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Methods S1 
 

1.1 DNA extraction 

For all modern samples, DNA extractions were performed using phenol-chloroform1, including 

for the PacBio and 10X genomics libraries for the de-novo assembly. DNA isolated for generating 

Bionano libraries was mixed and centrifuged at 2,200 rcf for 5 minutes at 4°C. The resulting pellet 

was re-suspended in 100uL of buffer containing 10 mM Tris (pH 7.2), 50 mM EDTA, and 2 mM 

NaCl. The cell suspension was embedded into four 0.8% agarose plugs, targeting a 1:1, 1:2, 1:4, 

and 1:8 titration. Agarose plugs were then treated with Puregene proteinase K and RNAse A, 

washed, treated with agarase, and drop dialyzed, as described by the Bionano Prep Blood DNA 

Isolation Protocol (Document number 30033).  

For historical samples, we extracted DNA from the toepads of the 13 historical birds (Table 

S1) using a DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). These samples were selected 

based on high endogenous DNA content (i.e., 75.9-91.4%; Table S1) which was estimated with a 
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screening sequencing step where sequencing reads were mapped to the kākāpō mitogenome as 

described in2. Appropriate precautions were taken to minimize the risk of contamination in 

historical samples3.  

 

1.2 Library preparation for De-novo assembly 

For the PacBio sequencing, Jane’s genomic DNA was sheared using the Megaruptor (Diagenode, 

Denville, NJ), followed by SMRTbell library preparation according to the manufacturer protocols 

(Pacific Biosciences, Menlo Park, CA). Two libraries were generated with size selection (Sage 

Science, Beverly, MA) cut offs of 15kb and 30kb, resulting in libraries with average insert sizes 

of 40kb and 43kb, respectively. Sequencing was performed in 2016 on the PacBio RSII using P6-

C4 sequencing chemistry and 10-hour acquisition times per run. A total of 127 SMRT Cells were 

run, resulting in ~90 Gb of total sequence data, with an insert size N50 of 13kb. 

For Bionano optical mapping using the genomic DNA was fluorescently labeled with the 

enzymes DLE-1. The labeled DNA was run on a Saphyr instrument according to the Bionano Prep 

Direct Label and Stain (DLS) (document number 30206) and Bionano Prep Labeling NLRS 

(document number 30024) protocols. 

 

1.3 De-novo assembly generation and curation 

The kākāpō assembly was generated with the Vertebrate Genomes Project (VGP) v1.6 assembly 

pipeline4. Contigs were generated from PacBio subreads using FALCON-Unzip with 1 round of 

Arrow polishing using the DNAnexus FALCON 5.1.1 and FALCON-Unzip 1.0.2 pipelines5. This 

resulted in an initial set of primary contigs, which represent a pseudohaplotype, and a secondary 

set of haplotigs containing the alternative form of heterozygous alleles. The primary contig set was 

then iteratively scaffolded with 10X Genomics linked reads using scaff10x 2.0 (git 4.28.2018; 

https://github.com/wtsi-hpag/Scaff10X). Bionano optical maps were generated into in-silico 

cmaps using Bionano Solve v3.2.16 using non-haplotype aware arguments. One-enzyme 

scaffolding was performed with default parameters Hi-C libraries were made using the Arima-HiC 

Kit (P/N: A510008). Existing contigs and scaffolds were arranged into chromosome-level 

scaffolds using the Illumina paired end reads with Salsa 2.07 mapped with Arima mapping pipeline 

(https://github.com/ArimaGenomics/mapping_pipeline; Fig. S1). 
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Additional rounds of consensus polishing were conducted by mapping all the PacBio 

subreads and 10X reads to both the primary and alternative sets. One more round of Arrow 

polishing was conducted with PacBio reads using smrtanalysis v5.1.0.26412. For final polishing, 

the 10X linked reads were aligned with Longranger v2.2.28, and erroneous bases (variants) were 

called with Freebayes v1.2.09 before correction with bcftools v1.810. During curation, assignment 

of alternative alleles in the primary assembly was further evaluated by Purge Haplotigs bitbucket 

7.10.2018 to reduce artefactual duplication11. All scripts used in the assembly pipeline are publicly 

available from https://github.com/VGP/vgp-assembly. 

 The resulting kākāpō assembly was subjected to contamination screening and manual 

curation to detect and correct remaining assembly issues. The contamination screen detected and 

removed 34 scaffolds that consisted of E. coli sequence only (2,243kb total). For manual assembly 

curation, all available sequencing and mapping and previous assembly data were compared to the 

assembly using gEVAL12. Alignment discordances were manually assessed and resolved by 

breaking and re-joining scaffolds. A HiC 2D map generated with Juicer and visualized in 

Juicebox13 allowed for further scaffold correction and super-scaffolding in order to bring the 

assembly to chromosome scale (Fig. S1). HiC-led changes were verified against Pacbio, Bionano, 

10X link reads and other data in gEVAL.  

The manual curation resulted in 19 scaffold rearrangements and the removal of 99 sequence 

regions that were identified as haplotypic duplications. This reduced the initial assembly length by 

14.5Mb (1.2%) and the scaffold number from 229 to 99, whilst decreasing the scaffold NG50 from 

88.2Mb to 83.2Mb to correct over-scaffolding. NG50 contig was of 9.1Mb. 99.2% of the final total 

assembly sequence of 1.17 Gb was assigned to the identified 26 chromosomes (24 autosomes and 

two sex chromosomes, see below), which were named according to their size (Figs. S2-3). Only 

67 scaffolds remain unplaced. 

