each	SAG	(co-)assembly	outcome.		
	
Figure	 S19	 provides	 a	 striking	 example	 of	 heavily	 contaminated	 SAG	 we	 could	
effectively	 curate	 thanks	 to	 the	 clear	differential	 coverage	 signal	 of	 contigs	 across	
100	metagenomes.	 In	 this	particular	 case,	 contamination	 seemed	 to	have	multiple	
origins,	and	a	large	number	of	contigs	were	removed.	Overall,	our	manual	curation	
of	 SAGs	using	 a	 genome-resolved	metagenomics	workflow	 initially	 built	 for	MAGs	
turned	out	to	be	highly	valuable,	 leading	in	our	study	to	the	removal	of	more	than	
one	hundred	thousand	scaffolds	for	a	total	volume	of	193.1	million	nucleotides.	This	
metagenomic-guided	 decontamination	 effort	 contributes	 to	 previous	 efforts	
characterizing	eukaryotic	SAGs	from	the	same	cell	sorting	material8–12	and	provides	
new	guidelines	for	marine	eukaryotic	SAGs.	We	now	recommend	this	approach	for	
future	efforts	generating	eukaryotic	SAGs	 from	the	sunlit	ocean.	This	 is	 important,	
especially	 since	 SAGs	 could	 become	 a	 valuable	 asset	 in	 the	 near	 future	 to	 target	
lineages	genome-resolved	metagenomics	failed	to	recover	so	far.	It	is	especially	the	
case	of	Dinoflagellates.		
	



	
Figure	 S19:	 Example	 of	 the	 decontamination	 of	 TOSAG00-8.	 Left	 panel	 describes	 all	 contigs	
reconstructed	 from	 this	 SAG,	 organized	 based	 on	 sequence	 composition	 and	 differential	 coverage	
across	100	Tara	Oceans	metagenomes.	The	selection	of	contigs	(outer	layer)	corresponds	to	our	final	
curated	 SAG,	 displayed	 in	 the	 right	 panel,	 for	which	 clustering	 is	 base	 don	 sequence	 composition	
alone.	
	
#3:	The	METdb	database	for	eukaryotic	transcriptomes.	
	
METdb	is	a	curated	database	of	transcriptomes	from	marine	eukaryotic	isolates	that	
cover	 the	MMETSP	 collection13	 (new	 assemblies	were	 performed,	 combining	 time	
points	 from	 the	same	culture	 in	 co-assemblies	when	available)	as	well	 as	 cultures	
from	TARA	Oceans.	The	 associated	manuscript	 is	 not	 yet	 published.	However,	 the	
database	 is	 publically	 available	 and	 can	 be	 accessed	 at	 http://metdb.sb-
roscoff.fr/metdb/.	
	
#4:	World	map	projections.		
	
#	World	Ocean	Atlas	data	
	
Seven	physicochemical	parameters	were	used	 to	define	environmental	niches:	 sea	
surface	 temperature	 (SST),	 salinity	 (Sal),	 dissolved	 silica	 (Si),	 nitrate	 (NO3),	
phosphate	 (PO4),	 iron	 (Fe),	 and	 a	 seasonality	 index	 of	 nitrate	 (SI	 NO3).	 With	 the	
exception	 of	 Fe	 and	 SI	 NO3,	 these	 parameters	 were	 extracted	 from	 the	 gridded	
World	Ocean	Atlas	2013	(WOA13)21.	Climatological	Fe	fields	were	provided	by	the	
biogeochemical	model	PISCES-v222.	The	seasonality	index	of	nitrate	was	defined	as	
the	 range	of	nitrate	 concentration	 in	one	grid	 cell	 divided	by	 the	maximum	range	
encountered	 in	 WOA13	 at	 the	 Tara	 sampling	 stations.	 All	 parameters	 were	 co-
located	with	the	corresponding	stations	and	extracted	at	the	month	corresponding	
to	 the	 Tara	 sampling.	 To	 compensate	 for	missing	 physicochemical	 samples	 in	 the	
Tara	 in	 situ	 data	 set,	 climatological	 data	 (WOA)	 were	 favored.	 The	 correlation	
between	in	situ	samples	and	corresponding	values	extracted	from	WOA	were	high:	
	



	#	R-squared	values	for	the	surface	samples:		
SST:	0.99,	Sal:	0.86,	Si:	0.89,	NO3:	0.85,	PO4:	0.90		
	
#	R-squared	values	for	the	DCM	samples:		
SST:	0.97,	Sal:	0.47,	Si:	0.97,	NO3:	0.74,	PO4:	0.85		
	
In	the	absence	of	corresponding	WOA	data,	a	search	was	done	within	2°	around	the	
sampling	location	and	values	found	within	this	square	were	averaged.	
	
