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SUMMARY
Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their
poor representation in culture collections limits our understanding of the evolutionary history and genomic
underpinnings of planktonic ecosystems. Here, we used 280 billion Tara Oceans metagenomic reads from
polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant
and widespread eukaryotic environmental genomes ranging from 10Mbp to 1.3 Gbp. This genomic resource
covers a wide range of poorly characterized eukaryotic lineages that complement long-standing contribu-
tions from culture collections while better representing plankton in the upper layer of the oceans. We
performed the first, to our knowledge, comprehensive genome-wide functional classification of abundant
unicellular eukaryotic plankton, revealing four major groups connecting distantly related lineages. Neither
trophic modes of plankton nor its vertical evolutionary history could completely explain the functional reper-
toire convergence of major eukaryotic lineages that coexisted within oceanic currents for millions of years.
INTRODUCTION

Plankton in the sunlit ocean contribute about half of Earth’s pri-

mary productivity, impacting global biogeochemical cycles and

food webs.1,2 Plankton biomass appears to be dominated by

unicellular eukaryotes and small animals3–6 including a phenom-

enal evolutionary and morphological biodiversity.5,7,8 The

composition of planktonic communities is highly dynamical

and shaped by biotic and abiotic variables, some of which are

changing abnormally fast in the Anthropocene.9–11 Our under-

standing of marine eukaryotes has progressed substantially in

recent years with the transcriptomic (e.g.,12,13) and genomic

(e.g.,14–16) analyses of organisms isolated in culture and the

emergence of efficient culture-independent surveys (e.g.,17,18).

However, most eukaryotic lineages’ genomic content remains

uncharacterized,19,20 limiting our understanding of their evolu-

tion, functioning, ecological interactions, and resilience to

ongoing environmental changes.
This is an open access article und
Over the last decade, the TaraOceans program has generated

a homogeneous resource of marine plankton metagenomes and

metatranscriptomes from the sunlit zone of all major oceans and

two seas.21 Critically, most of the sequenced plankton size frac-

tions correspond to eukaryotic organismal sizes, providing a

prime dataset to survey genomic traits and expression patterns

from this domain of life. More than 100 million eukaryotic gene

clusters have been characterized by the metatranscriptomes,

half of which have no similarity to known proteins.5 Most of

them could not be linked to a genomic context,22 limiting their

usefulness to gene-centric insights. The eukaryotic metage-

nomic dataset (the equivalent of �10,000 human genomes) on

the other hand has been partially used for plankton biogeogra-

phies,23,24 but it remains unexploited for the characterization of

genes and genomes due to a lack of robust methodologies to

make sense of its diversity.

Genome-resolved metagenomics25 has been extensively

applied to the smallest Tara Oceans plankton size fractions,
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unveiling theecologyandevolutionof thousandsof viral, bacterial,

and archaeal populations abundant in the sunlit ocean.26–31 This

approach may thus be appropriate also to characterize the ge-

nomes of the most abundant eukaryotic plankton. However,

very few eukaryotic genomes have been resolved from metage-

nomes thus far,26,32–35 in part due to their complexity (e.g., high

density of repeats36) and extended size37 that might have

convinced many of the unfeasibility of such a methodology. With

the notable exception of some photosynthetic eukaryotes,26,32,35

metagenomics is lagging far behind cultivation for eukaryote ge-

nomics, contrasting with the two other domains of life. Here we

fill this critical gap using hundreds of billions of metagenomic

reads generated from the eukaryotic plankton size fractions of

Tara Oceans and demonstrate that genome-resolved metage-

nomics iswell suited formarine eukaryotic genomesof substantial

complexity and length exceeding the emblematic gigabase. We

used this new genomic resource to place major eukaryotic plank-

tonic lineages in the tree of life and explore their evolutionary his-

tory based on both phylogenetic signals from conserved gene

markers and present-day genomic functional landscape.

RESULTS AND DISCUSSION

A new resource of environmental genomes for
eukaryotic plankton from the sunlit ocean
We performed the first, to our knowledge, comprehensive

genome-resolved metagenomic survey of microbial eukaryotes

from polar, temperate, and tropical sunlit oceans using 798

metagenomes (265 of which were released through the present

study) derived from the Tara Oceans expeditions. They corre-

spond to the surface and deep chlorophyll maximum layer of

143 stations from the Pacific, Atlantic, Indian, Arctic, and South-

ern Oceans, as well as theMediterranean andRed Seas, encom-

passing eight eukaryote-enriched plankton size fractions

ranging from 0.8 mm to 2 mm (Figure 1; Table S1). We used the

280 billion reads as inputs for 11 metagenomic co-assemblies

(6–38 billion reads per co-assembly) using geographically

bounded samples (Figure 1; Table S2), as previously done for

the Tara Oceans 0.2–3 mm size fraction enriched in bacterial

cells.26 We favored co-assemblies to gain in coverage and opti-

mize the recovery of largemarine eukaryotic genomes. However,

it is likely that other assembly strategies (e.g., from single sam-

ples) will provide access to genomic data our complex metage-

nomic co-assemblies failed to resolve. In addition, we used 158

eukaryotic single cells sorted by flow cytometry from seven Tara

Oceans stations (Table S2) as input to perform complementary

genomic assemblies (STAR Methods).

We thus created a culture-independent, non-redundant

(average nucleotide identity <98%) genomic database for eu-

karyotic plankton in the sunlit ocean consisting of 683 metage-

nome-assembled genomes (MAGs) and 30 single-cell genomes

(SAGs), all containing more than 10 million nucleotides

(Table S3). These 713 MAGs and SAGs were manually charac-

terized and curated using a holistic framework within anvi’o38,39

that relied heavily on differential coverage across metagenomes

(STAR Methods and supplemental information). Nearly half the

MAGs did not have vertical coverage >103 in any of themetage-

nomes, emphasizing the relevance of co-assemblies to gain
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sufficient coverage for relatively large eukaryotic genomes.

Moreover, one-third of the SAGs remained undetected by Tara

Oceans’ metagenomic reads, emphasizing cell sorting’s power

to target less abundant lineages. Absent from the MAGs and

SAGs are DNA molecules physically associated with the focal

eukaryotic populations, but that did not necessarily correlate

with their nuclear genomes across metagenomes or had distinct

sequence composition. They include chloroplasts, mitochon-

dria, and viruses generally present in multi-copy. Finally, some

highly conserved multi-copy genes such as the 18S rRNA gene

were also missing due to technical issues associated with

assembly and binning, following the fate of 16S rRNA genes in

marine bacterial MAGs.26

This new genomic database for eukaryotic plankton has a total

size of 25.2 Gbp and contains 10,207,450 genes according to a

workflow combining metatranscriptomics, ab initio, and protein-

similarity approaches (STAR Methods). Estimated completion of

the Tara Oceans MAGs and SAGs averaged to �40% (redun-

dancy of 0.5%) and ranged from 0.0% (a 15-Mbp-long Opistho-

konta MAG) to 93.7% (a 47.8-Mbp-long Ascomycetes MAG).

Genomic lengths averaged to 35.4 Mbp (up to 1.32 Gbp for the

first giga-scale eukaryotic MAG, affiliated to Odontella weissflo-

gii), with a GC-content ranging from 18.7% to 72.4% (Table S3).

MAGs and SAGs are affiliated to Alveolata (n = 44), Amoebozoa

(n = 4), Archaeplastida (n = 64), Cryptista (n = 31), Haptista

(n = 92), Opisthokonta (n = 299), Rhizaria (n = 2), and Strameno-

piles (n = 174). Only three closely related MAGs could not be

affiliated to any known eukaryotic supergroup (see the phyloge-

netic section). Among the 713 MAGs and SAGs, 271 contained

multiple genes corresponding to chlorophyll a-b binding proteins

and were considered phytoplankton (Table S3). Genome-wide

comparisons with 484 reference transcriptomes from isolates

of marine eukaryotes (the METdb database40 that improved

data from MMETSP12 and added new transcriptomes from

Tara Oceans; see Table S3) linked only 24 of the MAGs and

SAGs (�3%) to a eukaryotic population already in culture

(average nucleotide identity >98%). These include well-known

Archaeplastida populations within the genera Micromonas,

Bathycoccus, Ostreococcus, Pycnococcus, Chloropicon, and

Prasinoderma and a few taxa among Stramenopiles (e.g., the

diatom Minutocellus polymorphus) and Haptista (e.g., Phaeo-

cystis cordata). Among this limited number of matches, MAGs

represented a nearly identical subset of the corresponding cul-

ture genomes (Figure S1, Table S4). Overall, we found metage-

nomics, single-cell genomics, and culture highly complementary

with very few overlaps for marine eukaryotic plankton’s genomic

characterization.

The MAGs and SAGs recruited 39.1 billion reads with >90%

identity (average identity of 97.4%) from 939metagenomes, rep-

resenting 11.8% of the TaraOceans metagenomic dataset dedi-

cated to unicellular and multicellular organisms ranging from

0.2 mm to 2 mm (Table S5). In contrast, METdb with a total size

of �23 Gbp recruited fewer than 7 billion reads (average identity

of 97%), indicating that the collection of Tara Oceans MAGs and

SAGs reported herein better represents the diversity of open

ocean eukaryotes compared to transcriptomic data from de-

cades of culture efforts worldwide. The majority of Tara Oceans

metagenomic reads were still not recruited, which could be



Figure 1. A genome-resolved metagenomic survey dedicated to eukaryotes in the sunlit ocean

The map displays Tara Oceans stations used to perform genome-resolved metagenomics, summarizes the number of metagenomes, contigs longer than 2,500

nucleotides, and eukaryotic MAGs characterized from each co-assembly, and outlines the stations used for single-cell genomics. ARC: Arctic Ocean; MED:

Mediterranean Sea; RED: Red Sea, ION: Indian Ocean North; IOS: Indian Ocean South; SOC: Southern Ocean; AON: Atlantic Ocean North; AOS: Atlantic Ocean

South; PON: Pacific Ocean North; PSE: Pacific South East; PSW: Pacific South West. The bottom panel summarizes mapping results from the MAGs and SAGs

across 939 metagenomes organized into four size fractions. The mapping projection of complete MAGs and SAGs is described in the STAR Methods and

supplemental information.
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explained by eukaryotic genomes that our methods failed to

reconstruct, the occurrence of abundant bacterial, archaeal,

and viral populations in the large size fractions we consid-

ered,41–43 and the incompleteness of the MAGs and SAGs.

Indeed, with the assumption of correct completion estimates,

complete MAGs and SAGs would have recruited �26% of all

metagenomic reads, including >50% of reads for the 20–

180 mm size fraction alone due in part to an important contribu-

tion of hundreds of large copepod MAGs abundant within this

cellular range (see Figure 1 and Table S5).

Expanding the genomic representation of the eukaryotic
tree of life
We then determined the phylogenetic distribution of the new

ocean MAGs and SAGs in the tree of eukaryotic life. METdb

was chosen as a taxonomically curated reference transcriptomic
database from culture collections, and the two largest subunits

of the three DNA-dependent RNA polymerases (six multi-kilo-

base genes found in all modern eukaryotes and hence already

present in the last eukaryotic common ancestor) were selected.

These genes are highly relevant markers for the phylogenetic

inference of distantly related microbial organisms44 and contrib-

uted to our understanding of eukaryogenesis.45 They have long

been overlooked to study the eukaryotic tree of life, possibly

because automatic methods are currently missing to effectively

identify each DNA-dependent RNA polymerase type prior to per-

forming the phylogenetic analyses. Here, protein sequences

were identified using hidden markov models (HMMs) dedicated

to the two largest subunits for the MAGs and SAGs (n = 2,150)

andMETdb reference transcriptomes (n = 2,032). These proteins

were manually curated and linked to the corresponding DNA-

dependent RNA polymerase types for each subunit using
Cell Genomics 2, 100123, May 11, 2022 3



Figure 2. Phylogenetic analysis of concatenated DNA-dependent RNA polymerase protein sequences from eukaryotic plankton

The maximum-likelihood phylogenetic tree of the concatenated two largest subunits from the three DNA-dependent RNA polymerases (six genes in total)

included Tara Oceans MAGs and SAGs and METdb transcriptomes and was generated using a total of 7,243 sites in the alignment and LG + F + R10

model; Opisthokonta was used as the outgroup. Supports for selected clades are displayed. Phylogenetic supports were considered high (aLRT R 80 and

UFBootR 95), medium (aLRTR 80 or UFBootR 95), or low (aLRT < 80 and UFBoot < 95) (STAR Methods). The tree was decorated with additional layers using

the anvi’o interface. The novelty score layer (STAR Methods) was set with a minimum of 30 (i.e., 70% similarity) and a maximum of 60 (i.e., 40% similarity).