 We then identified Z and W chromosomes from the assembled genome by blasting all 

scaffolds against the Z-chromosome of zebra finch (v3.2.4, Taeniopygia guttata; GenBank: 

GCA_000151805.2) and W-chromosome of chicken (v5.0, Gallus gallus, GenBank: 

GCA_000002315.5) using BLAST+ 2.5.014. The BLAST+ parameters were set as: -evalue = 1e-

10; -word_size = 15; -max_target_seqs = 1000. We then excluded the identified Z chromosome 

(CM013763.1; 101.23Mb) and W chromosome (CM013773.1; 35.7Mb), from all downstream 

analyses in order to avoid bias associated with analyses relying on heterozygosity estimates. We 
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also visually examined the coverage across the genome in the bam files generated for males and 

females to check that the identified chromosomes were in fact the Z and W using Qualimap 

v2.2.115. Males had on average ~15X and ~0X for the Z and W chromosome, respectively; and 

females had on average ~7X and ~7X for the Z and W chromosome, respectively. We then 

identified CpG sites using a custom script masking CG sites and masked repetitive elements in the 

genome assembly using RepeatMasker v4.0.716 (http://repeatmasker.org) applying the repeat 

element library of the aves database.  

We also examined synteny between the de-novo kākāpō assembly and both zebra finch (v 

3.2.4, Taeniopygia guttata; GenBank: GCA_000151805.2) and chicken (v5.0, Gallus gallus, 

GenBank: GCA_000002315.5) assemblies. The alignments were done with Mashmap217 at 150Kb 

resolution and 75% identity (Figs. S2-3). 

The mitogenome was assembled using a dedicated mitoVGP v1.0 pipeline complementing 

both PacBio long-reads and 10x linked-reads using the same WGS data employed for the nuclear 

genome. Briefly, mitochondrial reads were identified in WGS long reads by similarity with a 

previously reported mitogenome assembly of the kākāpō (NC_005931.1) using BlasR v5.3.218. 

Reads were assembled with Canu v1.8, the assembly polished with long reads using variantCaller 

v2.2.2 (Arrow), and further polished with short reads using Bowtie2 v2.1.019 and Freebayes 

v1.2.09. Overlapping ends were trimmed using a custom script 

(https://github.com/GiulioF1/mitoVGP/tree/master/pipeline_v1.0), a second round of short-read 

polishing was performed, and the sequence was further trimmed with the same script. The final 

consensus sequence was manually oriented to start with trnF using annotation from MITOS2 

(PMID: 22982435). 

The final resulting assembled genome was submitted to the GenBank archive in two parts: 

the primary pseudohaplotype containing the best representation of the haploid genome 

(GCA_004027225.1/GCF_004027225.1), and the alternate pseudohaplotype containing all the 

alternative alleles (GCA_004011185.1). 

 

1.4 Genome annotations 

Three types of annotations were built for the kākāpō de-novo genome assembly. These annotations 

generated between 15,699 and 16,060 high-quality protein-coding gene models.  
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First, because RNA data was not available at the time of the initial analyses, we annotated 

the kākāpō de-novo genome assembly using publicly available protein sequences datasets and used 

this annotation for the analysis of mutational load in coding and non-coding regions. We first 

assessed the quality of the annotation using different reference protein sets with the MESPA 

pipeline20. We collapsed reference protein sets for the kea (Nestor notabilis; GenBank: 

SRP029311), which is closely related to kākāpō and zebra finch (Taeniopygia guttata; GenBank: 

GCA_000151805.2) to 90% coverage following Uniprot90 guidelines using a custom script. This 

results in each protein cluster being composed of sequences with at least 90% sequence identity 

to, and 80% overlap with, the longest sequence. In that way, we discarded isoforms of the reference 

datasets. We then used MESPA to extract the gene models in kākāpō with at least 90% length 

coverage to each set of reference proteins and to generate an annotation in gff format. We extracted 

85% (13,175 out of 15,342) high quality kākāpō protein models (i.e., aligning to 90% of their 

expected length) using zebra finch as a reference protein set, and 86% (10,159 out of 11,806) using 

kea as a reference protein set.  

Next, we refined the annotation for the kākāpō assembly using the BRAKER2 v2.1.1 

pipeline21–23. BRAKER is an automated method for accurate gene structure annotation, which 

allows fully automated training of the gene prediction tools GeneMark-EX24,25 and AUGUSTUS26–

28 for gene model prediction and can incorporate protein homology information from closely 

related species for training purposes.  

In order to generate a high quality protein dataset for training in BRAKER2, we predicted 

proteins for kākāpō using the zebra finch proteome29 (ftp://ftp.ensembl.org/pub/release-

89/fasta/taeniopygia_guttata/pep/Taeniopygia_guttata.taeGut3.2.4.pep.all.fa.gz), then filtered 

these for high quality models by comparing them to the flycatcher proteome30 

(ftp://ftp.ensembl.org/pub/release-

89/fasta/ficedula_albicollis/pep/Ficedula_albicollis.FicAlb_1.4.pep.all.fa.gz).  

