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SUMMARY
Genome sequencing has recently become a viable genotyping technology for use in genome-wide associa-
tion studies (GWASs), offering the potential to analyze a broader range of genome-wide variation, including
rare variants. To survey current standards, we assessed the content and quality of reporting of statistical
methods, analyses, results, and datasets in 167 exome- or genome-wide-sequencing-based GWAS publica-
tions published from 2014 to 2020; 81% of publications included tests of aggregate association across mul-
tiple variants, with multiple test models frequently used. We observed a lack of standardized terms and
incomplete reporting of datasets, particularly for variants analyzed in aggregate tests. We also find a lower
frequency of sharing of summary statistics compared with array-based GWASs. Reporting standards and
increased data sharing are required to ensure sequencing-based association study data are findable, inter-
operable, accessible, and reusable (FAIR). To support that, we recommend adopting the standard terminol-
ogy of sequencing-based GWAS (seqGWAS). Further, we recommend that single-variant analyses be
reported following the same standards and conventions as standard array-based GWASs and be shared
in the GWAS Catalog. We also provide initial recommended standards for aggregate analyses metadata
and summary statistics.
INTRODUCTION

Huge advances in the field of human genetics can be attributed

to the advent of genome-wide association studies (GWASs)

more than 15 years ago.1,2 In recent years, decreasing

costs and advances in analytic methods have made high-

throughput whole-genome sequencing (WGS) and whole-

exome sequencing (WES) feasible alternatives to array-based

genotyping in GWASs.3,4 Sequencing offers a significant advan-

tage over array-based methods, with the potential to detect and

genotype all variants present in a sample, not only those present

on an array or imputation reference panel. Most arrays are de-

signed to assay common variants (minor allele frequency

[MAF] > 5%), omitting rare (MAF < 1%) and low-frequency

(MAF 1%–5%) variants. The analysis of these rarer variants

could explain additional disease risk or trait variability and help

overcome the problem of ‘‘missing heritability.’’5,6 In addition,

most arrays have historically been biased toward coverage of

variation in European populations.7 The fact that sequencing

potentially provides an unbiased assessment of variants within

the population studied is particularly important for studies of

non-European populations.8,9

There are challenges with analyzing many more and rarer var-

iants. Single-variant tests, used as the standard in array-based
C
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GWASs, are typically underpowered when applied to low-fre-

quency or rare variants, unless sample sizes or effects are very

large. There are also issues with correcting for multiple testing

when the number of statistical tests is very large. To address

those issues, statistical methods have been designed specif-

ically for rare-variant-association testing, which evaluate aggre-

gate association over multiple variants in a genomic region

(referred to here as ‘‘aggregate tests’’).10 Variants are typically

aggregated across biologically functional regions (e.g., a gene)

with variants enriched for those likely to have larger effect sizes

based on annotated or predicted functional effect (e.g., located

in a splice junction or a predicted loss of function). The power of a

particular aggregate test to detect an association will depend on

how closely the model’s assumptions and contributing variants

represent the true disease mechanism at each locus.

Repositories of scientific data have been indispensable in sup-

porting research and in facilitating discoverability and integration

across datasets through standard formats. The National Human

Genome Research Institute-European Bioinformatics Institute

(NHGRI-EBI) GWAS Catalog11 is the preeminent data resource

of large-scale genetic-association studies, enabling research

to identify causal variants, to understand disease mechanisms,

and to establish targets for novel therapies.12 The GWAS Cata-

log infrastructure, data content, and standard formats have
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Figure 1. Sequencing-based GWAS publica-

tions, numbers, sequencing coverage, and

analysis types

(A) Number of sequencing-based association pub-

lications identified per year from 2014 to September

2020, n = 167. Only genome-wide (and not limited to

specific regions or subsets of genes) and popula-

tion-based studies are included (see STARMethods

for more information). The final quarter of 2020 is

projected based on the rate of growth in the final

quarter of 2019 (projected data are presented in the

light shade of each color).

(B) The analysis types included in those publica-

tions. ‘‘Aggregate’’ refers to multi-variant analyses.
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been designed to support array-based GWASs. Attempts to

expand the scope of the Catalog to include sequencing-based

association studies have been hindered by the need to develop

new standards for the differences in methods, the metadata

required to represent them, and the format of the results, partic-

ularly for aggregate analyses.

Here, we analyze the current landscape of published

sequencing-based association studies to determine require-

ments for hosting and sharing those datasets in the GWAS

Catalog and recommend best practices for reporting. First, we

comprehensively reviewed publications reporting sequencing-

based association studies, assessing the range of experimental

designs and statistical methods, as well as the content and qual-

ity of reporting for analyses, methods, and datasets included in

publications. We hope that this review will form a rallying point

for building community consensus on standards. This work has

also informed the development of the GWAS Catalog infrastruc-

ture and data-representation schema to support inclusion of

sequencing-based association studies, which are now accepted

for submission at the GWAS Catalog. Our work at the GWAS

Catalog is focused on enabling broad data sharing and defining

standards to ensure sequencing-based association study data

are findable, interoperable, accessible, and reusable (FAIR).13

RESULTS

Finding sequencing-based association studies
In our review of research publications (STAR Methods), we

observed that a wide range of terms are used to describe

sequencing-based genome or exome-wide association studies.

The term ‘‘GWAS’’ is rarely used, andwe have not seen an equiv-

alent standard term emerge (Figure S1). Combinations of termi-

nology were used, related to (1) analysis of associations (e.g.,

rare variant association analysis, rare variant aggregate associ-

ation analysis, association test, and genome-wide significant

associations), (2) the allele frequency of the variants analyzed

(e.g., common variant and rare variant), (3) the analysis type,

either single variant (e.g., single variant and variant level) or

aggregate with multiple variants (e.g., gene-based, region-

based, aggregate, gene burden, collapsing analysis, gene-level

association, gene-level signal, and collapsed-variant tests).

We identified 167 publications reporting genome-wide

sequencing-based association analyses meeting our selection
2 Cell Genomics 1, 100005, October 13, 2021
criteria (STAR Methods; Tables S1 and S2). The first study was

published in 2014, with the number of publications increasing

year after year to 2020 (Figure 1A). Because no standard termi-

nology has been adopted for these studies, we were not able

to search discriminately for sequencing-based association

studies meeting our criteria, and permissive searches (e.g., for

‘‘WGS OR WES association’’) yield too many results to feasibly

review manually (Figure S2); therefore, we expect this to be an

underestimate of publications reporting sequencing-based

GWASs (seqGWAS). Most publications analyzed WES data

only (68%), approximately one-third analyzed WGS data

(30%), and some publications included both coverage types

(2%) (Figure 1A). Many publications that used WES and WGS

sequencing data limited their analyses to pre-specified regions

of interest; those targeted analyses are not the focus of this

work and were, therefore, excluded from the analysis.