Branches and names in red correspond to main lineages lacking representatives in METdb.
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reference proteins and phylogenetic inferences (STAR Methods

and supplemental information). BLAST results provided a nov-

elty score for each of them (STAR Methods and Table S3), ex-

panding the scope of our analysis to eukaryotic genomes stored

in NCBI as of August 2020. Our final phylogenetic analysis

included 416 reference transcriptomes and 576 environmental

MAGs and SAGs that contained at least one of the six marker
4 Cell Genomics 2, 100123, May 11, 2022
genes (Figure 2). The concatenated DNA-dependent RNA poly-

merase protein sequences effectively reconstructed a coherent

tree of eukaryotic life, comparable to previous large-scale phylo-

genetic analyses based on other gene markers,46 and to a

complementary BUSCO-centric phylogenomic analysis using

protein sequences corresponding to hundreds of smaller gene

markers (Figure S2). As a noticeable difference, the Haptista
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were most closely related to Archaeplastida, while Cryptista

included the phylum Picozoa and was most closely related to

the TSAR supergroup (Telonemia not represented here, Strame-

nopiles, Alveolata, and Rhizaria), albeit with weaker supports.

This view of the eukaryotic tree of life using a previously under-

exploited universal marker is by no means conclusive by itself

but contributes to ongoing efforts to understand deep evolu-

tionary relationships among eukaryotes while providing an effec-

tive framework to assess the phylogenetic positions of a large

number of the Tara Oceans MAGs and SAGs.

Among small planktonic animals, the Tara Oceans MAGs

recovered one lineage of Chordata related to the Oikopleuridae

family, and Crustacea including a wide range of copepods (Fig-

ure 2; Table S3). Copepods dominate large size fractions of

plankton8 and represent some of the most abundant animals

on the planet.47,48 They actively feed on unicellular plankton

and are a significant food source for larger animals such as

fish, thus representing a key trophic link within the global carbon

cycle.49 For now, fewer than ten copepod genomes have been

characterized by isolates.50,51 The additional 8.4 Gbp of

genomic material unveiled herein is split into 217 MAGs, and

themselves organized into two main phylogenetic clusters that

we dubbed marine Hexanauplia clades A and B. The two clades

considerably expanded the known genomic diversity of cope-

pods, albeit clade B was linked to few reference genomes (Fig-

ure S3). These clades were equally abundant and detected in

all oceanic regions. Copepod MAGs typically had broad

geographic distributions, being detected on average in 25% of

the globally distributed Tara Oceans stations. In comparison,

Opisthokonta MAGs affiliated to Chordata and Choanoflagella-

tea (Acanthoecida) were, on average, detected in less than

10% of sampling sites.

Generally occurring in smaller size fractions, MAGs and SAGs

corresponding to unicellular eukaryotes considerably expanded

our genomic knowledge of known genera within Alveolata, Arch-

aeplastida, Haptista, and Stramenopiles (Figure 2; Table S3).

Just within the diatoms for instance (Stramenopiles), MAGs

were reconstructed for Fragilariopsis (n = 5), Pseudo-nitzschia

(n = 7), Chaetoceros (n = 11), Thalassiosira (n = 5), and seven

other genera (including the intriguing >1-Gbp-long genome of

a blooming O. weissflogii species), all of which are known to

contribute significantly to photosynthesis in the sunlit ocean.52,53

Among the Archaeplastida, genome-wide average nucleotide

identities and distribution patterns indicated that the largemajor-

ity of MAGs correspond to distinct populations, many of which

have not been characterized by means of culture genomics.

Especially, we characterized the genomic content of at least

16Micromonas populations (Figure S4), 11 Chloropicon popula-

tions (Figure S5), and five Bathycoccus populations (Figure S6).

Beyond this genomic expansion of known planktonic genera,

MAGs and SAGs covered various lineages lacking representa-

tives in METdb. These included (1) Picozoa as a sister clade to

Cryptista (SAGs from this phylum were recently linked to the

Archaeplastida using different gene markers and databases54),

to the class Chrysophyceae, and the genera Phaeocystis and

Pycnococcus, (2) basal lineages of Oomycota within Strameno-

piles and Myzozoa within Alveolata, (3) multiple branches within

the MAST lineages55 (Figure S7), (4) and a small cluster possibly
at the root of Rhizaria we dubbed ‘‘putative new group’’ (Fig-

ure S8). The novelty score of individual DNA-dependent RNA po-

lymerase genes was supportive of the topology of the tree.

Significantly, diverse MAST lineages, Picozoa, and the putative

new group all displayed a deep branching distance from cultures

and a high novelty score. In addition, the BUSCO-centric phylo-

genomic analysis placed the ‘‘putative new group’’ at the root of

Haptista (Figure S2), supporting its high novelty while stressing

the difficulty placing it accurately in the eukaryotic tree of life.

In addition, this alternative phylogenomic analysis confirmed

placement for the sister clade to Phaeocystis but not for the sis-

ter clade to Pycnococcus, placing it instead as a stand-alone

lineage distinct from any Archaeplastida lineages represented

by the MAGs, SAGs, and METdb. While different gene markers

might provide slightly different evolutionary trends, a well-known

phylogenetic phenomenon, here our two approaches concur

when it comes to emphasizing the genomic novelty of the

MAGs and SAGs compared with culture references.

One of the most conspicuous lineages lacking any MAGs and

SAGs was the Dinoflagellata, a prominent and extremely diverse

phylum in small and large eukaryotic size fractions of Tara

Oceans.8 These organisms harbor very large and complex ge-

nomes56 that likely require much deeper sequencing efforts to

be recovered by genome-resolved metagenomics. Besides,

many other important lineages are also missing in MAGs and

SAGs (e.g., within Radiolaria and Excavata), possibly due to a

lack of abundant populations despite their diversity.

A complex interplay between the evolution and
functioning of marine eukaryotes
MAGs and SAGs provided a broad genomic assessment of the

eukaryotic tree of life within the sunlit ocean by covering a

wide range of marine plankton eukaryotes distantly related to

cultures but abundant in the open ocean. Thus, the resource pro-

vided an opportunity to explore the interplay between the phylo-

genetic signal and functional repertoire of eukaryotic plankton

with genomics. With EggNOG,57–59 we identified orthologous

groups corresponding to known (n = 15,870) and unknown func-

tions (n = 12,567, orthologous groups with no assigned function

at http://eggnog5.embl.de/) for 4.7 million genes (nearly 50% of

the genes; STARMethods). Among them, functional redundancy

(i.e., a function detectedmultiple times in the sameMAG or SAG)

encompassed 46.6%–96.8% of the gene repertoires (average of

75.2% of functionally redundant genes). We then used these

gene annotations to classify the MAGs and SAGs based on their

functional profiles (Table S6). Our hierarchical clustering analysis

using Euclidean distance and Ward linkage (an approach to

organize genomes based on pangenomic traits60) first split the

MAGs and SAGs into small animals (Chordata, Crustacea, cope-

pods) and putative unicellular eukaryotes (Figure 3). Fine-grained

functional clusters exhibited a highly coherent taxonomy within

the unicellular eukaryotes. For instance, MAGs affiliated to the

coccolithophore Emiliana (completion ranging from 7.8% to

32.2%), Dictyochophaceae family (completion ranging from

8.6% to 76.9%), and the sister clade to Phaeocystis (completion

ranging from 18.4% to 60.4%) formed distinct clusters. The

phylum Picozoa (completion ranging from 1.6% to 75.7%) was

also confined to a single cluster that could be explained partly
Cell Genomics 2, 100123, May 11, 2022 5
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Figure 3. The genomic functional land-

scape of unicellular eukaryotes in the sunlit

ocean

The figure displays a hierarchical clustering

(Euclidean distance with Ward’s linkage) of 681

MAGs and SAGs based on the occurrence of

�28,000 functions identified with EggNOG,57–59

rooted with small animals (Chordata, Crustacea,

and copepods) and decorated with layers of infor-

mation using the anvi’o interactive interface.

Layers include the occurrence in log 10 of 100

functions with lowest p value when performing

Welch’s ANOVA between the functional groups

A, B, C and D (see nodes in the tree). Removed

from the analysis were Ciliophora MAGs (gene

calling is problematic for this lineage), two less

complete MAGs affiliated to Opisthokonta, and

functions occurringmore than 500 times in the gig-

abase-scale MAG and linked to retrotransposons

connecting otherwise unrelated MAGs and SAGs.
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by a considerable radiation of genes related to dioxygenase ac-

tivity (up to 644 genes). Most strikingly, the Archaeplastida

MAGs not only clustered with respect to their genus-level taxon-

omy, but the organization of these clusters was highly coherent

with their evolutionary relationships (see Figure 2), confirming not

only the novelty of the putative sister clade to Pycnococcus, but

also the sensitivity of our framework to draw the functional land-

scape of unicellular marine eukaryotes. Clearly, the important

functional redundancy of MAGs and SAGs minimized the effect

of genomic incompleteness in our efforts assessing the func-

tional profile of unicellular marine eukaryotes.

Four major functional groups of unicellular eukaryotes

emerged from the hierarchical clustering (Figure 3), which was

perfectly recapitulated when incorporating the standard culture

genomes matching to a MAG (Figure S9) and when clustering

only the MAGs and SAGs >25% complete (Figure S10). Impor-

tantly, the taxonomic coherence observed in fine-grained clus-

ters vanished when moving toward the root of these functional

groups. Group Awas an exception since it only covered the Hap-

tista (including the highly cosmopolitan sister clade to Phaeocys-

tis). Group B, on the other hand, encompassed a highly diverse

and polyphyletic group of distantly related heterotrophic (e.g.,

MAST and MALV) and mixotrophic (e.g., Myzozoa and Crypto-

phyta) lineages of various genomic size, suggesting that broad

genomic functional trends may not only be explained by the tro-

phic mode of plankton. Group C was mostly photosynthetic and

covered the diatoms (Stramenopiles of various genomic size)
6 Cell Genomics 2, 100123, May 11, 2022
and Archaeplastida (small genomes) as

sister clusters. This finding likely reflects

that diatoms are the only group with an

obligatory photoautotrophic lifestyle

within the Stramenopiles, like the Archae-

plastida. Finally, Group D encompassed

three distantly related lineages of hetero-

trophs (those systematically lacked gene

markers for photosynthesis) exhibiting

rather large genomes: Oomycota, Acan-
thoecida choanoflagellates, and Picozoa. Those four functional

groups have similar amounts of detected functions and con-

tained both cosmopolite and rarely detected MAGs and SAGs

across the Tara Oceans stations. While attempts to classify ma-

rine eukaryotes based on genomic functional traits have been

made in the past (e.g., using a few SAGs61), our resource there-

fore provided a broad enough spectrum of genomic material for

a first genome-wide functional classification of abundant line-

ages of unicellular eukaryotic plankton in the upper layer of the

ocean.