The resulting proteins after filtering, were considered high quality kākāpō protein 

sequences, which were then used as training for gene model predictions by BRAKER2. Both the 

zebra finch and flycatcher proteomes were first clustered to the longest representative of each set 

of proteins having at least 90% amino acid identity, using cd-hit v4.6.1 (-c 0.90 -T 16 -aS 0.8 -M 

0), reducing the protein dataset from 18,204 to 15,363 and 15,983 to 15,372 proteins, for zebra 

finch and flycatcher, respectively, in order to remove recent duplicates and isoforms. Using the 
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zebra finch clustered proteome as input, along with the kākāpō genome 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/004/027/225/GCA_004027225.1_bStrHab1_v1.p/G

CA_004027225.1_bStrHab1_v1.p_genomic.fna.gz), proteins were predicted with the exon aware, 

protein to genome aligner SPALN231. 

The resulting kākāpō proteins where then filtered to only retain those with a start codon 

and no internal stop codons (n=8,784). These were then further filtered to only retain those that 

when aligned to the flycatcher filtered proteome, covered at least 95% of the flycatcher protein 

length (n=6,657), and then this filtered kākāpō protein set was then used as a high quality protein 

set for BRAKER2 training. 

Soft masking of the repeat content in the genome was performed using Red32, which 

masked 32.33% of the genome (375,531,262 bp). Alignment of the filtered kākāpō protein dataset 

against the soft masked genome was performed by GENOME THREADER v1.7.0, with the option 

“-species “chicken” set in order to improve splice-site recognition33. The output of the GENOME 

THREADER alignment was then used by BRAKER2 for gene prediction training (settings: --

prg=gth --gth2traingenes --trainFromGth –softmasking).  

We then extracted CDSs and protein sequences from this annotation using cufflinks 

v2.2.134,35 gffread command using the -V option to exclude genes with in-frame STOP codons. 

We identified 16,171 kākāpō gene models with a mean length of 1,514bp (Median=672; min=50; 

max=26,940) to be used in downstream analyses.  

Finally, we performed a functional annotation of these gene models using the eggNOG-

mapper v4.5.136, which uses fast orthology assignments upon precomputed protein clusters within 

a phylogenetic context36. We used ‘Aves’ as taxonomic scope and the ‘Restrict to one-to-one’ and 

the ‘Use experimental terms only’ to prioritize precision, quality of matches and also to remove 

multiple matches which could represent pseudogenes. Overall, we obtained 15,699 annotated gene 

models.  

 Secondly, the Ensembl gene annotation system37 was used to annotate the kākāpō de-novo 

genome assembly. Multiple lines of evidence were used: MinION kidney and brain long reads 

(SRX6605068, SRX6605069), Pacbio Iso-Seq liver long reads (SRX5842929), Illumina kidney 

and brain short reads (SRX6605066, SRX6605067), splice aware protein-to-genome alignments 

of vertebrate proteins classed as either protein existence level 1 (experimental evidence at the 

protein level) or level 2 (experimental evidence at the transcript level) from UniProt38 and 
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coordinate mapping of human reference annotations to kākāpō via a pairwise whole genome 

alignment. 

Long read data were mapped to the genome using Minimap239 (PMID: 29750242) with the 

recommended settings for Iso-Seq and Nanopore data. Short read data were initially mapped via 

BWA40 and then locally re-aligned in a splice-aware manner via Exonerate41. Protein-to-genome 

alignments were carried out via GenBlastG42. Annotation mapping from human was carried out 

via a pairwise alignment using LastZ43 and subsequent exon coordinate mapping and transcript 

reconstruction via both in-house software and CESAR v2.044. 

Due to the high error rate of the Nanopore data, post mapping error correction was 

employed to maximize the number of usable mappings. Intron/exon boundaries that were non-

canonical or deemed low frequency (five or fewer observations across all mappings at a locus) 

were replaced with high frequency boundary coordinates (greater than five observations) within a 

50bp edit distance. High frequency boundary observations were determined both from canonical 

boundary observations from the Nanopore mapping themselves and also from the alignments of 

the short-read data. A similar strategy was employed to remove likely artificial gaps of 200bp or 

less from exons described by the Nanopore data. In these cases, low frequency potential gaps 

between two adjoining exons were filled in based on high frequency observations of single exons 

with the same terminal boundary coordinates. 

In order to determine the protein coding genes and transcripts, all evidence lines were 

analysed at each locus. ORF likelihood was determined by aligning the ORF translation against 

known vertebrate proteins. Preference was given to transcript isoforms generated from the 

transcriptomic data that had high coverage matches to known vertebrate proteins. For loci where 

the transcriptomic data was not available or highly fragmented, gap filling was done using the 

splice-aware protein-to-genome alignments and annotation mappings from human via a pairwise 

whole genome alignment, with preference given to resulting ORFs that showed a high percent 

coverage and identity when re-aligned to the original evidence. A total of 16,037 protein-coding 

genes were identified with 24,520 transcript isoforms. 

Pseudogenes called from the protein-coding loci that did not have transcriptional support, 

were analysed for evidence of structural abnormalities, such as absence of a start coding, non-

canonical splicing, unusually small intron structures (< 75bp) or excessive repeat coverage. Loci 

with two or more such abnormalities were reclassified as pseudogenes. Single exon loci that 
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showed matched a multi-exon ORF elsewhere in the genome with greater than 80 percent coverage 

were reclassified as retrotransposed pseudogenes. At total of 103 pseudogenes and 9 

retrotransposed pseudogenes were identified. 