Association tests and qualifying variants
We surveyed the types of association tests included in these

publications. Most frequent was the inclusion of both single-

variant and aggregate analyses (48%), followed by aggregate

analysis only (33%), and a minority of publications (19%)

included single-variant analyses only (Figure 1B). Of the publica-

tions including aggregate tests, a wide range of statistical

models and tools were used, with publications commonly using

multiple models. For example, of publications that used one of

the three most-common aggregation methods10 (burden/

collapsing, variance-component [SKAT], and combined burden

and variance-component [SKAT-O] tests), 40% (n = 65) used

at least two of those methods (Figure 2A). The language used

to describe those methods is varied; for example, SKAT is

referred to variously as kernel based, dispersion based, or vari-

ance-component based (Figure S3).

We also examined variant-filtering or "masking" approaches.

Minor allele frequency thresholds were reported in 72% of sin-

gle-variant and 84% of aggregate-analysis publications, with

the remainder either not reporting any MAF threshold or using

all variants (26% of single variant/16% of aggregate) (Figure S4).

‘‘Greater than’’ thresholds were typically used for single-variant

analysis, with 57% of analyses employing a MAF threshold of

0.01 or greater, limiting those analyses to the common variant

space (Figure 2B) (n = 30/53 thresholded analyses from 51 pub-

lications). In contrast, aggregate analyses typically employed
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Figure 2. Statistical analysis methods used in

sequencing-based GWAS publications

(A) Overlap among methods used in aggregate-

analysis publications. Of 65 publications that use

either SKAT, SKAT-O, or a burden test, 40%

use at least two methods. Text related to study

design was extracted by experienced curators and

searched for the terms ‘‘SKAT,’’ ‘‘SKAT-O,’’ and

‘‘burden’’ or ‘‘collaps*’’ (where * refers to a wildcard

for searching).

(B) Minor allele frequency thresholds used in single-

variant and aggregate analyses. ‘‘Greater than or

equal to’’ thresholds are displayed above the x axis;

‘‘less than or equal to’’ thresholds are displayed

below the x axis. Thresholds were extracted from publications in which one or two thresholds were provided (single variant: n = 53 thresholds from 51

publications; aggregate: n = 86 thresholds from 77 publications). See Figure S4 for additional details on MAF-threshold reporting.

Short article
ll

OPEN ACCESS
‘‘less than’’ thresholds, to include only low-frequency (<0.05),

rare (<0.005), or ultra-rare variants. Most aggregate analyses

used <0.01 or <0.05 thresholds (78%, n = 67/86 thresholded an-

alyses from 77 publications).

Many publications (63%, n = 75/120) also performed analyses

on variants with predicted biological effect. Authors filtered for

predicted functional effect based on transcript annotation (e.g.,

using the Variant Effect Predictor14) or protein structure (e.g., us-

ing Sorting Intolerant from Tolerant [SIFT],15 Polymorphism Phe-

notyping v2 [PolyPhen]16 and combined annotation-dependent

depletion [CADD]17) or based on measures of evolutionary con-

servation or variation intolerance.18,19 An analysis of the text

used to describe the filtering process highlights that the most

commonly used terms were ‘‘splice,’’ ‘‘missense,’’ ‘‘protein,’’

‘‘frameshift,’’ ‘‘stop gain,’’ ‘‘loss of function’’ (LoF), and ‘‘protein-

truncating variant’’ (PTV), but a wide range of terms were used

(Figure S5). Variants were often filtered by both annotation/pre-

dicted effect and MAF thresholds, with multiple different filtering

criteria used per publication (examples are provided in Table S3).

The number of variants analyzed in WES single-variant ana-

lyses is considerably less than those typically analyzed in

array-based GWASs (median, 158,091; versus 5,554,549),

whereas, in WGS single-variant analyses, the number is greater

(median, 12,210,410) (Table 1). The median number of statistical

tests performed in aggregate analyses was 18,360, approxi-

mating the number of protein-coding genes with a consensus

CDS (19,033; coding DNA sequence)20 because the most-com-

mon unit over which variants are aggregated is the protein-cod-

ing gene. The analyses in which the number of tests was greater

than the inter-quartile range were those in which the unit of anal-

ysis was non-genic. The most-common non-genic aggregation

units we observed were regulatory regions18,19,21,22 or agnostic

sliding windows.23–26 Authors also aggregated across evolu-

tionary conserved regions or pathways.19,27

The outcome of the various variant filters or "masks," i.e., a list

of the qualifying variants included in each analysis, was not pro-

vided in any of the 167 publicationswe analyzed. However, some

publications did specify the number of qualifying variants

included per unit of aggregation.28,29

Sample characteristics
We next surveyed the characteristics of samples (sample size,

ancestry, and traits) studied in seqGWAS. We compared the
sample sizes of the seqGWAS, because that is a key determinant

of statistical power. We classified publications into bins based

on the number of individuals in the publication (Figure S6). The

most-common sample size bin was 300–3,000 individuals

(43% of publications), but in the past few years, there has

been a near-even distribution across bins from small to large

sample sizes. In 2019, both the smallest (<300 individuals) and

the largest (>10,000) sample-size bins were used in approxi-

mately a quarter of publications each (23% and 26%, respec-

tively; Figure S6). The number of cases is also a component of

statistical power, and unbalanced case/control ratios can inflate

type 1 errors.30 We observed 10 publications (6%) with unbal-

anced case/control ratios (cases % 15% of samples), most of

those (n = 7, 4%) being highly unbalanced (cases% 4% of sam-

ples) (Table S4).31–33

The inclusion of diverse ancestral backgrounds in genomics

studies is recognized as important,34,35 but analysis of array-

based GWASs has highlighted the extreme bias toward samples

of European origin.36,37 We assessed and compared ancestry in

seqGWAS. Following the GWAS Catalog ancestry framework (a

standard methodology for representing ancestry),36 we ex-

tracted publication-level, broad ancestral categories of samples.