A total of 2,588 known and 680 unknown functions covering

1.94 million genes (�40% of the annotated genes) were signifi-

cantly differentially occurring between the four functional groups

(Welch’s ANOVA tests, p value <1.e�05; Table S6). We displayed

the occurrence of the 100 functions with lowest p values in the

hierarchical clustering presented in Figure 3 to illustrate and

help convey the strong signal between groups. However, more

than 3,000 functions contributed to the basic partitioning of

MAGs and SAGs. They cover all high-level functional categories

identified in the 4.7 million genes with similar proportions

(Figure S11), indicating that a wide range of functions related

to information storage and processing, cellular processes and

signaling, and metabolism contribute to the partitioning of the

groups. As a notable difference, functions related to transcrip-

tion (�50%) and RNA processing and modification (�47%)

were less represented, while those related to carbohydrate

transport and metabolism were enriched (+43%) in the



Figure 4. World map distribution projections for three eukaryotic MAGs during the periods of 2006–15 and 2090–99

The probability of presence ranges from 0 (purple) to 1 (red), with green corresponding to a probability of 0.5. The bottom row displays first-rank region-dependent

environmental parameters driving the projected shifts of distribution (in regions where |DP| > 0.1). Noticeably, projected decreases of silicate in equatorial regions

drive 34% of the expansion of TARA_PSW_MAG_00,299 while driving 34% of the reduction of TARA_PSE_93_MAG_00,246, possibly reflecting different life

strategies of these copepods (e.g., grazing). In contrast, the expansion of TARA_IOS_50_MAG_00,098 is mostly driven by temperature (74%).
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differentially occurring functions. Interestingly, we noticed within

Group C a scarcity of various functions otherwise occurring in

high abundance among unicellular eukaryotes. These included

functions related to ion channels (e.g., extracellular ligand-gated

ion channel activity, intracellular chloride channel activity, mag-

nesium ion transmembrane transporter activity, calcium ion

transmembrane transport, calcium sodium antiporter activity)

that may be linked to flagellar motility and the response to

external stimuli,62 reflecting the lifestyle of true autotrophs.

Group D, on the other hand, had significant enrichment of

various functions associated with carbohydrate transport and

metabolism (e.g., alpha and beta-galactosidase activities,

glycosyl hydrolase families, glycogen debranching enzyme,

alpha-L-fucosidase), denoting a distinct carbon acquisition

strategy. Overall, the properties of thousands of differentially

occurring functions suggest that eukaryotic plankton’s complex

functional diversity is vastly intertwined within the tree of life, as

inferred fromphylogenies. This reflects the complex nature of the

genomic structure and phenotypic evolution of organisms, which

rarely fit their evolutionary relationships.

To this point, our analysis focused on the 4.4million genes that

were functionally annotated to EggNOG, which discarded more

than half of the genes we identified in the MAGs and SAGs. Our

current lack of understanding of many eukaryotic functional

genes even within the scope of model organisms63 can explain

the limits of reference-based approaches to study the gene con-

tent of eukaryotic plankton. Thus, to gain further insights and

overcome these limitations, we partitioned and categorized the

eukaryotic gene content with AGNOSTOS.64 AGNOSTOS
grouped 5.4 million genes in 424,837 groups of genes sharing

remote homologies, adding 2.3 million genes left uncharacter-

ized by the EggNOG annotation. AGNOSTOS applies a strict

set of parameters for the grouping of genes discarding

575,053 genes by its quality controls and 4,264,489 genes in sin-

gletons. The integration of the EggNOG annotations into

AGNOSTOS resulted in a combined dataset of 25,703

EggNOG orthologous groups (singletons and gene clusters)

and 271,464 AGNOSTOS groups of genes, encompassing 6.4

million genes, 45% more genes that the original dataset (STAR

Methods). The genome-wide functional classification of MAGs

and SAGs based on this extended set of genes supported

most trends previously observed with EggNOG annotation alone

(Figure S12; Table S7), reinforcing our observations. But most

interestingly, classification based solely on 23,674 newly identi-

fied groups of genes of unknown function (Table S8; a total of

1.3 million genes discarded by EggNOG) were also supportive

of the overall trends, including notable links between diatoms

and green algae and between Picozoa and Acanthoecida (Fig-

ure S13). Thus, we identified a functional repertoire convergence

of distantly related eukaryotic plankton lineages in both the

known and unknown coding sequence space, the latter repre-

senting a substantial amount of biologically relevant gene

diversity.

Niche and biogeography of individual eukaryotic
populations
Besides insights into organismal evolution and genomic func-

tions, the MAGs and SAGs provided an opportunity to evaluate
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the present and future geographical distribution of eukaryotic

planktonic populations (close to species-level resolution) using

the genome-wide metagenomic read recruitments. Here, we

determined the niche characteristics (e.g., temperature range)

of 374 MAGs and SAGs (�50% of the resource) detected

in at least five stations (Table S9) and used climate models to

project world map distributions (http://end.mio.osupytheas.fr/

Ecological_Niche_database/) based on climatologies for the

periods of 2006–15 and 2090–9924 (STAR Methods and supple-

mental information).

Each of these MAGs and SAGs was estimated to occur in a

surface averaging 42 and 39 million km2 for the first and second

period, respectively, corresponding to �12% of the surface of

the ocean. Our data suggest that most eukaryotic populations

in the database will remain widespread for decades to come.

However, many changes in biogeography are projected to

occur. For instance, the most widespread population in the first

period (a MAST MAG) would still be ranked first at the end of the

century but with a surface area increasing from 37% to 46% (Fig-

ure 4), a gain of 28 million km2 corresponding to the surface of

North America. Its expansion from the tropics toward more

temperate oceanic regions regardless of longitude is mostly ex-

plained by temperature and reflects the expansion of tropical

niches due to global warming, echoing recent predictions

made with amplicon surveys and imaging data.65 As an extreme

case, the MAG benefiting the most between the two periods (a

copepod) could experience a gain of 55 million km2 (Figure 4),

more than the surface of Asia and Europe combined. On the

other hand, the MAG losing most ground (also a copepod) could

undergo a decrease of 47 million km2. Projected changes in

these two examples correlated with various variables (including

a notable contribution of silicate), an important reminder that

temperature alone cannot explain plankton’s biogeography in

the ocean. Our integration of genomics, metagenomics, and

climate models provided the resolution needed to project indi-

vidual eukaryotic population niche trajectories in the sunlit

ocean.

Limitations of the study
Genome-resolved metagenomics applied to the considerable

environmental DNA sequencing legacy of the Tara Oceans large

cellular size fractions proved effective at complementing our cul-

ture portfolio of marine eukaryotes. Nevertheless, the approach

failed to cover lineages (1) containing very large genomes (e.g.,

the Dinoflagelates56), (2) only found in low abundance, (3) or

found to be abundant but with unusually high levels of microdi-

versity, challenging metagenomic assemblies (e.g., the promi-

nent Pelagomonas genus66 for which we only recovered high

latitude MAG representatives). Deeper sequencing efforts

coupled with long read sequencing technologies will likely over-

come many of these limitations in years to come.

Our functional clustering of marine eukaryotes took advantage

of awide range of genomesmanually characterizedwith the plat-

form anvi’o, and also considered numerous gene clusters of un-

known function using the AGNOSTOS framework. However, this

methodology also contains noticeable limitations. For instance,

clustering methodologies can influence the observed trends.

Furthermore, integration of additional taxonomic groups that
8 Cell Genomics 2, 100123, May 11, 2022
currently lack genomic characterizationsmight impact functional

clustering, similar to what is often observed with phylogenomic

analyses. Thus, we anticipate that follow-up investigations might

identify functional clusters slightly differing from the four major

groups we have identified, refining our understanding of the

functional convergence of distantly related eukaryotic lineages

identified in our study.

CONCLUSION

Similar to recent advances that elucidated viral, bacterial, and

archaeal lineages, microbiology is experiencing a shift from culti-

vation to metagenomics for the genomic characterization of ma-

rine eukaryotes en masse. Indeed, our culture-independent and

manually curated genomic characterization of abundant unicel-

lular eukaryotic populations and microscopic animals in the sun-

lit ocean covers a wide range of poorly characterized lineages

from multiple trophic levels (e.g., copepods and their prey,

mixotrophs, autotrophs, and parasites) and provided the

first gigabase-scale metagenome-assembled genome. Our

genome-resolved survey and parallel efforts by others67,68 are

not only different from past transcriptomic surveys of isolated

marine organisms but also better represent eukaryotic plankton

in the open photic ocean. They represent innovative steps to-

ward using genomics to explore in concert the ecological and

evolutionary underpinnings of environmentally relevant eukary-

otic organisms, using metagenomics to fill critical gaps in our

remarkable culture porfolio.21

Phylogenetic gene markers such as the DNA-dependent RNA

polymerases (the basis of our phylogenetic analysis) provide a

critical understanding of the origin of eukaryotic lineages and al-

lowed us to placemost environmental genomes in a comprehen-

sible evolutionary framework. However, this framework is based

on sequence variations within core genes that in theory are in-

herited from the last eukaryotic common ancestor representing

the vertical evolution of eukaryotes, disconnected from the

structure of genomes. As such, it does not recapitulate the func-

tional evolutionary journey of plankton, as demonstrated in our

genome-wide functional classification of unicellular eukaryotes

in both the known and unknown coding sequence space. The di-

chotomy between phylogeny and function was already well

described with morphological and other phenotypic traits and

could be explained in part by secondary endosymbiosis events

that have spread plastids and genes for their photosynthetic ca-

pabilities across the eukaryotic tree of life.69–72 Here we moved

beyond morphological inferences and disentangled the phylog-

eny of gene markers and broad genomic functional repertoire of

a comprehensive collection of marine eukaryotic lineages. We

identified four major genomic functional groups of unicellular eu-

karyotes made of distantly related lineages. The Stramenopiles

proved particularly effective in terms of genomic functional diver-

sification, possibly explaining part of their remarkable success in

this biome.8,73

The topology of phylogenetic trees compared to the functional

clustering of a wide range of eukaryotic lineages has revealed

contrasting evolutionary journeys for widely scrutinized gene

markers of evolution and less studied genomic functions of

plankton. The apparent functional convergence of distantly

http://end.mio.osupytheas.fr/Ecological_Niche_database/
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related lineages that coexisted in the same biome for millions of

years could not be explained by either a vertical evolutionary his-

tory of unicellular eukaryotes nor their trophic modes (phyto-

plankton versus heterotrophs), shedding new lights into the

complex functional dynamics of plankton over evolutionary

time scales. Convergent evolution is a well-known phenomenon

of independent origin of biological traits such as molecules and

behaviors74,75 that has been observed in the morphology of mi-

crobial eukaryotes76 and is often driven by common selective

pressures within similar environmental conditions. However, an

independent origin of similar functional profiles is not the only

possible explanation for organisms sharing the same habitat.

Indeed, one could wonder if lateral gene transfers between eu-

karyotes77,78 have played a central role in these processes, as

previously observed between eukaryotic plant pathogens79 or

grasses.80 As a case in point, secondary endosymbiosis events

are known to have resulted in massive gene transfers between

endosymbionts and their hosts in the oceans.69,70 In particular,

these events involved transfers of genes from green algae to di-

atoms,81 two lineages clustering together in our genomic func-

tional classification of eukaryotic plankton. However, lineages

sharing the same secondary endosymbiotic history did not al-

ways fall in the same functional group. This was the case for di-

atoms, Haptista, and Cryptista that have different functional

trends yet originate from a common ancestor that likely acquired

its plastid from red and green algae.69,70,82 Surveying phyloge-

netic trends for functions derived from the �10 million genes

identified here will likely contribute to new insights regarding

the extent of lateral gene transfers between eukaryotes,83,84

the independent emergence of functional traits (convergent evo-

lution), as well as functional losses between lineages,85 that alto-

gether might have driven the functional convergences of

distantly related eukaryotic lineages abundant in the sunlit

ocean.