  Long non-coding loci were called using both the short and long read transcriptomic data. 

Potential lncRNAs were initially called from transcript models where no BLAST28 hit to a known 

vertebrate protein was found. The resulting set was then filtered to remove and transcripts with 

genomic overlap with a protein-coding locus. An addition filter was then applied to remove single 

exon loci (due to the abundance of transcriptional noise generally found in long read data). We 

identified 3,578 long non-coding loci with 4,030 transcript isoforms. 

Small non-coding loci were predicted using data from miRbase45 and Rfam46 and scanning 

against the genome (described in more detail in the Ensembl annotation system37). Initial hits were 

then filtered based on predicted ability to form stem-loop secondary structures. This resulted in 

465 small non-coding gene predictions. The kākāpō gene annotation is due to be released in 

Ensembl release 99 (expected December 2019). For more detail on the annotation system please 

refer to the Ensembl annotation system37. 

 Finally, the NCBI Eukaryotic Genome Annotation Pipeline47 was used to annotate genes, 

transcripts and proteins on bStrHab1_v1.p (GCF_004027225.1), the primary pseudohaplotype of 

the assembly. Next, the assembly was first masked with WindowMasker48. Nearly 350 million 

RNA-Seq reads from kākāpō brain and kidney tissue, 700 million RNA-Seq from other species in 

the Psittacidae family (Amazona ventralis, Aratinga solstitialis and Platycercus eximius), 351,938 

IsoSeq consensus reads from liver and 8.1 million Oxford Nanopore reads from brain and liver 

tissue were retrieved from SRA and aligned to the masked genome, along with 9,075 known 

RefSeq transcripts, 42,131 GenBank transcripts, and 756,464 ESTs from birds. The alignments 

were performed using BLAST49 followed by the global aligner Splign50 for all transcripts except 

the IsoSeq and Oxford Nanopore data, which were aligned with Minimap239. In the absence of 

kākāpō proteins in GenBank, the proteins that were chosen as candidates for alignment to the 

genome by BLAST and ProSplign spanned a wide range of other birds, including, in particular, 

RefSeq proteins from Columba livia, Parus major, Gallus gallus. RefSeq proteins for Xenopus 

laevis and human were also included.  

The resulting transcript and protein alignments were used as evidence to predict the 

structures and boundaries of gene and transcript models. Ab initio extension or joining/filling of 
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partial open reading frames in compatible frames of these preliminary models was performed by 

Gnomon (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/), using a hidden 

Markov model trained on kākāpō, in the minority of cases where the overlapping alignments did 

not define a complete model but the coding propensity of the CDS on the alignments was 

sufficiently high. RNAs were predicted with tRNAscan-SE:1.232651 and small non-coding RNAs 

were predicted by searching the RFAM 12.0 HMMs for eukaryotes using cmsearch from the 

Infernal package52. The annotation of bStrHab1_v1.p (NCBI Strigops habroptila Annotation 

Release 100) resulted in 16,060 protein-coding genes, 3,131 non-coding genes and 165 

pseudogenes (see details in 

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Strigops_habroptila/100/). 

For the Ensembl and NCBI assembly pipelines, RNA data for kākāpō was extracted from 

brain and kidney tissue from a female chick that died at three-days old through grinding on liquid 

nitrogen, tissue disruption in Trizol reagent (Thermofisher), followed by extraction of total RNA 

using Qiagen RNAeasy technologies. mRNA was purified from 23 µg and 11 µg of kidney and 

brain total RNA respectively using the Dynabeads mRNA Purification Kit (Invitrogen, U.S.A.). 

124 ng and 229 ng of purified mRNA from kidney and brain, respectively, was used for library 

preparation with the Direct cDNA Sequencing DCS109 kit (Oxford Nanopore Technologies, 

U.K.). Libraries were sequenced for 48 hours on R9.4.1 MinION flow cells using two Mk1B 

MinION sequencers (Oxford Nanopore Technologies). Raw data were base-called using 

guppy_basecaller 3.1.5 in high accuracy mode (dna_r9.4.1_450bps_hac) on a NVIDIA GeForce 

RTX 2070 GPU. 

 

1.5 Generation time for demographic reconstructions 

It was previously thought that generation time in kākāpō was of ~25 years53. However, this number 

may be an overestimate because it is based on the average age to first reproduction in the extant 

population, with females recorded to have bred between 5 and 18 years while males have bred 

between 11 to 23 years. However, in this small population, only a few older dominant males have 

reproduced (Daryl Eason, DOC, pers. comm.) and many young males have thus not had the 

opportunity to breed yet. We thus used a shorter generation time, assuming that a time of 15 years 

may be more biologically realistic in a large and natural kākāpō population.  
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Supplemental figures 
 

 
Figure S1. HiC 2D map of the curated bStrHab1 assembly, Related to STAR Methods. The assembly 

plot was generated using HiGlass54. Black lines depict scaffold boundaries. The Z and W sex chromosomes 

are shown in bold letters.  The kākāpō chromosome assignments were based on HiC data and over 99% of 

the sequence was assignable to arm-to-arm chromosomes via digital karyotyping, where 

compartimentalization of the HiC signal is interpreted as outline for a self-contained sequence unit, (i.e., 

chromosome).
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 1 

 2 
Figure S2. Ideogram of kākāpō chromosomes relative to (a) male and (b) female zebra finch, Related to STAR Methods. Numbered rectangles 3 

represent kākāpō chromosomes, and colored blocks inside represent regions of homology with zebra finch chromosomes. Lines within the colored 4 

blocks represent block orientation. 5 
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Figure S3. Ideogram of kākāpō chromosomes relative to chicken, Related to STAR Methods. 