Mirroring what has been seen elsewhere with array-based

GWASs, 71% of all publications (n = 85/120) included European

ancestry individuals, with 40% not including any other ancestry

(n = 48/120) (Figure 3A; Table S5). The second most commonly

examined ancestral group was African American (28% of publi-

cations, n = 33/120), and most of those publications (21%) also

included other ancestries (Figures 3B and S7). This profile may,

in part, be due to the presence of large, trans-ancestry consortia,

such as the Trans-Omics for Precision Medicine (TOPMed) pro-

gram, which is the most commonly occurring consortium or

cohort mentioned (Table S7).

We also examined the number of traits analyzed within the re-

ported association study. Most publications examined one or

two traits (76%, n = 89), whereas a few (4%, n = 5) examined

55–75 traits as part of larger-scale studies.18,22,39–41 More

recently (2019–2020), very-large-scale studies using the UK

Biobank have included 791–4,262 traits42–44 (Figure S8).

Non-UK-Biobank publications analyzing multiple traits were

mostly focused on quantitative biomarker or metabolite-level-

type traits,18,21,41,45 such as inflammatory biomarkers, blood

metabolite levels, blood protein levels. Studies analyzing fewer
Cell Genomics 1, 100005, October 13, 2021 3



Table 1. Availability of summary statistics and number of

statistical tests performed in sequencing versus array-based

GWASs

Single-

variant array,

% (n)

Single-variant

sequencing,

% (n)

Aggregate

sequencing,

% (n)

Summary statistics

available without

restriction

12 (300) 5 (4) 7 (7)

Number of tests (reporting)

Reported 91 (5,817) 74 (61) 81 (84)

Not reported 9 (610) 26 (21) 19 (20)

Number of tests

(distribution)

overall overall overall

Minimum 12,033 26,011 339

Q1 899,892 144,477 16,788

Median 5,554,549 548,889 18,665

Q3 9,334,585 8,752,596 20,843

Maximum 90,000,000 32,503,121 129,820,320

WES only WES only

Minimum – 26,011 735

Q1 – 81,843 16,751

Median – 158,091 18,360

Q3 – 235,133 20,000

Maximum – 1,810,198 88,183

WGS only WGS only

Minimum – 658,234 339

Q1 – 7,666,134 19,903

Median – 12,210,410 32,316

Q3 – 29,880,479 1,082,577

Maximum – 32,503,121 129,820,320

Publications that state that they share summary statistics openly (not

including those provided with restricted access). Reported/not reported

refers to whether the number of statistical tests performed was detailed

in the publication. The number of statistical tests performed in

sequencing-based studies is based on publications that provide one

‘‘number of statistical tests’’ (n = 51 of 79 for single-variant analysis,

n = 56 of 101 for aggregate analysis). Publications that provide a range

of statistical test numbers performed are included in the ‘‘reported’’ cate-

gory but are not included in the distribution. The data for array-based

GWAS were obtained from 2014–2019 studies in the GWAS Catalog

(December 2, 2020 release) (see STAR Methods).
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traits weremore likely to be case/control studies.46–49 A full list of

publication-level trait names (analogous to the GWAS Catalog

‘‘reported trait’’) and corresponding mapped Experimental Fac-

tor Ontology (EFO) terms are provided in Table S4.

Data availability
The public availability of full summary statistics fromGWASs has

great potential to extend the power of initial studies by enabling

the community to re-analyze, meta-analyze, and perform follow-

up analyses, with minimal risk to participants.11,50 We assessed

whether summary statistics, in addition to individual-level

genotyping results, were reported in these publications as avail-
4 Cell Genomics 1, 100005, October 13, 2021
able without restriction in a public repository. Sharing of

sequencing-based single-variant summary statistics was much

lower (5% of publications, n = 4/79, 2014–2019) than the propor-

tion of array-based publications in the GWAS Catalog in the

same period (12% of publications, n = 300/2,571, 2014–2019)

(Table 1). Sharing of array-GWAS summary statistics is greater

in recent years (19% of 2019 GWAS Catalog publications, n =

101/527), but seqGWAS summary statistics still lag (9%, n = 3/

32). A further 2.5% of sequencing publications (n = 3/120,

2014–2019) deposited summary statistics in a controlled-access

public repository (the Database of Genotypes and Phenotypes

[dbGAP]). In contrast, 24% of publications (n = 29/120) depos-

ited individual-level sequencing data in controlled access repos-

itories (dbGAP or European Genome-Phenome Archive [EGA])

(Table S6) and, for some summary-level data, may have been

co-submitted or bundled with those data but not specifically

stated by the authors.

The data content of single-variant summary statistics for

seqGWAS is comparable with that for standard-array GWASs

and can conform to emerging standards.11,50 However, sum-

mary statistics for aggregate analysis in seqGWAS are

commonly composed only of a gene name (or other range spec-

ifying chromosomal coordinates), p value, and often the number

of contributing variants, sometimes separated by cases/con-

trols. Crucially, we did not observe any publications that re-

ported the list of variants included in each aggregate unit, which

is key to interpretation of the data, either in the main text or in

accompanying material.

DISCUSSION

Recommended standards
Based on our review and analyses, we recommend standards to

improve the reporting and accessibility of seqGWAS. First, to in-

crease transparency when referring to study design and facilitate

identification, we recommend that the community adopt the

name of ‘‘sequencing-based GWAS,’’ abbreviated as ‘‘seqG-

WAS’’ (Box 1, recommendation 1). Second, to enable accurate

interpretation and comparison of results across studies and

loci, it is essential that detailed information describing each as-

sociation test (including statistical tests and contributing vari-

ants) are consistently reported (Box 1, recommendations 2

and 3). These recommendations are based upon, and are de-

signed to address, our observations of the state of the field.

Observations
The sequencing-based association studies in the publications

we analyzed included either single or aggregate multi-variant an-

alyses. The restriction of single-variant analyses to common var-

iants renders those studies largely comparable with array-based

GWASs (Figure 2), with similar implications for data content and

reporting (Box 1, recommendation 2) and similar utility for re-use,

for example, in the derivation of polygenic scores or inMendelian

randomization. In comparison, studies performing tests of

aggregate association across multiple variants, which appear

in most (81%) publications, focus on ’’low-frequency,’’ ‘‘rare,’’

and ‘‘ultra-rare’’ variants. Multiple statistical models of aggre-

gate association are frequently used in the same publication
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Figure 3. Ancestry of individuals used in sequencing-based GWAS publications

Publication-level breakdown of the broad ancestry categories, defined per the GWAS Catalog ancestry framework.36 Some categories are collapsed for ease of

display, analysis is based on 2014–2019 publications, n = 120.

(A) Overview of the percentage of publications that included only one or multiple ancestral categories.