Regardless of the mechanisms involved, the functional

repertoire convergences we observed likely highlight primary

organismal functioning, which have fundamental impacts on

plankton ecology, and their functions within marine ecosys-

tems and biogeochemical cycles. Thus, the apparent dichot-

omy between phylogenies (a vertical evolutionary framework)

and genome-wide functional repertoires (genome structure

evolution) depicted here should be viewed as a fundamental

attribute of marine unicellular eukaryotes that we suggest war-

rants a new rationale for studying the structure and state of

plankton, a rationale also based on present-day genomic

functions rather than phylogenetic and morphological surveys

alone.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data generated in this study This paper https://www.genoscope.cns.fr/tara/

Data needed for the Agnostos related analyses

for this study

This paper https://figshare.com/articles/dataset/

Delmont_et_al_2022/19403531

Software and algorithms

Anvi’o Eren et al. 2021 https://anvio.org/

Agnostos Vanni et al., 2021 https://github.com/functional-dark-side/agnostos-wf

Custom codes required to perform analyses related

to Agnostos in this study

This paper https://zenodo.org/record/6379623
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and analyses should be directed to and will be fulfilled by the lead contact, Tom O.

Delmont (Tom.Delmont@genoscope.fr).

Materials availability
This study did not generate new materials.

Data and code availability
d All data our study generated are publicly available at http://www.genoscope.cns.fr/tara/. The link provides access to the 11 raw

metagenomic co-assemblies, the FASTA files for 713MAGs andSAGs, the�10million protein-coding sequences (nucleotides,

amino acids and gff format), and the curated DNA-dependent RNA polymerase genes (MAGs and SAGs andMETdb transcrip-

tomes). This link also provides access to the supplemental figures and the Supplemental material. Finally, code development

within anvi’o for the BUSCO single copy core genes is available at https://github.com/merenlab/anvio.

d Original code has been deposited at Zenodo and is publicly available. The accession number is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Tara Oceans metagenomes
We analyzed a total of 939 Tara Oceans metagenomes available at the EBI under project PRJEB402 (https://www.ebi.ac.uk/ena/

browser/view/PRJEB402). 265 of these metagenomes have been released through this study. Table S1 reports accession numbers

and additional information (including the number of reads and environmental metadata) for each metagenome.

Genome-resolved metagenomics
We organized the 798 metagenomes corresponding to size fractions ranging from 0.8 mm to 2mm into 11 ‘metagenomic sets’ based

upon their geographic coordinates. We used those 0.28 trillion reads as inputs for 11 metagenomic co-assemblies usingMEGAHIT86

v1.1.1, and simplified the scaffold header names in the resulting assembly outputs using anvi’o38,39 v.6.1 (available from http://

merenlab.org/software/anvio). Co-assemblies yielded 78 million scaffolds longer than 1,000 nucleotides for a total volume of

150.7 Gbp. We performed a combination of automatic and manual binning on each co-assembly output, focusing only on the

11.9 million scaffolds longer than 2,500 nucleotides, which resulted in 837manually curated eukaryotic metagenome-assembled ge-

nomes (MAGs) longer than 10 million nucleotides. Briefly, (1) anvi’o profiled the scaffolds using Prodigal87 v2.6.3 with default param-

eters to identify an initial set of genes, and HMMER88 v3.1b2 to detect genes matching to 83 single-copy core gene markers from

BUSCO89 (benchmarking is described in a dedicated blog post90), (2) we used a customized database including both NCBI’s NT

database and METdb to infer the taxonomy of genes with a Last Common Ancestor strategy5 (results were imported as described

in http://merenlab.org/2016/06/18/importing-taxonomy), (3) wemapped short reads from themetagenomic set to the scaffolds using

BWA v0.7.1591 (minimum identity of 95%) and stored the recruited reads as BAM files using samtools,92 (4) anvi’o profiled each BAM

file to estimate the coverage and detection statistics of each scaffold, and combinedmapping profiles into amerged profile database
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for each metagenomic set. We then clustered scaffolds with the automatic binning algorithm CONCOCT93 by constraining the num-

ber of clusters (thereafter dubbed metabins) per metagenomic set to a number ranging from 50 to 400 depending on the set. Each

metabin (n = 2,550, �12 million scaffolds) was manually binned using the anvi’o interactive interface. The interface considers the

sequence composition, differential coverage, GC-content, and taxonomic signal of each scaffold. Finally, we individually refined

each eukaryotic MAG >10 Mbp as outlined in Delmont and Eren,94 and renamed scaffolds they contained according to their MAG

ID. Table S2 reports the genomic features (including completion and redundancy values) of the eukaryotic MAGs. For details on

our protocol used for binning and curation of metabins, see Methods S1, Supplemental methods, Related to the STAR Methods.

A first gigabase scale eukaryotic MAG
Weperformed targeted genome-resolvedmetagenomics to confirm the biological relevance and improve statistics of the singleMAG

longer than one Gbp with an additional co-assembly (five Southern Ocean metagenomes for which this MAG had average vertical

coverage >1x) and by considering contigs longer than 1,000 nucleotides, leading to a gain of 181,8 million nucleotides. To our knowl-

edge, we describe here the first successful characterization of a Gigabase-scale MAG (1.32 Gbp with 419,520 scaffolds), which we

could identify using two distinct metagenomic co-assemblies.

MAGs from the 0.2–3 mm size fraction
We incorporated into our database 20 eukaryotic MAGs longer than 10 million nucleotides previously characterized from the 0.2-3

mm size fraction,26 providing a set of MAGs corresponding to eukaryotic cells ranging from 0.2 mm (picoeukaryotes) to 2 mm (small

animals).

Single-cell genomics
We used 158 eukaryotic single cells sorted by flow cytometry from seven Tara Oceans stations as input to perform genomic assem-

blies (up to 18 cells with identical 18S rRNA genes per assembly to optimize completion statistics, see Table S2), providing 34 single-

cell genomes (SAGs) longer than 10 million nucleotides. Cell sorting, DNA amplification, sequencing and assembly were performed

as described elsewhere.18 In addition, manual curation was performed using sequence composition and differential coverage across

100 metagenomes in which the SAGs were most detected, following the methodology described in the genome-resolved metage-

nomics section. For SAGswith no detection in TaraOceansmetagenomes, only sequence composition and taxonomical signal could

be used, limiting this curation effort’s scope. Notably, manual curation of SAGs using the genome-resolved metagenomic workflow

turned out to be highly valuable, leading to the removal of more than one hundred thousand scaffolds for a total volume of 193.1

million nucleotides. This metagenomic-guided decontamination effort contributes to previous efforts characterizing eukaryotic

SAGs from the same cell sorting material18,61,95–97 and provides new marine eukaryotic guidelines for SAGs. For details on our pro-

tocol used for curation of eukaryotic SAGs, see Methods S1, Supplemental methods, Related to the STAR Methods.

Characterization of a non-redundant database of MAGs and SAGs
We determined the average nucleotide identity (ANI) of each pair of MAGs and SAGs using the dnadiff tool from the MUMmer pack-

age98 v.4.0b2. MAGs and SAGs were considered redundant when their ANI was >98% (minimum alignment of >25% of the smaller

MAG or SAG in each comparison). We then selected the longest MAG or SAG to represent a group of redundant MAGs and SAGs.

This analysis provided a non-redundant genomic database of 713 MAGs and SAGs.

Taxonomical inference of MAGs and SAGs
Wemanually determined the taxonomy of MAGs and SAGs using a combination of approaches: (1) taxonomical signal from the initial

gene calling (Prodigal), (2) phylogenetic approaches using the RNApolymerase genes andMETdb, (3) ANI within theMAGs andSAGs

and between MAGs and SAGs and METdb, (4) local blasts using BUSCO gene markers, (5) and lastly the functional clustering of

MAGs and SAGs to gain knowledge into very few MAGs and SAGs lacking gene markers and ANI signal. In addition, Picozoa

SAGs54 were used to identifyMAGs from this phylum lacking representatives inMETdb. For details onMETdb, seeMethods S1, Sup-

plemental methods, Related to the STAR Methods.

Protein coding genes
Protein coding genes for the MAGs and SAGs were characterized using three complementary approaches: protein alignments using

reference databases, metatranscriptomic mapping from Tara Oceans and ab-initio gene predictions. While the overall framework

was highly similar for MAGs and SAGs, the methodology slightly differed to take the best advantage of those two databases

when they were processed (see the two following sections).

Protein-coding genes for the MAGs
Protein alignments

Since the alignment of a large protein database on all the MAG assemblies is time greedy, we first detected the potential proteins of

Uniref. 90 + METdb that could be aligned to the assembly by using MetaEuk99 with default parameters. This subset of proteins was

aligned using BLAT with default parameters, which localized each protein on the MAG assembly. The exon/intron structure was
Cell Genomics 2, 100123, May 11, 2022 e2
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refined using genewise100 with default parameters to detect splice sites accurately. Each MAG’s GeneWise alignments were con-

verted into a standard GFF file and given as input to gmove.

Metatranscriptomic mapping from Tara Oceans

A total of 905 individual Tara Oceans metatranscriptomic assemblies (mostly from large planktonic size fractions) were aligned on

each MAG assembly using Minimap2101 (version 2.15-r905) with the ‘‘-ax splice’’ flag. BAM files were filtered as follows: low

complexity alignments were removed and only alignments covering at least 80% of a given metatranscriptomic contig with at least

95% of identity were retained. The BAM files were converted into a standard GFF file and given as input to gmove.

Ab-initio gene predictions

Afirst geneprediction for eachMAGwasperformedusinggmoveand theGFFfile generated frommetatranscriptomicalignments. From

thesepreliminary genemodels, 300genemodelswith a start anda stopcodonwere randomly selectedandused to trainAUGUSTUS102

(version 3.3.3). A second time, AUGUSTUSwas launched on eachMAG assembly using the dedicated calibration file, and output files

were converted into standardGFFfilesandgivenas input togmove. Each individual lineof evidencewasusedas input for gmove (http://

www.genoscope.cns.fr/externe/gmove/) with default parameters to generate the final protein-coding genes annotations.

Protein coding genes for the SAGs
Protein alignments

TheUniref90 +METdb database of proteins was aligned using BLAT103 with default parameters, which localized protein on each SAG

assembly. The exon/intron structure was refined using GeneWise100 and default parameters to detect splice sites accurately. The

GeneWise alignments of each SAG were converted into a standard GFF file and given as input to gmove.

Metatranscriptomic mapping from Tara Oceans

The 905 TaraOceansmetatranscriptomic individual fastq files were filtered with kfir (http://www.genoscope.cns.fr/kfir) using a k-mer

approach to select only reads that shared 25-mer with the input SAG assembly. This subset of reads was aligned on the correspond-

ing SAG assembly using STAR104 (version 2.5.2.b) with default parameters. BAM files were filtered as follows: low complexity align-

ments were removed and only alignments covering at least 80% of the metatranscriptomic reads with at least 90% of identity were

retained. Candidate introns and exons were extracted from the BAM files and given as input to gmorse.105

Ab-initio gene predictions

Ab-initiomodels were predicted using SNAP106 (v2013-02-16) trained on complete protein matches and gmorse models, and output

files were converted into standard GFF files and given as input to gmove. Each line of evidence was used as input for gmove (http://

www.genoscope.cns.fr/externe/gmove/) with default parameters to generate the final protein-coding genes annotations.

BUSCO completion scores for protein-coding genes in MAGs and SAGs
BUSCO89 v.3.0.4 was used with the set of eukaryotic single-copy core gene markers (n = 255). Completion and redundancy (number

of duplicated gene markers) of MAGs and SAGs were computed from this analysis.

Biogeography of MAGs and SAGs
We performed a final mapping of all metagenomes to calculate the mean coverage and detection of the MAGs and SAGs (Table S5).

Briefly, we used BWA v0.7.15 (minimum identity of 90%) and a FASTA file containing the 713 non-redundant MAGs and SAGs to

recruit short reads from all 939 metagenomes. We considered MAGs and SAGs were detected in a given filter when >25% of their

length was covered by reads to minimize non-specific read recruitments.26 The number of recruited reads below this cut-off was set

to 0 before determining vertical coverage and percent of recruited reads. Regarding the projection of mapped reads, if MAGs and

SAGs were to be complete, we used BUSCO completion scores to project the number of mapped reads. Note that we preserved

the actual number of mapped reads for the MAGs and SAGs with completion <10% to avoid substantial errors to be made in the

projections.