Numbered rectangles represent chromosomes, and colored blocks inside represent regions of homology 

with chicken chromosomes. Lines within the colored blocks represent block orientation. The Z chromosome 
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homolog is fused with the chromosome 11 equivalent of chicken based on read and mapping data. Also, 

two autosomes (Chr 16 and 18) had 0 gaps each and no evidence of collapsed repeats, and all others had 

only 1 to 24 gaps, which may be explained by the fact that in birds most microchromosomes are acrocentric 

(i.e., centromere at the extremity of chromosomes). 
 

 
Figure S4. DNA-damage in 13 historical genomes, Related to STAR Methods. Fraction of C-to-T 

substitutions by distance from the read-end averaged over the historical genomes. The USER treatment 

removed the majority of typical post-mortem damage patterns, with the historical genomes showing slightly 

elevated levels of these substitutions.  
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Figure S5. Population structure in 35 Stewart Island and 14 mainland kākāpō, Related to Figure 1 

and STAR Methods. (a) Individual clustering assignment in ADMIXTURE. The lowest cross-validation 

error was obtained for K=2. Individuals in bold are museum specimen showing inconsistencies between 

genetic clustering and specimen labelling, potentially as a result of museum specimen mislabelling2. (b) 

Neighbour-joining tree with asterisks representing museum specimens showing inconsistencies between 

genetic clustering and specimen labelling. All mislabelled samples were analysed as part of their genetically 

assigned population in all downstream analyses. 
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Figure S6. Demographic scenarios for mainland and Stewart Island kākāpō, Related to Figure 1 and 

STAR Methods. (a) Post-glacial divergence, (b) Post-glacial divergence followed by Stewart Island 

population expansion, (c) Post-glacial divergence followed by Mainland population expansion and, (d) 

Post-glacial divergence followed by Stewart Island and Mainland population expansion. Note that the 

recent population expansion for the Stewart and Mainland populations (TEXP; STAR Methods) were not 

constrained in order to allow for either a bottleneck or population expansion to occur. These events are 

however referred to as expansions as they were supported by the best model. Scenario (d) also depicted in 

Fig. 1d obtained the highest support as estimated by AIC's weight (w) (Table S2). 
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Figure S7. Comparison of observed (left panel) and expected (right panel) 2D-SFS for the preferred 

scenario of Post-glacial divergence followed by Stewart Island and mainland population expansion, 

Related to Figure 1 and STAR Methods. In the main two panels, each cell represents the number of 

alleles which occur at frequency x in Population 1 (Stewart Island) and frequency y in Population 2 

(Mainland). The colored bar to the right depicts the count of allele on a logarithmic scale that occur at a x-

y frequency combination in the main two panels. 
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Figure S8. Posterior distributions of effective population sizes, glaciation bottleneck and divergence 

times and change in effective population size for the preferred scenario of Post-glacial divergence 

followed by Stewart Island and mainland population expansion, Related to Figure 1 and STAR 

Methods. Dashed and full lines represent prior and posterior distributions, respectively. 
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Table S2. Relative likelihood of the three different demographic models tested and depicted in Figure 

S6, Related to Figure 1 and STAR Methods. A scenario of ‘Post-glacial divergence followed by Stewart 

Island and Mainland population expansion’ obtained most support based on AIC’s weight.  

Model 
Log 

MaxEstLhood 

N of estimated 

parameters 
AIC Δ 

AIC's 

weight (w) 

a) Post-glacial divergence -1522664.81 7 3045343.61 126184.332 0.00E+00 

b) Post-glacial divergence 

and Stewart Island 

population expansion 

-1516988.68 9 3033995.35 114836.0731 0.00E+00 

c) Post-glacial divergence 

and Mainland expansion 
-1503772.70 9 3007563.41 88404.128 0.00E+00 

d) Post-glacial divergence 

and Stewart Island and 

Mainland expansion 

-1459568.64 11 2919159.28 0 1.00E+00 

aBased on the best of 50 likelihood estimates of each scenario 
bAICi=2d 2-ln(Lhoodi)  
cΔi =AICi -min(AIC) 
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Table S3. Posterior distributions of parameters for the preferred scenario d) Post-glacial divergence 

followed by Stewart Island and mainland population expansion, Related to Figure 1 and STAR 

Methods. Times are in years BP. Note that the recent population expansion for the Stewart and Mainland 

populations (TEXP; STAR Methods) were not constrained in order to allow for either a bottleneck or 

population expansion to occur. These events are however referred to as expansions as they were supported 

by the best model. 