(B) The proportion of publications that included the specified broad ancestral category. Overlaps indicate multiple ancestries were included in one publication;

indicates an empty set. Venn diagram was created using DeepVenn.38 Note that Venn diagrams of this size cannot be fully proportional (see Figure S7 and Table
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because the power of each test depends on how closely the as-

sumptions of the model match the true disease etiology at each

locus. Therefore, there is no best model (including statistical

tests and variant filtering strategies) across loci and traits, and

there is no best model necessarily knowable a priori. To enable

accurate interpretation and comparison of results across studies

and loci, it is, therefore, essential that detailed information

describing each association test (including statistical tests and

contributing variants) is consistently reported (Box 1, recom-

mendations 2 and 3).

It is in the performance and, therefore, reporting of aggregate

association tests that sequencing-based association studies

differ most from standard array-based GWASs. We observed

that the experimental information provided for aggregate tests

was not sufficient to facilitate thorough examination or replica-

tion. Variants are filtered (typically by MAF and functional anno-

tation/predicted consequence) and combined in different units

of aggregation. Crucially, the list of variants contributing to

each test is not provided by these publications. Availability of

these data would facilitate attempts at replication and enable

further analysis and functional investigation51 (Box 1, recom-

mendation 3b).

Given the rarity of these variants, privacy concerns regarding

de-identification may be a barrier to their sharing. We suggest

that the community look to the field of rare-variant clinical geno-

mics, in which it is becoming increasingly accepted that the

potential benefits of sharing far outweigh the perceived risks.52

This is illustrated by the number of clinical-laboratory-derived

variants in ClinVar more than doubling since 2018.53,54 We
note that individual genetic variants, even very rare ones, are

not uniquely identifying and would require in-depth knowledge

of an individual’s genotype to connect an individual to a

phenotype.

Theoretically, lists of qualifying variants could be recapitu-

lated, but filtering information provided by authors is again

diverse and often vague and, overall, insufficient to indepen-

dently derive those lists. The community should consider stan-

dardized ways to communicate variant filters or masks (for

example, using the sequence ontology to describe functional

annotation/predicted functional effect filters55). The unit of ag-

gregation, which encompasses the variants included in each

test (typically gene), must be clearly defined. This should include

the coordinates of the region and the genome assembly or anno-

tation release, along with any additional variant-filtering informa-

tion (Box 1, recommendation 3a).

We observed that a smaller proportion of full-summary statis-

tics are publicly available from seqGWAS (5%) compared with

array-based GWASs (12%). That percentage is low for both

types of studies despite guidance and growing community

consensus supporting sharing (web resources).50 There are a

number of reasons why full and public data sharing may be

less for sequencing than array-based studies. There may be

additional perceived privacy concerns regarding the rare vari-

ants present in sequencing-based summary statistics. It is also

possible that summary statistics may be bundled with the indi-

vidual-level genotyping data that 24% of publications deposited

in controlled-access repositories (dbGAP/EGA). Single-variant

summary statistics can conform to the proposed array-based
Cell Genomics 1, 100005, October 13, 2021 5



Box 1. Recommendations for sequencing-based GWAS report-
ing standards

Our recommendations for the development and adoption of reporting

standards to increase the availability, accessibility, and utility of

sequencing-based GWASs. The GWAS Catalog will support deposi-

tion of these datasets and promote adoption of these standards as

well as continued discussions to reach consensus on the reporting

of aggregate analyses.

1. WGS and WES association studies be referred to as

‘‘sequencing-based GWASs’’ (seqGWAS)

2. Single-variant analysis summary statistics be

a. Reported using the same standards as proposed for

single-variant array-based GWASs11,50

b. Shared openly by submission to the GWAS Catalog

3. Aggregate analyses:

a. Metadata be reported to enable interpretation and

aid reproducibility including

i. Sufficient details of the statistical test to allow

replication of results

ii. Minor allele frequency thresholds used

iii. Details of tools used for functional annotation/

consequence prediction (e.g., VEP release 103)

and ontology terms used to describe the conse-

quence (e.g., Sequence Ontology)

b. Community reaches consensus for standard content

and format for reporting of aggregate seqGWAS

summary statistics. This should include

i. The full list of qualifying variants contributing to

each test

ii. Chromosomal coordinates of aggregation units

(including genome assembly builds or gene anno-

tation release version, e.g., GENCODE release

37, GRCh38)

iii. A standard identifier for the aggregation unit,

e.g., HGNC gene name or symbol (if applicable)

iv. p value

4. SeqGWAS studies be conducted in populations that

include more diverse ancestries
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standards (Box 1, recommendation 2)11 and can already be sub-

mitted to theGWASCatalog. However, aggregate-analysis sum-

mary statistics, when they are shared, are typically only a gene

name and a p value (sometimes with the number of qualifying

variants included). These files are not large or cumbersome,

given that the number of human genes is only approximately

20,000 and are easy to share, for example, as a supplementary

table. As described above, we recommend authors supply full

lists of qualifying variants that contribute to each test (Box 1,

recommendation 3b). We hope that the development and adop-

tion of these standards will simplify and encourage the sharing of

seqGWAS summary statistics.

The ability of sequencing to genotype all variants present in

the cohort offers a significant opportunity to overcome the

biases inherent in array-based genotyping, with the potential

to reduce disparities among ancestry groups. Despite that,

the bias toward European-ancestry populations observed in
6 Cell Genomics 1, 100005, October 13, 2021
array-based GWASs (49% European only and 74% including

European) remains in sequencing publications (40% European

only and 71% including European). Furthermore, we note that

the percentage of European sequencing-based analyses is

likely to be greater; publications containing multiple GWASs

are more likely to be from large cohorts with deep phenotyping

data, which are predominantly European (e.g., UK Biobank).

Given the advantages of sequencing in analyzing non-Euro-

peans, we question why it is not being further used. There

are many possible reasons for this, including increased cost,

the lack of diversity in legacy cohorts, pre-existing consent

agreements, privacy concerns associated with rare-variant

analysis, and analysis methods being complex. The GWAS

Catalog reiterates its stance in encouraging analysis of diverse

populations and encourages researchers to take advantage

of the opportunities offered by sequencing technologies

in enabling unbiased genotyping across ancestries (Box 1,

recommendation 4).