Identifying the environmental niche of MAGs and SAGs
Seven physicochemical parameters were used to define environmental niches: sea surface temperature (SST), salinity (Sal), dis-

solved silica (Si), nitrate (NO3), phosphate (PO4), iron (Fe), and a seasonality index of nitrate (SI NO3). Except for Fe and SI NO3, these

parameters were extracted from the gridded World Ocean Atlas 2013 (WOA13).107 Climatological Fe fields were provided by the

biogeochemical model PISCES-v2.108 The seasonality index of nitrate was defined as the range of nitrate concentration in one

grid cell divided by the maximum range encountered in WOA13 at the Tara sampling stations. All parameters were co-located

with the corresponding stations and extracted at the month corresponding to the Tara sampling. To compensate for missing phys-

icochemical samples in the Tara in situ dataset, climatological data (WOA) were favored. For details on the environmental niches, see

Methods S1, Supplemental methods, Related to the STAR Methods.

Cosmopolitan score
Using metagenomes from the Station subset 1 (n = 757), MAGs and SAGs were assigned a ‘‘cosmopolitan score’’ based on their

detection across 119 stations. For details on metagenomic subsets, see Methods S1, Supplemental methods, Related to the

STAR Methods.
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A database of manually curated DNA-dependent RNA polymerase genes
A eukaryotic dataset109 was used to build HMMprofiles for the two largest subunits of the DNA-dependent RNApolymerase (RNAP-a

and RNAP-b). These two HMM profiles were incorporated within the anvi’o framework to identify RNAP-a and RNAP-b genes (Prod-

igal87 annotation) in the MAGs and SAGs and METdb transcriptomes. Alignments, phylogenetic trees and blast results were used to

organize andmanually curate those genes. Finally, we removed sequences shorter than 200 amino-acids, providing a final collection

of DNA-dependent RNA polymerase genes for the MAGs and SAGs (n = 2,150) andMETdb (n = 2,032) with no duplicates. For details

on this protocol, see Methods S1, Supplemental methods, Related to the STAR Methods.

Novelty score for the DNA-dependent RNA polymerase genes
We compared both the RNA-Pol A and RNA-Pol B peptides sequences identified in MAGs and SAGs and MetDB to the nr database

(retrieved onOctober 25, 2019) using blastp, as implemented in blast+110 v.2.10.0 (e-value of 1e�10). We kept the best hit and consid-

ered it as the closest sequence present in the public database. For each MAG and SAG, we computed the average percent identity

across RNA polymerase genes (up to six genes) and defined the novelty score by subtracting this number from 100. For example,

with an average percent identity of 64%, the novelty score would be 36%.

Phylogenetic analyses of MAGs and SAGs
The protein sequences included for the phylogenetic analyses (either the DNA-dependent RNA polymerase genes we recovered

manually or the BUSCO set of 255 eukaryotic single-copy core gene markers we recovered automatically from the �10 million

protein coding genes) were aligned with MAFFT111 v.764 and the FFT-NS-i algorithm with default parameters. Sites with more than

50% of gaps were trimmed using Goalign v0.3.0-alpha5 (http://www.github.com/evolbioinfo/goalign). The phylogenetic trees were

reconstructed with IQ-TREE112 v1.6.12, and the model of evolution was estimated with the ModelFinder113 Plus option: for the

concatenated tree, the LG + F + R10 model was selected. Supports were computed from 1,000 replicates for the Shimodaira-Ha-

segawa (SH)-like approximation likelihood ratio (aLRT)114 and ultrafast bootstrap approximation (UFBoot).115 As per IQ-TREE

manual, we deemed the supports good when SH-aLRT R 80% and UFBoot R 95%. Anvi’o v.6.1 was used to visualize and root

the phylogenetic trees.

EggNOG functional inference of MAGs and SAGs
Weperformed the functional annotation of protein-coding genes using the EggNog-mapper58,59 v2.0.0 and the EggNog5 database.57

We used Diamond116 v0.9.25 to align proteins to the database. We refined the functional annotations by selecting the orthologous

group within the lowest taxonomic level predicted by EggNog-mapper.

Eukaryotic MAGs and SAGs integration in the AGNOSTOS-DB
We used the AGNOSTOS workflow to integrate the protein coding genes predicted from the MAGs and SAGs into a variant of the

AGNOSTOS-DB that contains 1,829 metagenomes from the marine and human microbiomes, 28,941 archaeal and bacterial ge-

nomes from the Genome Taxonomy Database (GTDB) and 3,243 nucleocytoplasmic large DNA viruses (NCLDV) metagenome

assembled genomes (MAGs).64

AGNOSTOS functional aggregation inference
AGNOSTOS partitioned protein coding genes from the MAGs and SAGs in groups connected by remote homologies, and catego-

rized those groups as members of the known or unknown coding sequence space based on the workflow described in Vanni et al.

2020.64 To combine the results from AGNOSTOS and the EggNOG classification we identified those groups of genes in the known

space that contain genes annotated with an EggNOG and we inferred a consensus annotation using a quorum majority voting

approach. AGNOSTOS produces groups of genes with low functional entropy in terms of EggNOG annotations as shown in Vanni

et al. 202064 allowing us to combine both sources of information. We merged the groups of genes that shared the same consensus

EggNOG annotations andwe integrated themwith the rest of AGNOSTOS groups of genes, mostly representing the unknown coding

sequence space. Finally, we excluded groups of genes occurring in less than 2% of the MAGs and SAGs.

Functional clustering of MAGs and SAGs
We used anvi’o to cluster MAGs and SAGs as a function of their functional profile (Euclidean distance with ward’s linkage), and the

anvi’o interactive interface to visualize the hierarchical clustering in the context of complementary information.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential occurrence of functions
Weperformed aWelch’s ANOVA test followed by a Games-Howell test for significant ANOVA comparisons to identify EggNOG func-

tions occurring differentially between functional groups of MAGs and SAGs. All statistics were generated in R 3.5.3. Results are avail-

able in the Table S6.
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Figure	S1.	Genomic	comparison	of	Tara	Oceans	MAGs	and	genomes	 from	culture,	Related	to	
Figure	2.	The	figure	summarizes	the	Average	Nucleotide	Identity	(ANI)	and	percentage	of	genomic	
alignment	for	five	matches	between	a	MAG	and	a	standard	culture	genome.	
	



	
Figure	S2.	Phylogenomic	analysis	of	the	protein	sequences	of	255	BUSCO	genes	markers	from	
eukaryotic	 plankton,	 Related	 to	 Figure	 2.	 The	 maximum-likelihood	 phylogenomic	 tree	 of	 the	
BUSCO	gene	markers	(255	genes)	included	Tara	Oceans	MAGs	and	METdb	transcriptomes	(minimum	
of	 25%	 of	 completion)	 and	 was	 generated	 using	 a	 total	 of	 19,785	 sites	 in	 the	 alignment	 and	
LG+F+R10	model;	Opisthokonta	was	used	as	the	outgroup.	The	tree	was	decorated	with	additional	
layers	 using	 the	 anvi'o	 interface.	 Branches	 and	 names	 in	 red	 correspond	 to	 lineages	 lacking	
representatives	in	METdb.		
	



	
Figure	S3:	Phylogenetic	analysis	of	concatenated	DNA-dependent	RNA	polymerase	II	protein	
sequences	 from	 Opisthokonta	 MAGs	 and	 four	copepod	species,	 Related	 to	 Figure	 2.	The	
maximum-likelihood	 phylogenetic	 tree	 of	 the	 concatenated	 two	 largest	 subunits	 of	 the	 DNA-
dependent	 RNA	 polymerases	 II	 (two	 genes)	 included	Tara	Oceans	 MAGs	 and	
reference	copepod	genomes	 (source:	 NCBI)	 and	 was	 generated	 using	 a	 total	 of	2,112	 sites	 in	 the	
alignment	 and	 LG+R4	 model	 (determined	 by	 ModelFinder);	Acanthoecida	 were	 used	 as	 the	
outgroup.	Supports	 for	 selected	 clades	 are	 displayed.	 Phylogenetic	 supports	were	 considered	 high	
(aLRT>=80	 and	 UFBoot>=95),	 medium	 (aLRT>=80	 or	 UFBoot>=95)	 or	 low	 (aLRT<80	 and	
UFBoot<95)	(see	Methods).	
	
	
	
	
	
	
	



	
Figure	S4:	Biogeography	of	Micromonas	populations,	Related	to	Figure	2.	Top	panel	displays	the	
detection	of	20	Micromonas	MAGs	across	258	Tara	Oceans	metagenomes	for	which	at	least	one	MAG	
was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	and	the	
tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	organized	
based	on	similarities	in	their	biogeography.	MAGs	with	a	coefficient	of	determination	(R2)	>	0.9	for	
the	mean	coverage	values	across	metagenomes	and	average	nucleotide	identity	>95%	were	linked	to	
the	 same	 population	 Id.	 Populations	 “4”	 and	 “11”	 are	 represented	 by	 4	 MAGs	 and	 2	 MAGs,	
respectively.	Bottom	panel	displays	 the	detection	 (horizontal	 coverage)	and	mean	coverage	of	 two	
MAGs	affiliated	to	Micromonas	commoda	across	939	Tara	Oceans	metagenomes.	



	
Figure	S5:	Biogeography	of	Chloropicon	populations,	Related	 to	Figure	2.	The	 figure	 displays	
the	detection	of	11	Chloropicon	MAGs	across	323	Tara	Oceans	metagenomes	for	which	at	least	one	
MAG	was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	
and	the	tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	
organized	 based	 on	 similarities	 in	 their	 biogeography.	 There	 were	 no	MAGs	 with	 a	 coefficient	 of	
determination	(R2)	>	0.9	for	the	mean	coverage	values	across	metagenomes	and	average	nucleotide	
identity	>95%.	Thus,	each	MAG	was	linked	to	a	distinct	population	Id.		
	



	
Figure	S6:	Biogeography	of	Bathycoccus	populations,	Related	 to	Figure	2.	The	 figure	 displays	
the	detection	of	8	Bathycoccus	MAGs	across	231	Tara	Oceans	metagenomes	 for	which	at	 least	one	
MAG	was	detected.	The	inner	tree	organizes	the	metagenomes	as	a	function	of	the	detection	signal,	
and	the	tree	on	the	top	right	corner	organizes	the	MAGs	based	on	the	same	signal.	Thus,	MAGs	are	
organized	based	on	similarities	in	their	biogeography.	MAGs	with	a	coefficient	of	determination	(R2)	
>	0.9	for	the	mean	coverage	values	across	metagenomes	and	average	nucleotide	identity	>95%	were	
linked	to	the	same	population	Id.	Populations	“3”	and	“5”	are	represented	by	2	MAGs	and	3	MAGs,	
respectively.	
	
	
	



	
Figure	 S7:	 Phylogenetic	 analysis	 of	 concatenated	 DNA-dependent	 RNA	 polymerase	 protein	
sequences	from	eukaryotic	plankton,	Related	to	Figure	2.	The	maximum-likelihood	phylogenetic	
tree	of	the	concatenated	two	largest	subunits	from	the	three	DNA-dependent	RNA	polymerases	(six	
genes	 in	 total)	 included	Tara	 Oceans	MAGs	 and	 SAGs	 along	with	METdb	 transcriptomes	 and	was	
generated	using	a	total	of	7,243	sites	in	the	alignment	and	LG+F+R10	model;	Here	large	groups	were	
collapsed	 to	 better	 visualize	 the	 diversity	 of	 MAST	 lineages.	 SAGs	 were	 affiliated	 to	 taxonomic	
lineages	based	on	18S	rRNA	gene	analyses.	
	