Parameter mode 
95% CI 

Lower CI Higher CI 

TBOT 157,800 130,800 198,165 

TDIV 9,030 8,805 9,120 

TEXP-main 8,910 8,670 9,015 

TEXP-Stewart 8,205 7,740 8,505 

Npre-glac 24,714 23,466 26,529 

Nglac-main 510 505 570 

Nmain 28,135 23,026 41,850 

Nglac-Stewart 91 81 102 

NStewart 485 415 568 
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Figure S9. Past demography of kākāpō using the MSMC2 approach, Related to Figure 1 and STAR 

Methods.The x-axis corresponds to time before present in years on a log scale, assuming a mutation rate 

of 1.33×10−8 substitutions/site/generation and a generation time of 15 years53. At the end point of the curve 

some 300 y BP, Ne estimates for the Stewart Island and the mainland populations were ~300 and ~14,500, 

respectively. However, it is worth noting that Ne estimates at the end point of the curve should be taken 

with caution due to the low number of coalescent events55. 
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Figure S10. Comparison of divergence estimates between the ancestral population of mainland and 

Stewart Island using the PSMC approach, Related to Figure 1 and STAR Methods. The x axis 

corresponds to time before present in years on a log scale, assuming a mutation rate of 1.33×10−8 

substitutions/site/generation and a generation time of 15 years53. The red, green and purple curves represent 

pseudo-diploid chromosome Z rescaled by factor of 0.25 (sex-chromosome/autosome ratio: 0.75) and using 

64, 49 and 37 discrete intervals, respectively.  
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Figure S11. Genome-wide nucleotide diversity (!) estimates, Related to Figure 2 and STAR Methods. 

Autosomal genome-wide population-level nucleotide diversity for (a) Mainland (including Richard Henry) 

and (b) Stewart Island kākāpō. The higher " at the edges of chromosomes compared to the centre of 

chromosomes reflects the recombination landscape of the bird genome56,57, with lower recombination rates 

in the centres of macrochromosomes, relative both to their edges and the micro-chromosomes56,58. 
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Figure S12. Proportion of the genome in Runs of Homozygosity (FROH), Related to Figure 2. FROH was 

calculated by including only ROH ≥2Mb in 14 mainland and 35 Stewart Island kākāpō using the sliding 

window approach implemented in PLINK. The average FROH for ROH ≥100kb was 15.1% ±6.5 SD, and 

52.9% ±6.6 SD (P<0.01), for the mainland and Stewart Island, respectively.  The average FROH for ROH 

≥2Mb was 4.4% ±6.1 SD and 34.3% ±7.7 SD (P<0.01) for the mainland and Stewart Island, respectively. 

 

 

 



 24 

 
Figure S13. Frequency distribution of runs of homozygosity (ROH) size, Related to Figure 2. Only 

ROH ≥2Mb are shown. Inset shows the magnification for clarity. We identified a total of 22,458 ROH  and 

the longest ROH sizes for the mainland and Stewart Island were 41.34Mb and of 75.61Mb, respectively.  
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 1 
Figure S14. Distribution of ROH ≥5Mb along the 24 autosomes for 35 Stewart Island (top panel, yellow) and 14 mainland (bottom panel, grey) kākāpō, 2 
Related to Figure 2. We used the sliding window approach implemented in PLINK. The asterisk and triangle depict the mainland historical sample with the 3 
highest FROH (CAN2) and Richard Henry, respectively. Chromosomes are numbered and separated by vertical lines. In some cases, ROH span nearly entire 4 
chromosomes.  5 
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Figure S15. Average proportion of the genome in Runs of Homozygosity (FROH) and distribution of 

runs of homozygosity (ROH) in mainland and Stewart Island kākāpō, Related to STAR Methods. 

Results were obtained using more stringent parameters to assess the robustness of ROH estimates. (a) Open 

bars show total proportion of the genome in ROH ≥100kb and solid bars show proportions in ROH of 

length ≥2Mb. Bars extending from the mean values represent the standard deviation (Welch’s two-sample 

t-test; ***P<0.001). The average FROH for ROH ≥100kb was 14.2% ±6.5 SD, and 51.8% ±6.7 SD 

(P<0.01), for the mainland and Stewart Island, respectively. The average FROH for ROH ≥2Mb was 2.3% 

±5.4 SD and 23.6% ±9.3 SD (P<0.01) for the mainland and Stewart Island, respectively. (b) Frequency 

distribution of ROH size for ROH ≥1Mb. Results are shown here for comparison with main results and 

were obtained using more stringent parameters such as: homozyg-het=1; homozyg-density 100; homozyg-

gap 500. Varying the number of heterozygous sites per ROH and allowing a maximum value of 1 (homozyg-

het 1) had the most effect on ROH detection and resulted in large ROH being broken into ROH of smaller 

size, thereby increasing the overall number of ROH to 33,857. The longest ROH sizes for the mainland and 

Stewart Island were 25.19Mb and of 65.79Mb, respectively. 
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Figure S16. Bird genomes (n=135) used to calculate GERP-scores, Related to STAR Methods. 