Nutrients,	such	as	NO3	and	PO4,	displayed	a	strong	collinearity	when	averaged	over	
the	 global	 ocean	 (correlation	 of	 0.95	 in	 WOA13),	 which	 could	 complicate	
disentangling	 their	 respective	 contribution	 to	 niche	 definition.	 However,	
observations	and	experimental	data	allow	distinguishing	between	limiting	nutrients	
at	 regional	 scale	 characterized	 by	 specific	 plankton	 communities23.	 The	 future	
projection	of	niches	will	yield	spurious	results	when	the	present-day	collinearity	is	
not	maintained24,25.	To	this	day,	there	is	no	evidence	for	large	scale	changes	in	global	
nutrient	stoichiometry26.	
	
#	Earth	System	Models	and	bias	correction	
	
Outputs	 from	six	Earth	system	models	were	used	 to	project	environmental	niches	
under	greenhouse	gas	emission	scenario	RCP8.527:	

	
Table	1:	Summary	of	Earth	system	models	used	to	project	environmental	niches.		
	
Environmental	 drivers	 were	 extracted	 for	 present	 day	 (2006-2015)	 and	 end	 of	
century	 (2090-2099)	 conditions	 for	 each	 model	 and	 the	 multi-model	 mean	 was	
computed.	 A	 bias	 correction	 method,	 the	 Cumulative	 Distribution	 Function	
transform,	CDFt28,	was	applied	to	adjust	the	distributions	of	SST,	Sal,	Si,	NO3	and	PO4	
of	the	multi-model	mean	to	the	WOA	database.	CDFt	is	based	on	a	quantile	mapping	
(QM)	 approach	 to	 reduce	 the	 bias	 between	 modeled	 and	 observed	 data,	 while	
accounting	 for	 climate	 change.	 Therefore,	 CDFt	 does	 not	 rely	 on	 the	 stationary	
hypothesis	and	present	and	future	distributions	can	be	different.	CDFt	was	applied	
on	the	global	fields	of	the	mean	model	simulations.	By	construction,	CDFt	preserved	
the	 ranks	 of	 the	 simulations	 to	 be	 corrected.	 Thus,	 the	 spatial	 structures	 of	 the	
model	fields	were	preserved.	
	



#	Environmental	niches	models:	training,	validation	and	projections	
	
From	 the	 initial	 dataset	 of	 713	 SMAGs,	 we	 selected	 those	 present	 in	 at	 least	 4	
stations	for	environmental	niche	training,	discarding	just	58	of	them.	Four	machine	
learning	methods	 were	 applied	 to	 compute	 environmental	 niches	 for	 each	 of	 the	
655	remaining	SMAGs:		
	

(1) Gradient	Boosting	Machine	(gbm)29	
(2) Random	Forest	(rf)30	
(3) Fully	connected	Neural	Networks	(nn)31	
(4) Generalized	Additive	Models	(gam)32	

	
Hyper	parameters	of	each	technique	(except	gam)	were	optimized	as	followed:	
	

(1) For	gbm,	 the	 interaction	depth	(1,	3	and	5),	 learning	rate	 (0.01,	0.001)	and	
the	minimum	number	of	observations	in	a	tree	node	(1	to	10)	

(2) 	For	rf,	the	number	of	trees	(100	to	900	with	step	200	and	1000	to	9000	with	
step	2000)	and	the	number	of	parameters	used	for	each	tree	(1	to	8)	

(3) For	nn,	the	number	of	layers	of	the	network	(1	to	10)	and	the	decay	(1.10-4	
to	9.10-4	and	1.10-5	to	9.10-5)	

(4) For	gam	the	number	of	splines	was	set	to	3.		
	