	
Figure	 S8:	 Phylogenetic	 analysis	 of	 concatenated	 DNA-dependent	 RNA	 polymerase	 protein	
sequences	from	eukaryotic	plankton,	Related	to	Figure	2.	The	maximum-likelihood	phylogenetic	
tree	of	the	concatenated	two	largest	subunits	from	the	three	DNA-dependent	RNA	polymerases	(six	
genes	 in	 total)	 included	Tara	 Oceans	MAGs	 and	 SAGs	 along	with	METdb	 transcriptomes	 and	was	
generated	using	a	total	of	7,243	sites	in	the	alignment	and	LG+F+R10	model;	Opisthokonta	was	used	
as	 the	 outgroup.	 Support	 for	 the	 putative	 new	 group	 is	 displayed.	 Phylogenetic	 supports	 were	
considered	 high	 (aLRT>=80	 and	 UFBoot>=95),	 medium	 (aLRT>=80	 or	 UFBoot>=95)	 or	 low	
(aLRT<80	and	UFBoot<95)	(see	Methods).		
	
	
	



	
Figure	S9:	Functional	clustering	based	on	MAGs,	SAGs	and	seven	culture	genomes,	Related	to	
Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	Ward’s	 linkage)	of	
MAGs,	SAGs	and	seven	closely	related	standard	culture	genomes	(predicted	proteins	were	imported	
from	 NCBI)	 based	 on	 the	 occurrence	 of	 the	 functions	 identified	 with	 EggNOG,	 rooted	 with	 small	
animals	 (Chordata,	 Crustacea	 and	 copepods)	 and	 decorated	 with	 layers	 of	 information	 using	 the	
anvi’o	interactive	interface.	As	for	the	previous	analyses,	removed	from	the	analyses	were	Ciliophora	
MAGs	(gene	calling	is	problematic	for	this	lineage),	and	functions	occurring	more	than	500	times	in	
the	gigabase-scale	MAG	and	 linked	 to	 retrotransposons	 connecting	otherwise	unrelated	MAGs	and	
SAGs.		
	
	
	
	



	
Figure	S10:	Functional	 clustering	based	on	MAGs	and	SAGs	with	high	 completion	estimates,	
Related	to	Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	Ward’s	
linkage)	 of	 483	 MAGs	 and	 SAGs	 >25%	 complete	 (BUSCO	 estimation)	 based	 on	 the	 occurrence	 of	
27,415	 functions	 identified	 with	 EggNOG,	 rooted	 with	 small	 animals	 (Chordata,	 Crustacea	 and	
copepods)	and	decorated	with	layers	of	information	using	the	anvi’o	interactive	interface.	As	for	the	
previous	analyses,	removed	from	the	analyses	were	Ciliophora	MAGs	(gene	calling	is	problematic	for	
this	lineage),	and	functions	occurring	more	than	500	times	in	the	gigabase-scale	MAG	and	linked	to	
retrotransposons	connecting	otherwise	unrelated	MAGs	and	SAGs.		
	
	

	



Figure	S11.	Relative	proportion	of	known	COG	categories	in	annotated	functions	versus	those	
that	were	significantly	differentially	occurring	between	the	four	functional	groups,	Related	to	
Figure	3.		
	

	
Figure	S12.	Functional	 landscape	of	unicellular	eukaryotes	 in	the	sunlit	ocean	by	combining	
EggNOG	and	Agnostos	for	gene	processing,	Related	to	Figure	3.	The	figure	displays	a	hierarchical	
clustering	(Euclidean	distance	with	Ward’s	linkage)	of	681	MAGs	and	SAGs	based	on	the	occurrence	
of	 ~39,705	 groups	 of	 genes	 (total	 of	 5,178,829	 genes)	 identified	 by	 combining	 EggNOG58–60	 with	
Agnostos65,	rooted	with	MAGs	dominated	by	small	animals	(Chordata,	Crustacea	and	copepods)	and	
decorated	 with	 layers	 of	 information	 using	 the	 anvi’o	 interactive	 interface.	 Removed	 from	 the	
analysis	were	Ciliophora	MAGs	(gene	calling	is	problematic	for	this	lineage),	and	functions	occurring	
more	 than	 1,000	 times	 in	 the	 gigabase-scale	 MAG	 and	 linked	 to	 retrotransposons	 connecting	
otherwise	unrelated	MAGs	and	SAGs,	or	occurring	in	less	than	2%	of	the	MAGs	and	SAGs.		
	



	
Figure	S13.	The	genomic	unknown	functional	landscape	of	unicellular	eukaryotes	in	the	sunlit	
ocean,	Related	to	Figure	3.	The	 figure	displays	a	hierarchical	 clustering	 (Euclidean	distance	with	
Ward’s	 linkage)	 of	 681	 MAGs	 and	 SAGs	 based	 on	 the	 occurrence	 of	 ~28,000	 gene	 clusters	 of	
unknown	 function	 (total	 of	 1.3	million	 genes)	 identified	by	 solely	with	Agnostos65	 (environmental	
unknowns	 plus	 genomic	 unknowns),	 rooted	 with	 MAGs	 dominated	 by	 small	 animals	 (Chordata,	
Crustacea	 and	 copepods)	 and	 decorated	 with	 layers	 of	 information	 using	 the	 anvi’o	 interactive	
interface.	 Removed	 from	 the	 analysis	 were	 Ciliophora	 MAGs	 (gene	 calling	 is	 problematic	 for	 this	
lineage),	 and	 functions	 occurring	more	 than	 1,000	 times	 in	 the	 gigabase-scale	MAG	 and	 linked	 to	
retrotransposons	 connecting	otherwise	unrelated	MAGs	and	SAGs,	or	occurring	 in	 less	 than	2%	of	
the	MAGs	and	SAGs.		
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#1:	Genome-resolved	metagenomics	with	anvi’o.	
	
#	A	set	of	single	copy	core	genes	to	identify	eukaryotic	MAGs		
	
As	 initially	 outlined	 in	 a	 blog	 post	 published	 at	 the	 beginning	 of	 this	 project	 to	
benefit	 others1,	 we	 have	 defined	 a	 set	 of	 83	 single	 copy	 core	 genes	 from	BUSCO2	
compatible	 with	 the	 gene	 calling	 workflow	 of	 anvi’o3	 to	 best	 estimate	 the	
completion	 of	 eukaryotic	 metagenome-assembled	 genomes	 (MAGs).	 Figure	 S14	
describes	 the	 efficacy	 of	 this	 collection	 to	 estimate	 completion	 of	 MAGs	 from	
Micromonas	 and	Ostreococcus.	Note	 that	 those	estimates	are	only	 initial,	 since	 this	
stage	 of	 the	 workflow	 uses	 a	 gene	 calling	 (Prodigal4)	 that	 is	 not	 optimal	 for	
eukaryotes.	 However,	 the	 results	 are	 sufficiently	 robust	 to	 effectively	 guide	 the	
manual	binning	and	curation	of	eukaryotic	MAGs	without	the	need	to	first	 identify	
eukaryotic	 contigs	 in	 the	 assembly	 output.	 While	 the	 identification	 of	 eukaryotic	
contigs	 prior	 to	 binning	 as	 been	 benchmarked	 by	 the	 group	 of	 Jill	 banfield5,	 false	
positives	 and	 false	 negatives	 associated	with	 this	 critical	 step	 can	 be	 problematic	
and	 are	 entirely	 avoided	 in	 our	 workflow.	 We	 found	 that	 binning	 metagenomes	
containing	multiple	domains	of	 life	can	be	done	smoothly	within	anvi’o,	as	 long	as	
proper	 single	 copy	 core	 gene	 collections	 are	 used	 to	 efficiently	 affiliate	 MAGs	 to	
Bacteria,	Archaea	and	Eukarya.	Note	that	this	dedicated	collection	for	eukaryotes	is	
the	 main	 improvement	 within	 anvi’o	 compared	 to	 the	 workflow	 outlined	 for	 the	
characterization	of	~1,000	bacterial	and	archaeal	MAGs	from	small	size	fractions	of	
TARA	Oceans6.	It	is	now	an	integral	component	of	the	anvi’o	metagenomic	flow	used	
by	a	growing	number	of	scientists	interested	in	genome-resolved	metagenomics.		
	



	
Figure	S14:	Completion	estimates	for	Micromonas	and	Ostreococcus	MAGs	using	a	set	of	83	
BUSCO	single	copy	core	genes,	as	a	function	of	the	length	of	the	MAGs.		
	
#	A	summary	of	the	workflow	to	bin	and	curate	eukaryotic	MAGs	
	

	
Figure	S15:	The	manual	genome-resolved	metagenomic	framework	of	anvi’o	dedicated	to	the	
eukaryotes.	This	workflow	is	to	be	applied	to	each	assembly	outcome.		
	
We	followed	the	workflow	outlined	in	the	figure	s15	for	each	of	the	11	metagenomic	
co-assemblies	 outlined	 in	 the	 study	 (see	Table	 S2).	 Briefly,	we	 used	 the	 sequence	
composition	 of	 contigs	 and	 their	 differential	 coverage	 across	 metagenomes	 to	
perform	a	first	automatic	binning	step	with	CONCOCT7	by	constraining	the	number	
of	 created	 clusters	 (thereafter	dubbed	metabins)	 to	 a	number	 substantially	below	
the	 number	 of	 genomes	 in	 the	 assembly.	 This	 number	 ranged	 from	 50	 to	 400	
depending	 on	 the	 assembly	 volume.	 Note	 that	 CONCOCT	 is	 used	 because	 the	
interactive	 interface	 of	 anvi’o	 cannot	work	 efficiently	when	 loading	 >25k	 contigs.	



For	each	metabin,	we	then	used	the	anvi’o	interactive	interface	to	manually	identify	
and	curate	eukaryotic	MAGs.	This	step	took	about	10	months	of	manual	work.	
	
#	An	holistic	interactive	interface	now	compatible	with	eukaryotes	
	
Within	the	framework	of	our	study,	the	anvi’o	interactive	interface	took	advantage	
of	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	 across	
metagenomes,	 taxonomic	 signal	 using	 a	 reference	 database	 that	 includes	 METdb,	
and	HMM	models	for	single	copy	core	gene	collections	(Bacteria,	Archaea,	Eukarya).	
When	selecting	a	cluster	of	contigs	corresponding	to	a	MAG	in	the	interface,	anvi’o	
identified	 its	domain	affiliation	 in	real	 time	using	random	forest,	and	displayed	 its	
completion	and	redundancy	values	accordingly.	This	way,	it	was	possible	to	focus	on	
the	eukaryotic	MAGs	within	an	assembly	containing	also	many	abundant	bacterial	
and	archaeal	MAGs.		In	the	figure	S16,	we	provide	the	example	of	one	metabin	from	
the	 Mediterranean	 Sea	 metagenomic	 co-assembly	 (95	 metagenomes)	 containing	
eukaryotic	 MAGs	 for	 Ostreococcus	 and	 Micromonas	 (left	 panel).	 In	 this	 simple	
example,	we	 selected	 those	 two	clusters	 in	 the	 interface,	 saved	 the	 collection,	 and	
subsequently	 manually	 curated	 them	 as	 presented	 here	 for	 Ostreococcus	 (right	
panel).	 This	 MAG	 exhibited	 a	 completion	 of	 100%	 and	 a	 redundancy	 of	 3%.	 One	
metagenome	(most	outer	blue	layer)	was	particularly	useful	 in	this	particular	case	
since	the	Micromonas	MAG	was	more	detected	compared	to	the	Ostreococcus	MAG,	
allowing	 an	 effective	 binning	 outcome.	 Given	 the	 complexity	 of	 marine	
metagenomes,	 differential	 coverage	 across	 dozens	 of	 metagenomes	 strongly	
benefited	to	the	outcome	of	our	genome-resolved	metagenomic	survey.	
	

	
Figure	S16:	The	anvi’o	interactive	interface	to	manually	bin	and	curate	eukaryotic	MAGs.	The	
left	 panel	 displays	 the	 detection	 of	 contigs	 from	 a	 single	metabin	 across	 95	metagenomes,	
alongside	taxonomic	signal.	Clustering	was	done	using	sequence	composition	and	differential	
coverage.	Right	panel	displays	the	curated	Ostreococcus	MAGs	identified	from	the	left	panel.		
	