Divergence time estimates were obtained from59. 
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Figure S17. Distribution of GERP-scores subdivided by non-coding regions (red) and within exons 

(grey), Related to STAR Methods. The peak for low GERP scores (<1) is caused by stochastic effects as 

only few genomes align in these fast-evolving regions. The much higher GERP-scores within exons relative 

to outside of exons indicates that the method accurately estimates genome conservation60. The overlap 

indicates that not all exonic regions are highly conserved whereas some putatively non-coding regions are. 
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Figure S18. Number of derived alleles per individual stratified by GERP-score, Related to Figure 3 

and STAR Methods. Middle line within boxplots bounds of boxes represent mean and standard deviation, 

respectively (Welch’s two-sample t-test; ***P<0.001). Stewart Island kākāpō have consistently less derived 

alleles for all GERP-scores categories. At high GERP-scores, Stewart Island kākāpō have relatively much 

less derived alleles compared to the mainland population, consistent with a scenario where the most 

deleterious alleles are purged more efficiently than those at low GERP-scores.  
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Figure S19. The ratio of derived alleles between mainland and Stewart Island stratified by GERP-

score, Related to Figure 3 and STAR Methods. Each point represents the ratio of derived alleles between 

mainland and steward island by GERP (binned in intervals of 0.1) score category and striped lines show 

the 95% confidence interval. The difference in the number of deleterious alleles is most pronounced at sites 

under the strongest evolutionary constraint (i.e., GERP>2), with relatively more highly deleterious alleles 

in the mainland population compared to Stewart Island. 
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Figure S20. Number of Synonymous, Missense, LoF and Modifier impact (i.e., downstream or 

upstream) variants in mainland and Stewart Island kākāpō based on the modern assembly (i.e., 

Jane), Related to Figure 3 and STAR Methods. Variants are separated by homozygous or heterozygous 

state. Low = synonymous; Moderate = missense; High = Loss of function (LoF); Modifier = downstream 

or upstream. Middle thick lines within boxplots and bounds of boxes represent mean and standard deviation, 

respectively (Welch’s two-sample t-test; ***P<0.001). The Stewart Island birds carried on average 17.6 
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LoF variants per bird while the mainland birds carried on average 34.1 LoF variants, with Richard Henry 

having 32 LoF variants. In contrast to the Stewart Island population, the mainland population had a higher 

number of LoF alleles in heterozygous state than the Stewart Island population, which is consistent with 

deleterious in heterozygous state being less to exposed to selection61.  
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Figure S21. Number of Synonymous, Missense, LoF and Modifier impact (i.e., downstream or 

upstream) variants in mainland and Stewart Island kākāpō based on an historical consensus 

assembly (LEI2), Related to Figure 3 and STAR Methods. Variants are separated by homozygous or 

heterozygous state. Low = synonymous; Moderate = missense; High = Loss of function (LoF); Modifier = 

downstream or upstream. Middle thick lines within boxplots and bounds of boxes represent mean and 

standard deviation, respectively (Welch’s two-sample t-test; ***P<0.001). The Stewart Island birds carried 

on average 23 LoF variants per bird while the mainland birds carried on average 31 LoF variants, with 

Richard Henry having 37 LoF variants.  

 

 
Figure S22. Rates of LoF variants in runs of homozygosity (ROH) for kākāpō, Related to Figure 3 

and STAR Methods. Diamonds and circles show the rate of LoF variants relative to synonymous variants 

inside and outside ROH, respectively, for each individual genome. Middle dashed lines represent means 

(Welch’s two-sample t-test; *P<0.05; ***P<0.001). There was a significantly lower number of LoF alleles 

inside ROH compared to heterozygous parts of individual genomes in both populations. However, this 

difference was almost 3-fold smaller in the Stewart Island population compared to the mainland population, 

suggesting that repeated inbreeding events may have facilitated the removal of a significant proportion of 

severely deleterious and recessive LoF alleles through exposure in homozygous state from the Stewart 

island population. 
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Figure S23. Counts of derived alleles in the forward simulations with fully recessive dominance 

coefficients, Related to Figure 4 and STAR Methods. Allelic counts of all, heterozygous and 

homozygous for weakly deleterious (-0.001≤ s < 0), mildly deleterious (-0.01 ≤ s < -0.001) and strongly 

deleterious (s < -0.01) mutations. 

 
Figure S24. Counts of derived alleles in the forward simulations with partially recessive dominance 

coefficients, Related to Figure 4 and STAR Methods. Allelic counts of all, heterozygous and 

homozygous for weakly deleterious (-0.001≤ s < 0), mildly deleterious (-0.01 ≤ s < -0.001) and strongly 

deleterious (s < -0.01) mutations. 
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Figure S25. Counts of derived alleles in the forward simulations with additive dominance coefficients, 

Related to Figure 4 and STAR Methods. Allelic counts of all, heterozygous and homozygous for weakly 

deleterious (-0.001≤ s < 0), mildly deleterious (-0.01 ≤ s < -0.001) and strongly deleterious (s < -0.01) 

mutations. 
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Figure S26. Additive genetic load difference between simulations under the Stewart Island and the 

mainland scenarios per replicate, Related to Figure 4 and STAR Methods. Values above zero indicate 

replicates where genetic load was lower in the Stewart Island population compared to the mainland 

population. Not all simulations replicates showed the same pattern, suggesting that this pattern is unlikely 

to be universal due to the randomness nature of evolutionary dynamics and historical contingencies. 

Moreover, variable dominance coefficients act simultaneously and partially recessive mutations are 

expected to disproportionately contribute to inbreeding depression and thus have an impact on purging 

effects62. A wider exploration of different demographic (e.g., size and duration of the founder and bottleneck 

events), genetic (e.g., range of selection and dominance effects) and life-history (e.g., levels of inbreeding 

and mating-types) comparisons with simulations and empirical data is needed to investigate the balance 

between purging and drift-load during evolutionary history (see63,64).  
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Figure S27. Effect of scaling during forward simulations, Related to Figure 4 and STAR Methods. 