R	 packages	 gbm	 (2.1.3),	 randomForest	 (4.6.14),	 mgcv	 (1.8.16)	 and	 nnet	 (7.3.12)	
were	used	for	gbm,	rf,	nn	and	gam	models.		
	
To	define	the	best	combination	of	hyper	parameters	for	each	model,	we	perform	30	
random	 cross-validations	 by	 training	 the	model	 on	 75%	 of	 the	 dataset	 randomly	
sampled	 and	 by	 calculating	 the	 Area	 Under	 the	 Curve51	 (AUC)	 on	 the	 25%	
remaining	points	 of	 the	dataset.	 The	best	 combination	of	 hyper	parameters	 is	 the	
one	for	which	the	mean	AUC	over	the	30	cross-validation	is	the	highest.	A	model	is	
considered	valid	 if	at	 least	3	out	of	 the	4	techniques	have	a	mean	AUC	superior	to	
0.65,	 which	 is	 the	 case	 for	 374	 out	 of	 the	 655	 SMAGs	 (57%).	 Final	 models	 are	
trained	 on	 the	 full	 dataset	 and	 only	 the	 techniques	 that	 have	 a	mean	AUC	 higher	
than	 0.65	 are	 considered	 to	make	 the	 projections.	 The	majority	 (286)	 of	 the	 374	
validated	niches	 is	validated	by	all	 four	models	and	88	by	only	3	models.	Relative	
influences	of	each	parameter	in	defining	environmental	niches	are	calculated	using	
the	feature_importance	function	from	the	DALEX	R	package33	for	all	four	statistical	
methods.	For	model	training	and	projections,	physicochemical	variables	are	scaled	
to	 have	 a	mean	 of	 0	 and	 a	 variance	 of	 1.	 For	 this	 scaling,	 the	mean	 and	 standard	
deviation	of	each	WOA13	variable	(+	PISCES-v2	Fe)	co-localized	with	Tara	stations	
with	 a	 value	 available	 is	 used.	 This	 standardization	 procedure	 allows	 for	 better	
performance	 of	 models.	 Finally,	 as	 statistical	 models	 often	 disagree	 we	 use	 the	
ensemble	 model	 approach	 for	 global-scale	 projections	 of	 niches34	 i.e.	 the	 mean	
projections	of	the	validated	machine	learning	techniques.	
	
#	Environmental	niches	models	at	Tara	Oceans	stations	



	
Here	 we	 describe	 the	 performances	 of	 the	 statistical	 models	 on	 biogeochemical	
model	projections	at	locations	of	the	training	set	(i.e.	the	Tara	stations).	Our	models	
are	 only	 presence/absence	 models	 so	 they	 project	 probabilities	 of	 presence	 (not	
relative	 abundances)	of	 a	 given	MAG	at	 each	gridded	point	of	 the	ocean	based	on	
environmental	parameters.	The	figure	S20	presents	the	specificity	in	function	of	the	
sensitivity	 for	 each	model	 (i.e.	each	 point	 is	 a	MAG)	 calculated	 on	 the	 set	 of	Tara	
stations	for	biogeochemical	projections	and	for	two	threshold	of	presence	detection	
(p>0.5	 and	 p>0.3).	 The	 specificity	 captures	 the	 ability	 of	 the	 model	 to	 correctly	
detect	 absences	 while	 the	 sensitivity	 captures	 its	 capability	 to	 detect	 presences.	
Details	on	model	computation	and	validation	are	in	the	supplementary	material.	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
Figure	 S20:	 Statistical	
niches	model	performances	for	each	MAG	on	biogeochemical	model	projections	at	locations	of	
the	 training	 set	 (Tara	 stations).	 Specificity,	 i.e.	 the	 capacity	 of	 the	 model	 to	 correctly	 project	
absences	 is	represented	 in	 function	of	sensitivity,	 i.e.	 the	capacity	of	 the	model	 to	correctly	project	
presences	 for	 each	 MAG	 for	 which	 a	 valid	 environmental	 niche	 was	 found.	 Two	 thresholds	 for	
presence	detection	are	used	(in	green	p>0.5,	in	red	p>0.3).		
	