	



#	Example	of	environmental	signal	for	a	manually	curated	Ciliophora	MAG	
	
We	provide	an	example	of	manually	curated	MAG	(“TARA	MED	95	MAG	00445”),	for	
which	environmental	signal	is	described	using	both	detection	(horizontal	coverage,	
left	panel)	and	mean	coverage	(vertical	coverage,	right	panel):	

 
Figure S17: Example of a manually curated eukaryotic MAG as visualized in the anvi’o 
interactive. The selected MAG is named “TARA MED 95 MAG 00445”. It is affiliated to 
Ciliophora and contains 2,613 contigs for a length of 13.5 Mbp. Clustering of contigs was done 
using sequence composition alone. Then, the left and right panels respectively display the 
detection and mean coverage of contigs across the 95 Tara Oceans metagenomes, which were 
used to access the quality of this MAG and others.  
	
We	can	observe	 strong	environmental	 signal	 coherence	 for	 the	2,614	contigs.	The	
contigs	 correlated	 across	 the	 95	 metagenomes	 considered,	 with	 no	 particular	
outliers	when	it	comes	to	sequence	composition	either.	Critically,	the	coherence	of	
environmental	 signal	 is	 supportive	 of	 the	 quality	 of	 the	 MAGs,	 which	 were	 all	
manually	inspected	and	curated.		
	
#2:	Decontamination	of	single	cell	genomes	with	anvi’o.	
	
Eukaryotic	 single	 cell	 genomes	 (SAGs)	 can	 be	 heavily	 contaminated	 due	 to	 a	
combination	 of	 factors	 during	 cell	 sorting,	 DNA	 extraction	 and	 amplification,	 and	
multiplex	sequencing.	Here,	we	slightly	modified	the	anvi’o	metagenomic	workflow	
to	effectively	decontaminate	marine	eukaryotic	SAGs,	one	by	one.	Briefly,	we	used	
the	 anvi’o	 interactive	 interface	 to	manually	 curate	 eukaryotic	 SAGs	 by	 taking	 into	
consideration	 the	 sequence	 composition	 of	 contigs,	 their	 differential	 coverage	
across	 100	 most	 relevant	 metagenomes	 (i.e.,	 those	 with	 highest	 mapping	
recruitment	 scores	 within	 the	 scope	 of	 TARA	 Oceans),	 taxonomic	 signal	 using	 a	
reference	database	that	includes	METdb,	and	HMM	models	for	single	copy	core	gene	
collections	 (Bacteria,	 Archaea,	 Eukarya).	 Note	 that	 compared	 to	 the	metagenomic	
co-assemblies,	the	number	of	contigs	under	consideration	was	orders	of	magnitude	



smaller.	Since	all	contigs	could	be	 loaded	in	the	 interactive	 interface,	 there	was	no	
need	to	use	the	pre-clustering	step	with	CONCOCT.	However,	CONCOCT	could	also	
be	used	here	if	some	SAG	assemblies	include	more	than	~25k	contigs.		
	

	
Figure	S18:	The	manual	metagenomic	framework	of	anvi’o	dedicated	to	the	decontamination	
of	SAGs.	This	workflow	was	applied	to	each	SAG	(co-)assembly	outcome.		
	
Figure	 S19	 provides	 a	 striking	 example	 of	 heavily	 contaminated	 SAG	 we	 could	
effectively	 curate	 thanks	 to	 the	 clear	differential	 coverage	 signal	 of	 contigs	 across	
100	metagenomes.	 In	 this	particular	 case,	 contamination	 seemed	 to	have	multiple	
origins,	and	a	large	number	of	contigs	were	removed.	Overall,	our	manual	curation	
of	 SAGs	using	 a	 genome-resolved	metagenomics	workflow	 initially	 built	 for	MAGs	
turned	out	to	be	highly	valuable,	 leading	in	our	study	to	the	removal	of	more	than	
one	hundred	thousand	scaffolds	for	a	total	volume	of	193.1	million	nucleotides.	This	
metagenomic-guided	 decontamination	 effort	 contributes	 to	 previous	 efforts	
characterizing	eukaryotic	SAGs	from	the	same	cell	sorting	material8–12	and	provides	
new	guidelines	for	marine	eukaryotic	SAGs.	We	now	recommend	this	approach	for	
future	efforts	generating	eukaryotic	SAGs	 from	the	sunlit	ocean.	This	 is	 important,	
especially	 since	 SAGs	 could	 become	 a	 valuable	 asset	 in	 the	 near	 future	 to	 target	
lineages	genome-resolved	metagenomics	failed	to	recover	so	far.	It	is	especially	the	
case	of	Dinoflagellates.		
	



	
Figure	 S19:	 Example	 of	 the	 decontamination	 of	 TOSAG00-8.	 Left	 panel	 describes	 all	 contigs	
reconstructed	 from	 this	 SAG,	 organized	 based	 on	 sequence	 composition	 and	 differential	 coverage	
across	100	Tara	Oceans	metagenomes.	The	selection	of	contigs	(outer	layer)	corresponds	to	our	final	
curated	 SAG,	 displayed	 in	 the	 right	 panel,	 for	which	 clustering	 is	 base	 don	 sequence	 composition	
alone.	
	
#3:	The	METdb	database	for	eukaryotic	transcriptomes.	
	
METdb	is	a	curated	database	of	transcriptomes	from	marine	eukaryotic	isolates	that	
cover	 the	MMETSP	 collection13	 (new	 assemblies	were	 performed,	 combining	 time	
points	 from	 the	same	culture	 in	 co-assemblies	when	available)	as	well	 as	 cultures	
from	TARA	Oceans.	The	 associated	manuscript	 is	 not	 yet	 published.	However,	 the	
database	 is	 publically	 available	 and	 can	 be	 accessed	 at	 http://metdb.sb-
roscoff.fr/metdb/.	
	
#4:	World	map	projections.		
	
#	World	Ocean	Atlas	data	
	
Seven	physicochemical	parameters	were	used	 to	define	environmental	niches:	 sea	
surface	 temperature	 (SST),	 salinity	 (Sal),	 dissolved	 silica	 (Si),	 nitrate	 (NO3),	
phosphate	 (PO4),	 iron	 (Fe),	 and	 a	 seasonality	 index	 of	 nitrate	 (SI	 NO3).	 With	 the	
exception	 of	 Fe	 and	 SI	 NO3,	 these	 parameters	 were	 extracted	 from	 the	 gridded	
World	Ocean	Atlas	2013	(WOA13)21.	Climatological	Fe	fields	were	provided	by	the	
biogeochemical	model	PISCES-v222.	The	seasonality	index	of	nitrate	was	defined	as	
the	 range	of	nitrate	 concentration	 in	one	grid	 cell	 divided	by	 the	maximum	range	
encountered	 in	 WOA13	 at	 the	 Tara	 sampling	 stations.	 All	 parameters	 were	 co-
located	with	the	corresponding	stations	and	extracted	at	the	month	corresponding	
to	 the	 Tara	 sampling.	 To	 compensate	 for	missing	 physicochemical	 samples	 in	 the	
Tara	 in	 situ	 data	 set,	 climatological	 data	 (WOA)	 were	 favored.	 The	 correlation	
between	in	situ	samples	and	corresponding	values	extracted	from	WOA	were	high:	
	



	#	R-squared	values	for	the	surface	samples:		
SST:	0.99,	Sal:	0.86,	Si:	0.89,	NO3:	0.85,	PO4:	0.90		
	
#	R-squared	values	for	the	DCM	samples:		
SST:	0.97,	Sal:	0.47,	Si:	0.97,	NO3:	0.74,	PO4:	0.85		
	
In	the	absence	of	corresponding	WOA	data,	a	search	was	done	within	2°	around	the	
sampling	location	and	values	found	within	this	square	were	averaged.	
	
Nutrients,	such	as	NO3	and	PO4,	displayed	a	strong	collinearity	when	averaged	over	
the	 global	 ocean	 (correlation	 of	 0.95	 in	 WOA13),	 which	 could	 complicate	
disentangling	 their	 respective	 contribution	 to	 niche	 definition.	 However,	
observations	and	experimental	data	allow	distinguishing	between	limiting	nutrients	
at	 regional	 scale	 characterized	 by	 specific	 plankton	 communities23.	 The	 future	
projection	of	niches	will	yield	spurious	results	when	the	present-day	collinearity	is	
not	maintained24,25.	To	this	day,	there	is	no	evidence	for	large	scale	changes	in	global	
nutrient	stoichiometry26.	
	
#	Earth	System	Models	and	bias	correction	
	
Outputs	 from	six	Earth	system	models	were	used	 to	project	environmental	niches	
under	greenhouse	gas	emission	scenario	RCP8.527:	

	
Table	1:	Summary	of	Earth	system	models	used	to	project	environmental	niches.		
	
Environmental	 drivers	 were	 extracted	 for	 present	 day	 (2006-2015)	 and	 end	 of	
century	 (2090-2099)	 conditions	 for	 each	 model	 and	 the	 multi-model	 mean	 was	
computed.	 A	 bias	 correction	 method,	 the	 Cumulative	 Distribution	 Function	
transform,	CDFt28,	was	applied	to	adjust	the	distributions	of	SST,	Sal,	Si,	NO3	and	PO4	
of	the	multi-model	mean	to	the	WOA	database.	CDFt	is	based	on	a	quantile	mapping	
(QM)	 approach	 to	 reduce	 the	 bias	 between	 modeled	 and	 observed	 data,	 while	
accounting	 for	 climate	 change.	 Therefore,	 CDFt	 does	 not	 rely	 on	 the	 stationary	
hypothesis	and	present	and	future	distributions	can	be	different.	CDFt	was	applied	
on	the	global	fields	of	the	mean	model	simulations.	By	construction,	CDFt	preserved	
the	 ranks	 of	 the	 simulations	 to	 be	 corrected.	 Thus,	 the	 spatial	 structures	 of	 the	
model	fields	were	preserved.	
	



#	Environmental	niches	models:	training,	validation	and	projections	
	
From	 the	 initial	 dataset	 of	 713	 SMAGs,	 we	 selected	 those	 present	 in	 at	 least	 4	
stations	for	environmental	niche	training,	discarding	just	58	of	them.	Four	machine	
learning	methods	 were	 applied	 to	 compute	 environmental	 niches	 for	 each	 of	 the	
655	remaining	SMAGs:		
	

(1) Gradient	Boosting	Machine	(gbm)29	
(2) Random	Forest	(rf)30	
(3) Fully	connected	Neural	Networks	(nn)31	
(4) Generalized	Additive	Models	(gam)32	

	
Hyper	parameters	of	each	technique	(except	gam)	were	optimized	as	followed:	
	

(1) For	gbm,	 the	 interaction	depth	(1,	3	and	5),	 learning	rate	 (0.01,	0.001)	and	
the	minimum	number	of	observations	in	a	tree	node	(1	to	10)	

(2) 	For	rf,	the	number	of	trees	(100	to	900	with	step	200	and	1000	to	9000	with	
step	2000)	and	the	number	of	parameters	used	for	each	tree	(1	to	8)	

(3) For	nn,	the	number	of	layers	of	the	network	(1	to	10)	and	the	decay	(1.10-4	
to	9.10-4	and	1.10-5	to	9.10-5)	

(4) For	gam	the	number	of	splines	was	set	to	3.		
	

R	 packages	 gbm	 (2.1.3),	 randomForest	 (4.6.14),	 mgcv	 (1.8.16)	 and	 nnet	 (7.3.12)	
were	used	for	gbm,	rf,	nn	and	gam	models.		
	
