Supplementary Materials

Fig. S1 Quality control and spatial distribution of spots involved in glial scar formation. A Representative images of section positions from samples at 3 dpi. **B** Representative images of the captured spots in sections from samples at 3 dpi. **C** Violin plots showing nUMI and nGene in sections from the samples at 3 dpi. **D** Violin plots showing representative genes of cluster 2 cells and cluster 3 cells, the scar-associated clusters. **E** Spatial feature plots of Spp1, a stress response-associated gene. **F** Symmetrical distribution pattern of cluster 0 cells and cluster 1 cells in normal spinal cord; these cells were divided into four layers from layer 1 to layer 4. Subsequently, these cells in the scar were divided into four layers by similar approaches. **G** Selected Gene Set Variation Analysis terms that were enriched in different layers at different stages of scar maturation. Fisher's exact test was used in the pathway enrichment.

Fig. S2 Distinct macrophage responses after lateral hemisection of the spinal cord. A Violin plots and spatial maps showing the expression of marker genes at different time points after injury. **B** Selected GO terms that were enriched for each cluster (Fisher's exact test). **C** Scatterplots of expression dynamics of selected genes along pseudotime. **D**, **E** Violin plots and spatial maps showing the expression of selected genes at different time points after injury.

Fig. S3 Distinct fibroblast responses after lateral hemisection of the spinal cord. A Violin plots and spatial maps showing the expression of selected differentially-expressed genes and marker genes at different time points after injury. B Selected GO terms enriched for each cluster (Fisher's exact test). C IF-stained 7- and 14-dpi scars for GFAP (red), P4HB (green), and DAPI (blue) confirming the maturation of the scar (n = 3; scale bars, 200 µm). D Violin plots and spatial maps showing the expression of En1 and Jun, critical regulators of pathological skin scarring, at different time points after injury.

Fig. S4 Distinct microglial responses after lateral hemisection of the spinal cord. A UMAP spots showing the 3 clusters of microglia in the glial scar. **B** UMAP spots embedding overlay showing the distribution of spots at different time points after injury. **C** Histogram showing the number of spots in each subpopulation at different time points after injury. **D** Violin plots and spatial maps showing the expression of selected marker genes at different time points after injury. **E** Selected GO terms that were enriched for each cluster (Fisher's exact test). **F** Definition of the boundary areas to study the interaction between two neighboring microglia clusters in the scar at 28 dpi. **G** Dot plot of the mean interaction scores between neighboring clusters at 28 dpi. The size of a circle denotes the p-value, and the color denotes the mean interaction score. **H** Violin plots and spatial maps showing the expression of C1q and Anxa1 at different time points after injury.

Fig. S5 Distinct astrocyte responses after lateral hemisection of the spinal cord

A UMAP spots showing the 6 clusters of astrocytes in the glial scar. **B** UMAP spots embedding overlay showing the distribution of spots at different time points after injury. **C** Histogram showing the number of spots in each subpopulation at different time points after injury. **D**, **E** Violin plots and spatial maps showing the expression of GFAP (**D**) and Lcn2 (**E**) at different time points after injury. **F** IF-stained 7- and 14-dpi scars for GFAP (green), Iba1(red), P4HB (gray), and DAPI (blue) (n = 3, scale bar, 200 μ m). **G**, **H** Violin plots and spatial maps showing the expression of EphA4 (**G**) and Tg2 (**H**) at different time points after injury. **I**–K Violin plots showing the expression of Bai3 (**I**), Apoe and Elov11 (**J**) and Clu in the astrocyte scar after injury.

Fig. S6 Distinct oligodendrocyte responses after lateral hemisection if the spinal cord

A UMAP spots showing the 3 clusters of microglia in the glial scar. **B** UMAP spots embedding overlay showing the distribution of spots at different time points after injury. **C** Histogram showing the number of spots in each subpopulation at different time points after injury. **D**, **E** Violin plots and spatial maps showing the expression of Mbp and Mog (**D**) and Mag and Cldn11 (**E**) at different time points after injury. **F** Selected GO terms that were enriched for each cluster (Fisher's exact test).

Complement and coagulation cascades PI3K-Akt signaling pathway Apoptosis Antigen processing and presentation PPAR signaling pathway ECM-receptor interaction

> Submodule pvalue 0.05 0.10 0.15

#4 #5 #6 #7

Fig. S7 Spatiotemporal dynamics of gene expression during maturation of the scar

A Heatmap depicting the correlation scores (digit in the box above) as well as its corresponding P-value (digit in the box below) of modules (rows) and different cell types after injury (columns). 1, astrocytes; 2, microglia; 3, neurons and astrocytes; 4, vascular smooth muscle cells and endothelial cells; 5, fibroblasts; 6, macrophages; 7, astrocytes; 8, oligodendrocytes; 9, astrocytes and oligodendrocytes; 10, endothelial cells; 11, macrophages; 12, fibroblasts; 13, time. **B** Co-expression of selected hub genes enriched in Meblack. The networks were created by Cytoscape. **C** Hierarchical clustering of genes in module 3. **D** Analysis of enriched KEGG pathways among the genes for submodules in **C**. **E** Hierarchical clustering of genes in module 10. **F** Analysis of enriched KEGG pathways among the genes for submodules in **E**.