Limitations of the study
The lack of standardized terms to refer to seqGWAS creates

challenges for the reliable identification of these publications us-

ing term-based literature-search methods. The 167 publications

we identified are, therefore, certainly an underestimate of the

number of publications, and we do not claim that this work is a

comprehensive analysis of all published seqGWAS. To maintain

consistency and enable comparability across studies, we

decided to limit our analysis to publications carrying out an unbi-

ased, genome-wide or exome-wide assessment of loci associ-

ated with traits, equivalent to the GWAS Catalog’s inclusion

criteria (web resources). Many of the publications we screened

and deemed ineligible were targeted analyses based on prior

knowledge, for example, to specific loci, genes, or pathways

and are scientifically valid studies but are out of the scope of

this manuscript. In our recommendation of the term ‘‘seqGWAS’’

(Box 1, recommendation 1), we note that some may feel the use

of ‘‘GWAS’’ is inappropriate, primarily because WES-based an-

alyses are necessarily targeted to expressed regions. However,

we observe that the term ‘‘GWAS’’ is commonly used to refer to

both genome-wide and exome-wide array-based association

studies. Our motivation for suggesting a unique nomenclature

(sequencing-based GWAS/seqGWAS) is to facilitate the ‘‘find-

ability’’ of these study types (large-scale association studies

that analyze variants spread across the genome (e.g., with

coverage across all autosomal chromosomes) in the scientific

literature.

A necessary limitation of this work is its restriction to a specific

time period (2014–2020), and as such, it serves as a snapshot of

the state of the field. It is anticipated that the field will grow signif-

icantly in the immediate future, and the ratio of WES and WGS

studies may change. However, the findings of our work, in terms

of how studies are described and reported, are unaffected by

whether or not they are WES or WGS or the total number of

studies. The recommendations similarly apply to both coverage

types. Furthermore, we believe this is an appropriate time to

publish a study such as ours so that standards can be estab-

lished sooner, thus enabling future publications to adhere to

the FAIR principles.
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Ensuring seqGWAS are FAIR
Themaximumbenefit of scientific research can only be realized if

data are FAIR (findable, accessible, interoperable, and reusable),

as described by the FAIR guiding principles for good scientific

data management.13 Our analysis highlights several obstacles

to implementation of these principles for seqGWAS, including

lack of an appropriate resource or repository to store and

disseminate the data, consistency of metadata reporting without

the use of structured vocabularies, clarity on metadata indexing

that needs to support searching, and a community standard for

summary statistics. The GWAS Catalog’s primary aim is to pro-

vide a comprehensive resource and repository of all large-scale

genomic association studies and, as such, has extended its

scope to include seqGWAS, initially focusing on single-variant

analyses. We will support the community to reach consensus

on the reporting of aggregate seqGWAS, including the creation

of standards for metadata and summary format and content.50

The development and adoption of reporting standards will in-

crease the availability, accessibility, and utility of seqGWAS.

We include a summary of our recommendations (Box 1) and

welcome further input from the community.
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54. Pérez-Palma, E., Gramm, M., N€urnberg, P., May, P., and Lal, D. (2019).

Simple ClinVar: An interactive web server to explore and retrieve gene

and disease variants aggregated in ClinVar database. Nucleic Acids

Res. 47 (W1), W99–W105.

55. Eilbeck, K., Lewis, S.E., Mungall, C.J., Yandell, M., Stein, L., Durbin, R.,

and Ashburner, M. (2005). The Sequence Ontology: a tool for the unifica-

tion of genome annotations. Genome Biol. 6, R44.

56. Lee, K., Famiglietti, M.L., McMahon, A., Wei, C.H., MacArthur, J.A.L.,

Poux, S., Breuza, L., Bridge, A., Cunningham, F., Xenarios, I., and Lu, Z.

(2018). Scaling up data curation using deep learning: An application to
literature triage in genomic variation resources. PLoS Comput. Biol. 14,

e1006390.

57. Asanomi, Y., Shigemizu, D., Miyashita, A., Mitsumori, R., Mori, T., Hara, N.,

Ito, K., Niida, S., Ikeuchi, T., and Ozaki, K. (2019). A rare functional variant

of SHARPIN attenuates the inflammatory response and associates with

increased risk of late-onset Alzheimer’s disease. Mol. Med. 25, 20.

58. Moore, C., Blumhagen, R.Z., Yang, I.V., Walts, A., Powers, J., Walker, T.,

Bishop,M., Russell, P., Vestal, B., Cardwell, J., et al. (2019). Resequencing

study confirms that host defense and cell senescence gene variants

contribute to the risk of idiopathic pulmonary fibrosis. Am. J. Respir.

Crit. Care Med. 200, 199–208.

59. Miller, J.E., Metpally, R.P., Person, T.N., Krishnamurthy, S., Dasari, V.R.,

Shivakumar, M., Lavage, D.R., Cook, A.M., Carey, D.J., Ritchie, M.D.,

et al.; DiscovEHR collaboration (2019). Systematic characterization of

germline variants from the DiscovEHR study endometrial carcinoma pop-

ulation. BMC Med. Genomics 12, 59.

60. Jiang, X., Zhang, B., Zhao, J., Xu, Y., Han, H., Su, K., Tao, J., Fan, R., Zhao,

X., Li, L., and Li, M.D. (2019). Identification and characterization of

SEC24D as a susceptibility gene for hepatitis B virus infection. Sci. Rep.

9, 13425.

61. Lieberman, S., Beeri, R., Walsh, T., Schechter, M., Keret, D., Half, E., Gul-

suner, S., Tomer, A., Jacob, H., Cohen, S., et al. (2019). Variable features of

juvenile polyposis syndromewith gastric involvement among patients with

a large genomic deletion of BMPR1A. Clin. Transl. Gastroenterol. 10,

e00054.

62. Musolf, A.M., Ho, W.S.C., Long, K.A., Zhuang, Z., Argersinger, D.P., Sun,

H., Moiz, B.A., Simpson, C.L., Mendelevich, E.G., Bogdanov, E.I., et al.

(2019). Small posterior fossa in Chiari I malformation affected families is

significantly linked to 1q43–44 and 12q23–24.11 using whole exome

sequencing. Eur. J. Hum. Genet. 27, 1599–1610.

63. Moawia, A., Shaheen, R., Rasool, S., Waseem, S.S., Ewida, N., Budde, B.,

Kawalia, A., Motameny, S., Khan, K., Fatima, A., et al. (2017). Mutations of

KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol.

82, 562–577.

64. Dinckan, N., Du, R., Petty, L.E., Coban-Akdemir, Z., Jhangiani, S.N.,

Paine, I., Baugh, E.H., Erdem, A.P., Kayserili, H., Doddapaneni, H., et al.