To	define	the	best	combination	of	hyper	parameters	for	each	model,	we	perform	30	
random	 cross-validations	 by	 training	 the	model	 on	 75%	 of	 the	 dataset	 randomly	
sampled	 and	 by	 calculating	 the	 Area	 Under	 the	 Curve51	 (AUC)	 on	 the	 25%	
remaining	points	 of	 the	dataset.	 The	best	 combination	of	 hyper	parameters	 is	 the	
one	for	which	the	mean	AUC	over	the	30	cross-validation	is	the	highest.	A	model	is	
considered	valid	 if	at	 least	3	out	of	 the	4	techniques	have	a	mean	AUC	superior	to	
0.65,	 which	 is	 the	 case	 for	 374	 out	 of	 the	 655	 SMAGs	 (57%).	 Final	 models	 are	
trained	 on	 the	 full	 dataset	 and	 only	 the	 techniques	 that	 have	 a	mean	AUC	 higher	
than	 0.65	 are	 considered	 to	make	 the	 projections.	 The	majority	 (286)	 of	 the	 374	
validated	niches	 is	validated	by	all	 four	models	and	88	by	only	3	models.	Relative	
influences	of	each	parameter	in	defining	environmental	niches	are	calculated	using	
the	feature_importance	function	from	the	DALEX	R	package33	for	all	four	statistical	
methods.	For	model	training	and	projections,	physicochemical	variables	are	scaled	
to	 have	 a	mean	 of	 0	 and	 a	 variance	 of	 1.	 For	 this	 scaling,	 the	mean	 and	 standard	
deviation	of	each	WOA13	variable	(+	PISCES-v2	Fe)	co-localized	with	Tara	stations	
with	 a	 value	 available	 is	 used.	 This	 standardization	 procedure	 allows	 for	 better	
performance	 of	 models.	 Finally,	 as	 statistical	 models	 often	 disagree	 we	 use	 the	
ensemble	 model	 approach	 for	 global-scale	 projections	 of	 niches34	 i.e.	 the	 mean	
projections	of	the	validated	machine	learning	techniques.	
	
#	Environmental	niches	models	at	Tara	Oceans	stations	



	
Here	 we	 describe	 the	 performances	 of	 the	 statistical	 models	 on	 biogeochemical	
model	projections	at	locations	of	the	training	set	(i.e.	the	Tara	stations).	Our	models	
are	 only	 presence/absence	 models	 so	 they	 project	 probabilities	 of	 presence	 (not	
relative	 abundances)	of	 a	 given	MAG	at	 each	gridded	point	of	 the	ocean	based	on	
environmental	parameters.	The	figure	S20	presents	the	specificity	in	function	of	the	
sensitivity	 for	 each	model	 (i.e.	each	 point	 is	 a	MAG)	 calculated	 on	 the	 set	 of	Tara	
stations	for	biogeochemical	projections	and	for	two	threshold	of	presence	detection	
(p>0.5	 and	 p>0.3).	 The	 specificity	 captures	 the	 ability	 of	 the	 model	 to	 correctly	
detect	 absences	 while	 the	 sensitivity	 captures	 its	 capability	 to	 detect	 presences.	
Details	on	model	computation	and	validation	are	in	the	supplementary	material.	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
Figure	 S20:	 Statistical	
niches	model	performances	for	each	MAG	on	biogeochemical	model	projections	at	locations	of	
the	 training	 set	 (Tara	 stations).	 Specificity,	 i.e.	 the	 capacity	 of	 the	 model	 to	 correctly	 project	
absences	 is	represented	 in	 function	of	sensitivity,	 i.e.	 the	capacity	of	 the	model	 to	correctly	project	
presences	 for	 each	 MAG	 for	 which	 a	 valid	 environmental	 niche	 was	 found.	 Two	 thresholds	 for	
presence	detection	are	used	(in	green	p>0.5,	in	red	p>0.3).		
	
Globally,	models	perform	well,	especially	for	p>0.3	as	a	presence	threshold,	with	a	
vast	 majority	 of	 models	 with	 sensitivity>0.6	 and	 sensibility>0.6	 (61%	 for	 p>0.3,	
39%	 for	 p>0.5).	 Lowering	 the	 presence	 threshold	 allows	 a	 global	 increase	 in	
sensitivity	 with	 a	 relatively	 low	 decrease	 in	 specificity	 (red	 points	 versus	 green	
points).	Some	models	perform	relatively	poorly	and	have	low	sensitivity.	This	might	
be	explained	by	the	asymmetry	in	number	of	presences	compared	to	absences	in	the	
training	set	(relatively	many	more	absences).	In	addition,	the	spatial	structure	and	



resolution	as	well	as	the	hidden	seasonality	(10	years	climatologies	are	used)	of	the	
biogeochemical	models	might	explain	these	discrepancies.	
	
#5:	Categorizing	the	939	TARA	Oceans	metagenomes.	
	
Our	 study	 surveyed	a	 total	of	939	TARA	Oceans	metagenomes	 (Table	S1)	 that	we	
organized	into	four	cellular	size	categories	(size	1:	0.2-5µm,	size	2:	3-20µm,	size	3:	
20-200µm,	 size	 4:	 180-2000µm)	 as	 well	 as	 a	 wider	 cellular	 size	 fraction	
encompassing	all	categories	considered	in	our	study	(wider	size:	0.8-2000µm).	The	
four	cellular	size	categories	were	well	 represented	across	 the	 five	oceans	and	 two	
seas.	Overall,	119	stations	contained	at	 least	3	out	of	the	4	cellular	size	categories,	
which	we	defined	as	Station	subset	1	 (757	metagenomes).	Using	this	 first	subset,	
SMAGs	were	assigned	a	“cosmopolitan	score”	corresponding	to	the	percentage	of	
stations	 in	which	 they	were	 detected.	 SMAGs	were	 also	 assigned	 a	 “cellular	 size	
range”	and	“oceanic	signal”	using	average	coverage	 in	each	size	categories	 (n=4)	
for	 the	 former	 and	 in	 each	 ocean	 and	 sea	 (n=7)	 for	 the	 later.	 Those	 results	 are	
summarized	 in	 the	 tables	 S3	 an	 S4.	Unfortunately,	 the	wider	 cellular	 size	 fraction	
was	missing	in	the	Mediterranean	Sea,	Red	Sea	and	Indian	Ocean,	limiting	its	use	to	
91	stations	from	the	four	remaining	oceans,	which	we	defined	as	Station	subset	2	
(130	metagenomes).	Critically,	this	second	subset	offers	a	glimpse	into	the	relative	
proportion	of	planktonic	lineages	of	different	cellular	sizes.	While	more	limited	in	its	
geographic	 scope,	 the	Station	subset	2	 could	 provide	 important	 insights	 into	 the	
“relative	 proportion”	 of	 SMAGs	 in	 stations	 from	 the	 Atlantic,	 Pacific,	 Arctic	 and	
Southern	Ocean.		
	
#6:	Manual	curation	of	the	DNA-dependent	RNA	polymerase	genes	for	SMAGs	
and	METdb.		
	
An	 eukaryotic	 dataset	 (Da	 Cunha)14	 was	 used	 to	 build	 HMM	 profiles	 for	 the	 two	
largest	 subunits	 of	 the	 DNA-dependent	 RNA	 polymerase	 (RNAP-a	 and	 RNAP-b).	
These	two	HMM	profiles	were	incorporated	within	the	anvi’o	framework	to	identify	
RNAP-a	 and	 RNAP-b	 genes	 (Prodigal4	 annotation)	 in	 the	 SMAGs	 and	 METdb	
transcriptomes.	
	
We	 independently	 performed	 the	 following	 workflow	 for	 RNAP-a	 sequences	
identified	in	the	SMAGs	(round	A,	n=	1,626)	and	METdb	(round	B,	n=	2,823)	as	well	
as	 for	RNAP-b	sequences	 identified	 in	 the	SMAGs	 (round	C,	n=	1,373)	and	METdb	
(round	D,	n=	3,941):	
	
(1) Stetting	 the	 stage	 with	 references:	 Reference	 sequences	 for	 the	 relevant	

largest	subunits	of	the	DNA-dependent	RNA	polymerase	(e.g.,	RNAP-a	for	round	
A)	 corresponding	 to	 eukaryotic	 (types	 I,	 II	 and	 III),	 bacterial	 and	 archaeal	
lineages	 from	the	Da	Cunha	dataset	were	added	to	 the	sequences	 identified	by	
the	HMM.		



(2) Phylogenetic	tree	Phase	1:	Sequences	were	aligned	using	the	iterative	FFT-NS-
i	 refinement	method	of	MAFFT15	v7.464	with	default	parameters,	 and	 the	 sites	
with	 more	 than	 50%	 of	 gaps	 were	 trimmed	 using	 Goalign	 v0.3.0-alpha5.	
Phylogenetic	 trees	 were	 reconstructed	 with	 IQ-TREE16	 v1.6.12.	 The	 model	 of	
evolution	was	estimated	with	the	ModelFinder	Plus	option17,	and	supports	were	
computed	 from	 1,000	 replicates	 for	 the	 Shimodaira-Hasegawa	 (SH)-like	
approximation	 likelihood	 ratio	 (aLRT)18	 and	ultrafast	bootstrap	approximation	
(UFBoot)19.	Anvi’o	v6.1	was	used	to	visualize	and	root	the	phylogenetic	trees.	

(3) Identifying	 sequences	 of	 type	 I,	 II	 and	 III:	 We	 used	 the	 anvi’o	 interactive	
interface	to	root	the	tree	between	Bacteria	and	the	rest,	and	identify	sequences	
corresponding	 to	 eukaryotic	DNA-dependent	RNA	polymerase	 of	 type	 I,	 II	 and	
III.	 Sequences	 not	 clearly	 belonging	 to	 one	 of	 these	 three	 clusters	 were	
discarded.	 Note	 that	 during	 this	 process	 other	 types	 of	 eukaryotic	 RNA	
polymerase	(e.g.,	nucleomorphs)	were	identified	and	put	aside	for	investigations	
beyond	the	scope	of	this	study.		

(4) Fusing	 fragmented	 sequences	 when	 needed:	 For	 each	 SMAG	 or	 METdb	
transcriptome,	sequences	corresponding	to	the	same	RNA	polymerase	type	(e.g.,	
RNAP-a_type_I	 for	 round	 A)	 were	 aligned	 against	 each	 other	 and	 against	 a	
relevant	 eukaryotic	 reference	 sequence	 using	 blastp20.	 Non-overlapping	
sequences	 corresponding	 to	 the	 same	 subunit	 (based	 on	 Phylogenetic	 tree	
Phase	 1)	 were	 considered	 fragments	 of	 the	 same	 gene	 and	 fused	 manually,	
overcoming	 fragmentation	 issues	 during	 gene	 calling	 and/or	 transcription.	 In	
addition,	 only	 the	 longest	 sequence	 was	 kept	 for	 overlapping	 isoforms	 and	
closely	related	duplicates	(>95%	identity	and	>30%	coverage).		

(5) Phylogenetic	tree	Phase	2:	A	phylogenetic	tree	was	performed	for	each	subunit	
(DNA-dependent	 RNA	 polymerase	 of	 type	 I,	 II	 and	 III)	 as	 done	 for	 the	
Phylogenetic	tree	Phase	1	(for	improved	resolution,	archaeal	references	were	
used	 as	 outgroup	 and	 bacterial	 sequences	 removed	 in	 this	 analysis).	 Distantly	
related	 duplicates	 (those	 occurred	 in	 <5%	 of	 SMAGs	 and	 <10%	 of	 METdb	
transcriptomes,	possibly	due	to	contamination)	were	carefully	considered	in	the	
context	 of	 the	 three	 phylogenetic	 trees	 as	 well	 as	 taxonomy	 to	 identify	 and	
remove	sequences	with	incoherent	phylogenetic	and/or	taxonomic	signal.		

(6) Final	 collection:	 We	 removed	 sequences	 shorter	 than	 200	 amino-acids,	
providing	 a	 final	 collection	 of	 DNA-dependent	 RNA	 polymerase	 genes	 for	 the	
SMAGs	(n=2,150)	and	METdb	(n=2,032)	with	no	duplicates.		



	
Figure	 S21:	 Workflow	 for	 the	 manual	 curation	 of	 RNA	 polymerase	 genes	 identified	 in	 the	
MAGs,	SAGs	and	METdb	culture	transcriptomes.	
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