Globally,	models	perform	well,	especially	for	p>0.3	as	a	presence	threshold,	with	a	
vast	 majority	 of	 models	 with	 sensitivity>0.6	 and	 sensibility>0.6	 (61%	 for	 p>0.3,	
39%	 for	 p>0.5).	 Lowering	 the	 presence	 threshold	 allows	 a	 global	 increase	 in	
sensitivity	 with	 a	 relatively	 low	 decrease	 in	 specificity	 (red	 points	 versus	 green	
points).	Some	models	perform	relatively	poorly	and	have	low	sensitivity.	This	might	
be	explained	by	the	asymmetry	in	number	of	presences	compared	to	absences	in	the	
training	set	(relatively	many	more	absences).	In	addition,	the	spatial	structure	and	



resolution	as	well	as	the	hidden	seasonality	(10	years	climatologies	are	used)	of	the	
biogeochemical	models	might	explain	these	discrepancies.	
	
#5:	Categorizing	the	939	TARA	Oceans	metagenomes.	
	
Our	 study	 surveyed	a	 total	of	939	TARA	Oceans	metagenomes	 (Table	S1)	 that	we	
organized	into	four	cellular	size	categories	(size	1:	0.2-5µm,	size	2:	3-20µm,	size	3:	
20-200µm,	 size	 4:	 180-2000µm)	 as	 well	 as	 a	 wider	 cellular	 size	 fraction	
encompassing	all	categories	considered	in	our	study	(wider	size:	0.8-2000µm).	The	
four	cellular	size	categories	were	well	 represented	across	 the	 five	oceans	and	 two	
seas.	Overall,	119	stations	contained	at	 least	3	out	of	the	4	cellular	size	categories,	
which	we	defined	as	Station	subset	1	 (757	metagenomes).	Using	this	 first	subset,	
SMAGs	were	assigned	a	“cosmopolitan	score”	corresponding	to	the	percentage	of	
stations	 in	which	 they	were	 detected.	 SMAGs	were	 also	 assigned	 a	 “cellular	 size	
range”	and	“oceanic	signal”	using	average	coverage	 in	each	size	categories	 (n=4)	
for	 the	 former	 and	 in	 each	 ocean	 and	 sea	 (n=7)	 for	 the	 later.	 Those	 results	 are	
summarized	 in	 the	 tables	 S3	 an	 S4.	Unfortunately,	 the	wider	 cellular	 size	 fraction	
was	missing	in	the	Mediterranean	Sea,	Red	Sea	and	Indian	Ocean,	limiting	its	use	to	
91	stations	from	the	four	remaining	oceans,	which	we	defined	as	Station	subset	2	
(130	metagenomes).	Critically,	this	second	subset	offers	a	glimpse	into	the	relative	
proportion	of	planktonic	lineages	of	different	cellular	sizes.	While	more	limited	in	its	
geographic	 scope,	 the	Station	subset	2	 could	 provide	 important	 insights	 into	 the	
“relative	 proportion”	 of	 SMAGs	 in	 stations	 from	 the	 Atlantic,	 Pacific,	 Arctic	 and	
Southern	Ocean.		
	
#6:	Manual	curation	of	the	DNA-dependent	RNA	polymerase	genes	for	SMAGs	
and	METdb.		
	
An	 eukaryotic	 dataset	 (Da	 Cunha)14	 was	 used	 to	 build	 HMM	 profiles	 for	 the	 two	
largest	 subunits	 of	 the	 DNA-dependent	 RNA	 polymerase	 (RNAP-a	 and	 RNAP-b).	
These	two	HMM	profiles	were	incorporated	within	the	anvi’o	framework	to	identify	
RNAP-a	 and	 RNAP-b	 genes	 (Prodigal4	 annotation)	 in	 the	 SMAGs	 and	 METdb	
transcriptomes.	
	