(2018). Whole-exome sequencing identifies novel variants for tooth agen-

esis. J. Dent. Res. 97, 49–59.

65. Di Rocco, M., Rusmini, M., Caroli, F., Madeo, A., Bertamino, M., Marre-

Brunenghi, G., and Ceccherini, I. (2018). Novel spondyloepimetaphyseal

dysplasia due to UFSP2 gene mutation. Clin. Genet. 93, 671–674.

66. Dapas, M., Sisk, R., Legro, R.S., Urbanek, M., Dunaif, A., and Hayes, M.G.

(2019). Family-based quantitative trait meta-analysis implicates rare non-

coding variants in DENND1A in polycystic ovary syndrome. J. Clin. Endo-

crinol. Metab. 104, 3835–3850.
Cell Genomics 1, 100005, October 13, 2021 9

http://refhub.elsevier.com/S2666-979X(21)00005-7/sref45
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref45
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref45
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref45
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref46
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref46
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref46
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref46
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref46
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref47
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref47
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref47
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref47
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref48
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref48
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref48
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref48
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref49
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref49
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref49
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref49
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref49
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref50
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref50
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref50
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref50
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref51
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref51
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref52
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref52
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref52
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref53
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref53
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref53
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref53
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref54
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref54
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref54
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref54
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref54
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref55
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref55
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref55
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref56
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref56
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref56
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref56
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref56
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref57
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref57
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref57
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref57
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref58
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref58
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref58
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref58
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref58
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref59
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref59
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref59
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref59
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref59
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref60
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref60
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref60
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref60
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref61
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref61
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref61
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref61
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref61
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref62
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref62
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref62
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref62
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref62
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref63
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref63
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref63
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref63
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref64
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref64
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref64
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref64
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref65
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref65
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref65
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref66
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref66
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref66
http://refhub.elsevier.com/S2666-979X(21)00005-7/sref66


Short article
ll

OPEN ACCESS
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Text analysis tool (MonkeyLearn) https://monkeylearn.com/word-cloud/

GWAS Catalog machine learning-based literature search Lee et al.56 N/A

Literature search engine, EuropePMC http://europepmc.org

PubMed https://pubmed.ncbi.nlm.nih.gov

Other

Literature (primary research journal articles) Peer reviewed journals PubMed IDs listed in Table S4

Publicly available curated meta-data NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Aoife

McMahon (aoifem@ebi.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data underlying analyses in this paper are curated from the literature and are presented in Table S4.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

To enable direct comparability with array-based GWAS we defined sequencing-based association studies as studies that analyze

associations between a trait and a genome-wide distribution of genetic variants from either whole-genome or whole-exome

sequencing. This does not include targeted sequencing studies that are limited to specific genomic regions or subsets of genes

(e.g., publications57–59). From these, we selected studies with population-based association analyses, and did not include studies

that used family structure/linkage (e.g., publications60–62) or were aimed at diagnostic discovery of pathogenic variants (e.g publica-

tions63–65). We also included family-based association studies, but only if they performed standard association analysis with relat-

edness accounted for in the model (e.g., publications39,66). Studies that combine array and sequencing-based genotyping, such

as partially array-genotyped, or array genotyped with sequencing data used as an imputation panel, were not included in our

analyses.

Sequencing-based association publications meeting these inclusion criteria were identified by several routes: Pubmed and

EuropePMC literature searches, the GWAS Catalog machine learning-based literature search,56 examination of grants, cohort

and project websites, social media, conference talks, references in publications and personal communications (Table S1). The

source of initial identification of each sequencing publication was recorded. Publication level metadata relating to study design, sam-

ple description, traits examined and data availability were extracted (Tables S2 and S4). Publication triage, eligibility assessment and

extraction of metadata were performed by experienced GWAS Catalog curators. Analysis of study eligibility, genomic coverage and

analysis type was performed for 2020 publications. More detailed analysis of the sample, trait, data sharing and statistical tests was

available to the end of 2019.

QUANTIFICATION AND STATISTICAL ANALYSIS

For analysis of text related to variant types, curators extracted sentences describing variant selection and relevant terms were iden-

tified using the text analysis tool MonkeyLearn (https://monkeylearn.com/word-cloud/). The output was examined by expert curators

and non-relevant terms excluded, terms collapsed and missed relevant terms were added and counted.
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Supplemental Figures 

 
 
Supplemental Figure 1 
Word cloud from abstract and title text related to the study design of publications 
(including aggregate and single analysis) (related to Figure 1).  
Word size corresponds to frequency x relevance metric (inverse document frequency of the 
term in an unrelated corpus of text), the top 50 enriched terms are displayed. 
 
 
 



 
 
 
Supplemental Figure 2 
An illustration of the difficulty in ascertainment of sequencing-based GWAS 
publications (Related to STAR methods). 
The overlap between the list of eligible 2019 publications with the search results of 
permissive query searches conducted using a literature search engine (EuropePMC). This 
analysis is limited to 2019.  The labels shown on the diagram represent specific search 
terms used in EuropePMC. Label (WGS or WES association) = Query (("WGS" AND 
"association") OR ("whole genome sequencing" AND "association") OR ("WES" AND 
"association") OR ("whole exome sequencing" AND "association")) AND 
(FIRST_PDATE:[2019-01-01 TO 2019-12-31]) 
Label (WGS or WES association study) = Query (("WGS" AND "association study") OR 
("whole genome sequencing" AND "association study") OR ("WES" AND "association 
study") OR ("whole exome sequencing" AND "association study")) AND 
(FIRST_PDATE:[2019-01-01 TO 2019-12-31])  



 
 
 
 

 
Supplemental Figure 3 
Word cloud from text related to the study design of publications which perform 
aggregate analysis, from sections other than abstract and title (related to Figure 2).  
Word size corresponds to frequency x relevance metric (frequency-inverse document 
frequency (TD-IDF), the top 50 enriched terms displayed. 



 
Supplemental Figure 4 
Reporting of minor allele frequency thresholds in single variant and aggregate 
analyses (related to Figure 2). 
This figure shows how MAF was reported in publications (2014-2019) (single variant: n 
publications = 97, aggregate: n publications = 76). Data in Figure 2 are derived from those 
publications that report one or two thresholds.  ‘NR/all’ includes publications that provided no 
information on thresholds as well as publications which implied that all variants were 
included.' ‘Range’ represents publications that included variants within a specific range of 
MAFs e.g. 1-5%. NR = not reported. 
 