Simulations were scaled to speed-up burn-in period as recommended in the SLiM manual. After burn-in 

the scaling factor was removed. Here, we show how nucleotide diversity is not impacted by removing the 

scaling factor (i.e., the mutation-selection equilibrium is maintained) during a period of 10,000 steps (steps 

0-10,000) immediately before when we started to vary the population size according to demographic 

scenarios (steps 10,000-35,000 = 25,000 steps/years).  
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Figure S28. Request form for kākāpō125+ modern genomic data, Related to STAR Methods. The 

online form can be found at: https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-

for-the-future/kakapo125-gene-sequencing/request-kakapo125-data/.  
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All decisions will be made with kākāpō conservation as the top priority.
A spirit of collaboration is expected from all researchers.
There will be no exclusive use of data.
There is a requirement to share, in confidence, results with Kākāpō Recovery and Te Rūnanga o Ngāi Tahu
ahead of publication.
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Project summary: Include benefits to kākāpō conservation and project milestones (keep to the equivalent of one
page maximum) *

Home  Our work  Kākāpō Recovery  What we do  Research for the future
Kākāpō125+ gene sequencing  Request Kākāpō125+ data

Request Kākāpō125+ data Donate

 
Parks & recreation  Nature  Get involved  Our work  

Careers

News & events

About us

Contact



 39 

 
Figure S28. (cont.) Request form for kākāpō125+ modern genomic data, Related to STAR Methods. 
The online form can be found at: https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-

do/research-for-the-future/kakapo125-gene-sequencing/request-kakapo125-data/.  

Kākāpō125+ genomics data sharing terms and conditions

Parties

DIRECTOR-GENERAL of the New Zealand Department of Conservation Te Papa Atawhai (“the Director-General”).
The Department of Conservation is the central government organisation charged with conserving the natural and
historic heritage of New Zealand on behalf of and for the benefit of present and future New Zealanders. 
Te Rūnanga o Ngāi Tahu, the governance entity of the Ngāi Tahu iwi and statutory representative of Ngāi Tahu
Whānui (the collective of individuals who descend from the primary hapū of Waitaha, Ngāti Mamoe, and Ngāi
Tahu, namely Kāti Kurī, Kāti Irakehu, Kāti Huirapa, Ngāi Tūāhuriri, and Kai Te Ruahikihiki)
The User
Background

Te Rūnanga and the Director-General will provide the User access to the Data on the condition that the User
agrees to these Terms and Conditions.
Definitions

Data means the genomic sequences generated by the Kākāpō125+ genomics project, which include all sequences
except for the first (reference) genome, from the kākāpō “Jane”, which was sequenced separately in 2015.
DOC means the New Zealand Department of Conservation.
Te Rūnanga means Te Rūnanga o Ngāi Tahu.
Mātauranga Māori means engaging in traditional or present-day knowledge of Ngāi Tahu.
Director-General means the Director-General of Conservation or their delegate.
User means a researcher or research group granted access to the Data.
The singular includes the plural.
Kākāpō Recovery Team means the Operations Manager, Science Advisor and Technical Advisor of the
kākāpō/takahē operations team, Southern South Island region, Department of Conservation.
The User agrees and acknowledges:

1. The User must not pass the Data on to a third party, except for those parts of the Data which are deposited in
public databases pursuant to the requirements of any journals in which the results are published. (It is
expected that the Kākāpō125+ project database will suffice for data access for journal publication
requirements. In exceptional cases where this is not sufficient, genes used in publications may be deposited by
the author(s) in public genetic databases, such as Genbank, in accord with the requirements of the journal in
which the manuscript is published).

2. The User must only use the Data for the purposes outlined in the User’s proposal to the Director General and
Te Rūnanga.

3. The User must not use the Data or any results arising from them for unauthorised commercial gain.
4. The User agrees to engage with Te Rūnanga, if invited, to understand and consider any Mātauranga Māori

aspects to the research and accepts that Ngāi Tahu retain the ownership of intellectual property rights over
Mātauranga.

5. A publication embargo applies to use of the Data. Users must refer to the embargo terms advertised on the
Kākāpō125+ web page.

6. The User agrees to share, in confidence, all results with the Kākāpō Recovery team ahead of publication.
7. The User agrees to share, in confidence, all results with Te Rūnanga ahead of publication, seeking advice from

Te Rūnanga about the best way of doing so.
8. The User must provide Te Rūnanga and the Director-General with a 1-page written summary of the User’s

results upon completion of their study, and copies of all research reports and publications that use the Data.
9. Te Rūnanga and The Director-General will not disclose results from the User to a third party without the User’s

permission.
10. The User must, in any publications arising from the Data, acknowledge the contribution of the following parties

in the generation of the Data:
a. New Zealand Department of Conservation;
b. Te Rūnanga o Ngāi Tahu;
c. The Genetic Rescue Foundation;
d. Genomics Aotearoa;
e. The University of Otago, New Zealand;
f. New Zealand Genomics Ltd;

g. Duke University, USA;
h. Science Exchange;
i. Experiment.com

11. The Director-General and Te Rūnanga are to be advised and invited to any presentations of the research so
they can assess the way it is represented and received by others.

I agree to the Kākāpō125+ genomics data sharing terms and conditions
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Submit
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use your information for this purpose and we'll follow the principles of the Privacy Act 2020. See our
privacy and security statement.
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