We	 independently	 performed	 the	 following	 workflow	 for	 RNAP-a	 sequences	
identified	in	the	SMAGs	(round	A,	n=	1,626)	and	METdb	(round	B,	n=	2,823)	as	well	
as	 for	RNAP-b	sequences	 identified	 in	 the	SMAGs	 (round	C,	n=	1,373)	and	METdb	
(round	D,	n=	3,941):	
	
(1) Stetting	 the	 stage	 with	 references:	 Reference	 sequences	 for	 the	 relevant	

largest	subunits	of	the	DNA-dependent	RNA	polymerase	(e.g.,	RNAP-a	for	round	
A)	 corresponding	 to	 eukaryotic	 (types	 I,	 II	 and	 III),	 bacterial	 and	 archaeal	
lineages	 from	the	Da	Cunha	dataset	were	added	to	 the	sequences	 identified	by	
the	HMM.		



(2) Phylogenetic	tree	Phase	1:	Sequences	were	aligned	using	the	iterative	FFT-NS-
i	 refinement	method	of	MAFFT15	v7.464	with	default	parameters,	 and	 the	 sites	
with	 more	 than	 50%	 of	 gaps	 were	 trimmed	 using	 Goalign	 v0.3.0-alpha5.	
Phylogenetic	 trees	 were	 reconstructed	 with	 IQ-TREE16	 v1.6.12.	 The	 model	 of	
evolution	was	estimated	with	the	ModelFinder	Plus	option17,	and	supports	were	
computed	 from	 1,000	 replicates	 for	 the	 Shimodaira-Hasegawa	 (SH)-like	
approximation	 likelihood	 ratio	 (aLRT)18	 and	ultrafast	bootstrap	approximation	
(UFBoot)19.	Anvi’o	v6.1	was	used	to	visualize	and	root	the	phylogenetic	trees.	

(3) Identifying	 sequences	 of	 type	 I,	 II	 and	 III:	 We	 used	 the	 anvi’o	 interactive	
interface	to	root	the	tree	between	Bacteria	and	the	rest,	and	identify	sequences	
corresponding	 to	 eukaryotic	DNA-dependent	RNA	polymerase	 of	 type	 I,	 II	 and	
III.	 Sequences	 not	 clearly	 belonging	 to	 one	 of	 these	 three	 clusters	 were	
discarded.	 Note	 that	 during	 this	 process	 other	 types	 of	 eukaryotic	 RNA	
polymerase	(e.g.,	nucleomorphs)	were	identified	and	put	aside	for	investigations	
beyond	the	scope	of	this	study.		

(4) Fusing	 fragmented	 sequences	 when	 needed:	 For	 each	 SMAG	 or	 METdb	
transcriptome,	sequences	corresponding	to	the	same	RNA	polymerase	type	(e.g.,	
RNAP-a_type_I	 for	 round	 A)	 were	 aligned	 against	 each	 other	 and	 against	 a	
relevant	 eukaryotic	 reference	 sequence	 using	 blastp20.	 Non-overlapping	
sequences	 corresponding	 to	 the	 same	 subunit	 (based	 on	 Phylogenetic	 tree	
Phase	 1)	 were	 considered	 fragments	 of	 the	 same	 gene	 and	 fused	 manually,	
overcoming	 fragmentation	 issues	 during	 gene	 calling	 and/or	 transcription.	 In	
addition,	 only	 the	 longest	 sequence	 was	 kept	 for	 overlapping	 isoforms	 and	
closely	related	duplicates	(>95%	identity	and	>30%	coverage).		

(5) Phylogenetic	tree	Phase	2:	A	phylogenetic	tree	was	performed	for	each	subunit	
(DNA-dependent	 RNA	 polymerase	 of	 type	 I,	 II	 and	 III)	 as	 done	 for	 the	
Phylogenetic	tree	Phase	1	(for	improved	resolution,	archaeal	references	were	
used	 as	 outgroup	 and	 bacterial	 sequences	 removed	 in	 this	 analysis).	 Distantly	
related	 duplicates	 (those	 occurred	 in	 <5%	 of	 SMAGs	 and	 <10%	 of	 METdb	
transcriptomes,	possibly	due	to	contamination)	were	carefully	considered	in	the	
context	 of	 the	 three	 phylogenetic	 trees	 as	 well	 as	 taxonomy	 to	 identify	 and	
remove	sequences	with	incoherent	phylogenetic	and/or	taxonomic	signal.		