 
 
 
 
 
 
 
 
 
 



 
                                              Occurrences of terms in text related to variant selection 
Supplemental Figure 5 
Language describing variant types (related to Figure 2) 
 



 
 
Supplemental Figure 6 
Sample size bins in sequencing-based association studies (related to Figure 3).   
Publication level sample sizes were classified into brackets of <300, 300-3000, 3000-10,000 
or >10,000 individuals.  Number of publications in each sample size bracket, by year.  
 
 
  



 

 
 
Supplemental Figure 7 
Detail on percentage of publications including ancestries exclusively or in 
combination with other ancestries (related to Figure 3). 
  



 
 

          
    
 
 
Supplemental Figure 8 
Number of traits analysed in sequence-based association publications (related to 
STAR Methods). 
Distribution of number of traits analysed per publication.  The final overflow bar represents 
>100 traits (publications of 644, 791 and 2048 traits). 

  



SUPPLEMENTAL TABLES 
 
 
Publication identification sources 
  
GWAS Catalog machine learning search: 
 see Lee et al3 
Pubmed and EuropePMC text query searches: 
 sequencing association genome OR exome  
 sequencing association genetic  
 rare variant whole genome whole exome  
 rare variant association analysis 
 gwas sequencing population  
 genetic association studies"[MeSH Terms] AND "high-throughput nucleotide sequencing"[MeSH 
Terms] NOT Review[ptyp] 
 ("whole genome sequencing" OR "whole exome sequencing") AND (METHODS:"skat-o" OR 
METHODS:"gene-based" OR METHODS:"single variant" OR METHODS:"burden")  
 ("whole exome sequencing"[MeSH Terms] OR ("whole"[All Fields] AND "exome"[All Fields] AND 
"sequencing"[All Fields]) OR "whole exome sequencing"[All Fields]) AND ("association"[MeSH Terms] 
OR "association"[All Fields]) 
 ("rare variant association" AND "whole genome sequencing" OR "whole exome sequencing")  
 ("gene-based" OR "collapsing analysis" AND "whole exome sequencing" OR "whole genome 
sequencing")  
 "skat-o" AND "sequencing"  
 "rare variant" sequencing association whole-genome  
Cohort/project website: 
 TopMEd publications list (https://www.nhlbiwgs.org/publications) 
 NIH project reporter (https://projectreporter.nih.gov) 
 UKBiobank list (in house) 
 Open Targets list (in house) 
References 
Twitter 
Conferences 
GWAS Catalog author summary statistics submission 
Personal communication 
 
Supplemental Table 1  
Sources where sequencing-based GWAS were identified (related to STAR Methods) 
 
 
 
 



  Curated meta-data 2014-2019 2020 + 
2019/2020 
preprints 

  n: 120 40 + 7 
        
Study design: Coverage (WGS/WES) ✓ ✓ 

  Analysis type (single/aggregate) ✓ ✓ 

  Number of statistical tests (range or number) ✓ ✗ 

  Minor allele frequency thresholds (if >2 provided 
extracted as 'multiple', if  2 extracted both) 

✓ ✗ 

  Reference genome ✓ ✗ 

  Terms related to study design (abstract/title, 
elsewhere) 

✓ ✗ 

  Terms related to qualifying variants ✓ ✗ 

        
Sample: Sample size category (<300=0, <3000=1, 

<10,000=2, >10,000=3) 
✓ ✗ 

  Broad ancestral category ✓ ✗ 

  Additional ancestry descriptor ✓ ✗ 

  Country of recruitment (if ancestral category NR) ✓ ✗ 

  Consortium/Cohort ✓ ✗ 

        
Traits: Number analysed ✓ ✗ 

  Reported trait ✓ ✗ 

  Mapped trait EFO name ✓ ✗ 

  Mapped trait EFO ID ✓ ✗ 

  Background trait EFO name ✓ ✗ 

  Background trait EFO ID ✓ ✗ 

        
Data 
availability: 

Summary statistics     

  Single variant/aggregate; freely, restricted, partial 
or no. 

✓ ✗ 

  Location ✓ ✗ 

  Sequence data     
  In restricted repository or no ✓ ✗ 

  Location ✓ ✗ 

  Accession ID ✓ ✗ 

Supplemental Table 2 Overview of publication meta-data extracted (related to STAR 
Methods).  All curated meta-data is included in Supp. Table 4. 



 

Selected examples of variant filtering descriptions (annotation/function) 

non-synonymous 

putative damaging 

nonsynonymous and otherwise presumed functional 

variants that are most likely to affect a protein's function, that is, non-synonymous, stop gain, stop loss, frameshift deletions and 
insertions, and splice site variants.; 

nonsynonymous and splice-site variants 

“qualifying” variants; 1) all non-synonymous and canonical splice variants (coding model), 2) all non- synonymous coding 
variants except those predicted by PolyPhen-2 HumVar(13) to be benign (not benign model), and 3) only stop gain, frameshift 
and canonical splice variants (loss-of-function [LoF] model). 

All aggregation tests utilized only variants that were rare (defined as MAF<5% in the population set) and either truncating (frameshift, 
essential splice site, nonsense) or missense and predicted to be deleterious (by at least one of Polyphen, SIFT, or Condel) as annotated by 
Variant Effect Predictor (VEP) release 74. The analysis of rare truncating mutations, however, only included variants annotated as 
nonsense (SNVs only), essential splice site (SNVs/indels), or frameshift (indels only). (multi) 

ultrarare, deleterious, nonsynonymous variants ; qualifying variants were restricted to indels and single-nucleotide variants annotated as 
having either a loss-of-function (LoF) effect, an in-frame indel, or a “probably damaging” missense prediction by Polymorphism 
Phenotyping version 2 (PolyPhen, HumDiv; http://genetics.bwh.harvard.edu/pph2/) (16). These analyses relied on the predicted effects 
of the LoF and missense annotated variants whose functions have not been individually confirmed in the laboratory. We subsequently 
performed analyses of CCDS genes using six alternative qualifying variant models as defined in Table E4, including an autosomal recessive 
model and a synonymous variant negative control model. 