(6) Final	 collection:	 We	 removed	 sequences	 shorter	 than	 200	 amino-acids,	
providing	 a	 final	 collection	 of	 DNA-dependent	 RNA	 polymerase	 genes	 for	 the	
SMAGs	(n=2,150)	and	METdb	(n=2,032)	with	no	duplicates.		



	
Figure	 S21:	 Workflow	 for	 the	 manual	 curation	 of	 RNA	 polymerase	 genes	 identified	 in	 the	
MAGs,	SAGs	and	METdb	culture	transcriptomes.	
	

References	
	
1.	 Delmont,	T.O.	(2018).	Assessing	the	completion	of	eukaryotic	bins	with	anvi’o.	

Blog	post.	http://merenlab.org/2018/05/05/eukaryotic-single-copy-core-
genes/.	

2.	 Simão,	F.A.,	Waterhouse,	R.M.,	Ioannidis,	P.,	Kriventseva,	E.	V.,	and	Zdobnov,	
E.M.	(2015).	BUSCO:	assessing	genome	assembly	and	annotation	
completeness	with	single-copy	orthologs.	Bioinformatics	31,	3210–3212.	

3.	 Eren,	A.M.,	Esen,	Ö.C.,	Quince,	C.,	Vineis,	J.H.,	Morrison,	H.G.,	Sogin,	M.L.,	and	
Delmont,	T.O.	(2015).	Anvi’o:	an	advanced	analysis	and	visualization	platform	
for	‘omics	data.	PeerJ	3,	e1319.	

4.	 Hyatt,	D.,	Chen,	G.-L.,	Locascio,	P.F.,	Land,	M.L.,	Larimer,	F.W.,	and	Hauser,	L.J.	



(2010).	Prodigal:	prokaryotic	gene	recognition	and	translation	initiation	site	
identification.	BMC	Bioinformatics	11,	119.	

5.	 West,	P.T.,	Probst,	A.J.,	Grigoriev,	I.	V.,	Thomas,	B.C.,	and	Banfield,	J.F.	(2018).	
Genome-reconstruction	for	eukaryotes	from	complex	natural	microbial	
communities.	Genome	Res.	28,	gr.228429.117.	

6.	 Delmont,	T.O.,	Quince,	C.,	Shaiber,	A.,	Esen,	Ö.C.,	Lee,	S.T.,	Rappé,	M.S.,	
MacLellan,	S.L.,	Lücker,	S.,	and	Eren,	A.M.	(2018).	Nitrogen-fixing	populations	
of	Planctomycetes	and	Proteobacteria	are	abundant	in	surface	ocean	
metagenomes.	Nat.	Microbiol.	2018	37	3,	804–813.	

7.	 Alneberg,	J.,	Bjarnason,	B.S.,	de	Bruijn,	I.,	Schirmer,	M.,	Quick,	J.,	Ijaz,	U.Z.,	Lahti,	
L.,	Loman,	N.J.,	Andersson,	A.F.,	and	Quince,	C.	(2014).	Binning	metagenomic	
contigs	by	coverage	and	composition.	Nat.	Methods	11,	1144–1146.	

8.	 Sieracki,	M.E.,	Poulton,	N.J.,	Jaillon,	O.,	Wincker,	P.,	de	Vargas,	C.,	Rubinat-
Ripoll,	L.,	Stepanauskas,	R.,	Logares,	R.,	and	Massana,	R.	(2019).	Single	cell	
genomics	yields	a	wide	diversity	of	small	planktonic	protists	across	major	
ocean	ecosystems.	Sci.	Reports	2019	91	9,	1–11.	

9.	 Seeleuthner,	Y.,	Mondy,	S.,	Lombard,	V.,	Carradec,	Q.,	Pelletier,	E.,	Wessner,	M.,	
Leconte,	J.,	Mangot,	J.F.,	Poulain,	J.,	Labadie,	K.,	et	al.	(2018).	Single-cell	
genomics	of	multiple	uncultured	stramenopiles	reveals	underestimated	
functional	diversity	across	oceans.	Nat.	Commun.	2018	91	9,	1–10.	

10.	 Mangot,	J.F.,	Logares,	R.,	Sánchez,	P.,	Latorre,	F.,	Seeleuthner,	Y.,	Mondy,	S.,	
Sieracki,	M.E.,	Jaillon,	O.,	Wincker,	P.,	Vargas,	C.	De,	et	al.	(2017).	Accessing	the	
genomic	information	of	unculturable	oceanic	picoeukaryotes	by	combining	
multiple	single	cells.	Sci.	Reports	2017	71	7,	1–12.	

11.	 López-Escardó,	D.,	Grau-Bové,	X.,	Guillaumet-Adkins,	A.,	Gut,	M.,	Sieracki,	M.E.,	
and	Ruiz-Trillo,	I.	(2017).	Evaluation	of	single-cell	genomics	to	address	
evolutionary	questions	using	three	SAGs	of	the	choanoflagellate	Monosiga	
brevicollis.	Sci.	Reports	2017	71	7,	1–14.	

12.	 Vannier,	T.,	Leconte,	J.,	Seeleuthner,	Y.,	Mondy,	S.,	Pelletier,	E.,	Aury,	J.M.,	De	
Vargas,	C.,	Sieracki,	M.,	Iudicone,	D.,	Vaulot,	D.,	et	al.	(2016).	Survey	of	the	
green	picoalga	Bathycoccus	genomes	in	the	global	ocean.	Sci.	Reports	2016	61	
6,	1–11.	

13.	 Keeling,	P.J.,	Burki,	F.,	Wilcox,	H.M.,	Allam,	B.,	Allen,	E.E.,	Amaral-Zettler,	L.A.,	
Armbrust,	E.V.,	Archibald,	J.M.,	Bharti,	A.K.,	Bell,	C.J.,	et	al.	(2014).	The	Marine	
Microbial	Eukaryote	Transcriptome	Sequencing	Project	(MMETSP):	
Illuminating	the	Functional	Diversity	of	Eukaryotic	Life	in	the	Oceans	through	
Transcriptome	Sequencing.	PLOS	Biol.	12,	e1001889.	

14.	 Da	Cunha,	V.,	Gaia,	M.,	Nasir,	A.,	and	Forterre,	P.	(2018).	Asgard	archaea	do	not	
close	the	debate	about	the	universal	tree	of	life	topology.	PLOS	Genet.	14,	
e1007215.	

15.	 Katoh,	K.,	and	Standley,	D.M.	(2013).	MAFFT	Multiple	Sequence	Alignment	
Software	Version	7:	Improvements	in	Performance	and	Usability.	Mol.	Biol.	
Evol.	30,	772–780.	

16.	 Nguyen,	L.T.,	Schmidt,	H.A.,	Von	Haeseler,	A.,	and	Minh,	B.Q.	(2015).	IQ-TREE:	
A	Fast	and	Effective	Stochastic	Algorithm	for	Estimating	Maximum-Likelihood	
Phylogenies.	Mol.	Biol.	Evol.	32,	268–274.	



17.	 Kalyaanamoorthy,	S.,	Minh,	B.Q.,	Wong,	T.K.F.,	Von	Haeseler,	A.,	and	Jermiin,	
L.S.	(2017).	ModelFinder:	fast	model	selection	for	accurate	phylogenetic	
estimates.	Nat.	Methods	2017	146	14,	587–589.	

18.	 Guindon,	S.,	Dufayard,	J.F.,	Lefort,	V.,	Anisimova,	M.,	Hordijk,	W.,	and	Gascuel,	
O.	(2010).	New	algorithms	and	methods	to	estimate	maximum-likelihood	
phylogenies:	Assessing	the	performance	of	PhyML	3.0.	Syst.	Biol.	59,	307–321.	

19.	 Hoang,	D.T.,	Chernomor,	O.,	Von	Haeseler,	A.,	Minh,	B.Q.,	and	Vinh,	L.S.	(2018).	
UFBoot2:	Improving	the	Ultrafast	Bootstrap	Approximation.	Mol.	Biol.	Evol.	
35,	518–522.	

20.	 Altschul,	S.F.,	Gish,	W.,	Miller,	W.,	Myers,	E.W.,	and	Lipman,	D.J.	(1990).	Basic	
local	alignment	search	tool.	J.	Mol.	Biol.	215,	403–410.	