We defined qualifying variants in four ways (Table 1); ultra-rare variants; loss-of-function, inframe insertion or deletion, or a “probably 
damaging” missense effect by PolyPhen-2 (HumDiv); Three secondary analyses were performed to evaluate the contribution to epilepsy 
risk from: rare loss-of-function variants with an internal and external population MAF up to 0.1%; rare non-synonymous variation in the 
general population with an internal and external MAF up to 0.1%; and a presumed neutral model that imposed similar MAF thresholds as 
our primary analysis, but focused specifically on protein-coding variants predicted to have a synonymous effect. 

deleterious - predicted by variant effect predictor (VEP) to have “HIGH” impact, cause protein loss-of-function (stop-gain, frameshift 
insertion and deletion [indel], etc.), or were missense mutations with a combined annotation dependent depletion (CADD)26 score >25 

we considered six functional annotations, CADD [7], RegulomeDB [18], FunSeq [19], Funseq2 [20], GERP++ [21] and GenoSkyline [8] 

loss of function (LoF) variants defined as follows were used for further analysis: stop gain/loss, coding INDELs, splice-site acceptors, and 
splice-site donors. We also included variants predicted as damaging according to their SIFT [23] score and a CAD [24] score of > 20.; gene 
score (a gene deleteriousness score) quantified the impact of damage of a gene, and was defined as the geometric mean of the SIFT 
scores for the multitude of deleterious variants in a gene. 

Two sets of analyses were performed: The first included only frameshift (insertion/deletion/block substitution), stopgain, stoploss and 
splicing SNVs (jointly defined as loss-of-function (LOF) variants), while the sec- ond included all variants captured in the first analysis as 
well as non-synonymous SNVs and non-frameshift indels or block substitutions that were predicted to be probably dam- aging by 
Polyphen 2 and deleterious by SIFT [1, 62]. 

(1) PTVs at any allele frequency with VEP annotations: frameshift_variant, initiator_codon_variant, splice_acceptor_variant, 
splice_donor_variant, stop_lost, stop_gained; 
(2) PTVs included in (1) plus missense variants with MAF<0.1% scored as “damaging” or “deleterious” by all five functional prediction 
algorithms; 
(3) PTVs included in (1) plus missense variants with MAF<0.5% scored as “damaging” or “deleterious” by all five algorithms. (multi) 

Supplemental Table 3  
Examples of variant filtering descriptions provided by authors (related to Figure 2). 
Terms in text related to variant selection.   



 
 
 
Supplemental Table 4 
Full curated meta-data from publications included in this analysis 
 
Supplied as separate .xlsx file  



 
 
 
 
Broad ancestral 
category Overall % (n) Exclusively % (n) 

In combination with other 
ancestry % (n) 

European 71% (85) 40% (48) 31% (37) 

African American 28% (33) 7% (8) 21% (25) 

Subsaharan African 1% (1) 0% (0) 1% (1) 

African unspecified 3% (4) 0% (0) 3% (4) 

East Asian 13% (15) 8% (10) 4% (5) 

South Asian 1% (1) 0% (0) 1% (1) 

Hispanic 8% (9) 3% (3) 5% (6) 

Greater Middle Eastern 1% (1) 1% (1) 0% (0) 

Native American 2% (2) 1% (1) 1% (1) 

Other admixed 3% (4) 0% (0) 3% (4) 

Other 4% (5) 1% (1) 3% (4) 

NR 13% (15) 7% (8) 6% (7) 
 
Supplemental Table 5 
Publication level breakdown of the broad ancestral categories of individuals, defined 
per the GWAS Catalog ancestry framework (related to Figure 3).   
Overall = percentage of all publications that include an ancestry, either exclusively or in 
combination with other ancestries. 
  
 
 
 
  



 
 
 
Individual level sequence data availability % N publications 
Controlled access repository (accession ID provided) 19% 23 
Controlled access repository (no ID provided) 2% 2 
Partial dataset in repository 2% 2 
Partial dataset in repository, partial available upon request 2% 2 
Available upon request 3% 4 
None 73% 90 
 
 
Supplemental Table 6 
Individual level sequence data availability (related to Table 1). 
Analysis of author statements regarding individual level sequence data. 
 
  



 
Cohort/consortium Count 
NR 24 
TOPMed 15 
ARIC 8 
NHLBI GO ESP 8 
JHS 6 
Alzheimer Disease 
Sequencing Project (ADSP) 6 

TwinsUK 6 
UK10K 5 
UKBiobank 5 
FHS 4 
FINRISK 3 
ADNI 2 
CHARGE 2 
Estonian Biobank 2 
GenTAC 2 
HELIC-MANOLIS 2 
IGM 2 
Epi4K 2 
Old Order Amish Study 2 
ALSPAC 1 
ARC 1 
ARRA 1 
AURORA 1 
BDR 1 
Boston Early-Onset COPD 
Study (EOCOPD) 1 

CASPMI 1 
CHS 1 
CONVERGE 1 
COPDGene 1 
CUMC 1 
deCODE 1 
DiscovEHR 1 
EGD 1 
Emory 1 
ENGAGE 1 
EPGP 1 
EPIC Potsdam 1 
Epilepsy Phenome/Genome 
Project 1 

Familial dyslipidemia 1 
FinMetSeq 1 
FinnDiane 1 
Genetic Epidemiology of 
Asthma in Costa Rica 1 

Genomic Translation for ALS 
Care (GTAC study) 1 

Georgia Centenarian Study 
(GCS) 1 

GOLDN 1 
Health 2000 1 
Healthy Nevada Project 1 
iJGVD (controls) 1 
International FTLD-TDP 
WGS Consortium 1 

INTERVAL 1 
IRASFS 1 



IRCCS 1 
KARE 1 
MESA 1 
METSIM 1 
Minnesota Twin Family 
Study (MTFS) 1 

Nottingham Smokers cohort 1 
NSPHS 1 
OPCS 1 
PACA-AU 1 
PAH biobank 1 
PanCuRx 1 
PDAY 1 
PEACH 1 
PREDICTION-ADR 
Consortium and 
EUDRAGENE 

1 

PROP 1 
QPCS 1 
RISK 1 
ROSMAP 1 
RS 1 
SABG 1 
SDR 1 
SJLIFE 1 
Steno Diabetes Center 1 
T2D-GENES 1 
TCGA 1 

 
 
Supplemental Table 7 
A count of the occurrence of cohort and consortium/project names in sequencing-
based GWAS publications (related to Figure 3). This table does not distinguish between 
cohorts (e.g. Old Order Amish Study) or consortia/projects (e.g. TOPMed) because this 
distinction is typically not made by authors. All instances were extracted, for example ‘the 
JHS cohort sequencing by the TOPMed program’, is represented as one instance of JHS, 
and one instance of TOPMed.   
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