21.	 Boyer,	T.P.,	Antonov,	J.I.,	Baranova,	O.K.,	Coleman,	C.,	Garcia,	H.E.,	Grodsky,	A.,	
Johnson,	D.R.,	Locarnini,	R.	a,	Mishonov,	A.	V,	O’Brien,	T.D.,	et	al.	(2013).	
WORLD	OCEAN	DATABASE	2013,	NOAA	Atlas	NESDIS	72.	Sydney	Levitus,	Ed.;	
Alexey	Mishonoc,	Tech.	Ed.	

22.	 Aumont,	O.,	Ethé,	C.,	Tagliabue,	A.,	Bopp,	L.,	and	Gehlen,	M.	(2015).	PISCES-v2:	
An	ocean	biogeochemical	model	for	carbon	and	ecosystem	studies.	Geosci.	
Model	Dev.	8,	2465–2513.	

23.	 Moore,	C.M.,	Mills,	M.M.,	Arrigo,	K.R.,	Berman-Frank,	I.,	Bopp,	L.,	Boyd,	P.W.,	
Galbraith,	E.D.,	Geider,	R.J.,	Guieu,	C.,	Jaccard,	S.L.,	et	al.	(2013).	Processes	and	
patterns	of	oceanic	nutrient	limitation.	Nat.	Geosci	6,	701–710.	

24.	 Dormann,	C.F.,	Elith,	J.,	Bacher,	S.,	Buchmann,	C.,	Carl,	G.,	Carré,	G.,	Marquéz,	
J.R.G.,	Gruber,	B.,	Lafourcade,	B.,	Leitão,	P.J.,	et	al.	(2013).	Collinearity:	a	review	
of	methods	to	deal	with	it	and	a	simulation	study	evaluating	their	
performance.	Ecography	(Cop.).	36,	27–46.	

25.	 Brun,	P.,	Kiørboe,	T.,	Licandro,	P.,	and	Payne,	M.R.	(2016).	The	predictive	skill	
of	species	distribution	models	for	plankton	in	a	changing	climate.	Glob.	Chang.	
Biol.	22,	3170–3181.	

26.	 Redfield,	A..	(1934).	On	the	Proportions	of	Organic	Derivatives	in	Sea	Water	
and	Their	Relation	to	the	Composition	of	Plankton.	James	Johnstone	Meml.	
Vol.	Univ.	Press	Liverpool,	176–192.	
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/Reference
sPapers.aspx?ReferenceID=1883475.	

27.	 van	Vuuren,	D.P.,	Edmonds,	J.,	Kainuma,	M.,	Riahi,	K.,	Thomson,	A.,	Hibbard,	K.,	
Hurtt,	G.C.,	Kram,	T.,	Krey,	V.,	Lamarque,	J.F.,	et	al.	(2011).	The	representative	
concentration	pathways:	An	overview.	Clim.	Change	109,	5–31.	

28.	 Michelangeli,	P.A.,	Vrac,	M.,	and	Loukos,	H.	(2009).	Probabilistic	downscaling	
approaches:	Application	to	wind	cumulative	distribution	functions.	Geophys.	
Res.	Lett.	36.	

29.	 Ridgeway,	G.	(2006).	Generalized	boosted	regression	models.	Doc.	R	Packag.	
“gbm”,	version.	

30.	 Breiman,	L.,	and	Cutler,	A.	(2012).	Breiman	and	Cutler’s	random	forests	for	
classification	and	regression.	Packag.	“randomForest.”	

31.	 Venables,	W.N.,	and	Ripley,	B.D.	(2002).	Modern	Applied	Statistics	with	S	
Fourth	edition	by.	

32.	 Wood,	S.N.	(2004).	Stable	and	efficient	multiple	smoothing	parameter	



estimation	for	generalized	additive	models.	J.	Am.	Stat.	Assoc.	
33.	 Biecek,	P.	(2018).	Dalex:	Explainers	for	complex	predictive	models	in	R.	J.	

Mach.	Learn.	Res.,	1−5.	
34.	 Jones,	M.C.,	and	Cheung,	W.W.L.	(2015).	Multi-model	ensemble	projections	of	

climate	change	effects	on	global	marine	biodiversity.	ICES	J.	Mar.	Sci.	72,	741–
752.	

	
	
	


