Supplementary Materials

Excess mortality associated with high ozone exposure: A national cohort study in China

Yang Yuan^{a, 1}, Kai Wang^{a, 1}, Haitong Zhe Sun^{b, c}, Yu Zhan^d, Zhiming Yang^e, Kejia Hu^f, Yunquan Zhang^{a, *}

- ^a Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
- ^b Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, UK
- ^c Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
- ^d Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- School of Economics and Management, University of Science and Technology Beijing, Beijing100083, China
- ^f Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
- ¹ Yang Yuan and Kai Wang were co-first authors who contributed equally to this work.

* Corresponding author. Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China. Email: <u>YunguanZhang@wust.edu.cn</u>.

Table of contents

Table S1. Estimates of HRs using converted metrics of O₃ concentrations.

Table S2. Descriptive characteristics of air pollutants at participants' residential cities during 2011–2018 and spearman's rank correlation coefficients among the air pollutants.

Table S3. Sensitivity analysis for the association between long-term ozone exposure and allcause mortality.

Figure S1. Flowchart of participant inclusion and exclusion.

Figure S2. Distributions of survey cities and O₃ concentrations across China.

Figure S3. The directed acyclic graph for the association between long-term O_3 exposure and mortality.

Figure S4. Annual average warm-season O₃ concentrations in China from 2011 to 2018.

Table S1. Estimates of HRs using converted metrics of O3 concentrations

O ₃ metrics	HR (95% CI)				
6mDMA8	1.179 (1.132–1.229)				
ADA24	1.090 (1.067–1.113)				
ADMA8	1.153 (1.113–1.195)				
ADMA1	1.189 (1.139–1.241)				
6mDA24	1.104 (1.078–1.132)				
6mDMA1	1.219 (1.161–1.281)				

Notes: We used 6-month warm-season mean of daily maximum 8-h average (6mDMA8) as the ozone metric in our analyses and considered five metrics for conversion as (1) 6-month warm-season mean of 24-h daily average (6mDA24), (2) annual mean of daily maximum 8-h average (ADMA8), (3) annual mean of 24-h daily average (ADA24), (4) annual mean of daily maximum 1-h average (ADMA1), and (5) 6-month warm-season mean of daily maximum 1-h average (6mDMA1).

Pollutants	Mean (SD)	Min.	Quartile			Max	Correlation coefficients		
			P ₂₅	P ₅₀	P ₇₅	Max.	O ₃	PM _{2.5}	NO_2
O ₃ , μg/m³	100.7 (14.8)	60.7	89.7	100.5	110.5	142.4	1		
PM _{2.5} , μg/m ³	52.0 (18.1)	16.1	38.1	49.7	64.1	102.4	0.57	1	
NO₂, μg/m³	25.3 (11.3)	11.3	16.4	22.4	31.9	72.9	0.62	0.8	1

Table S2. Descriptive characteristics of air pollutants at participants' residential cities during 2011–2018 and spearman's rank correlation coefficients among the air pollutants.

Abbreviation: SD, standard deviation; NO_2 , nitrogen dioxide; $PM_{2.5}$, fine particulate matter; O_3 , ozone.

	Per 10 (P-value		
	HR	95% CI	P-value	
Single-pollutant				
Main analysis		1.132–1.229	<0.001	
Excluding individuals with survive time <1 year		1.132-1.234	< 0.001	
Considering the clustering effect of cities	1.247	1.196-1.300	<0.001	
Adjusting for province-level GDP		1.165-1.270	<0.001	
Adjusting for variables based on DAG	1.181	1.134-1.230	<0.001	
Using 1-year lag O ₃ exposure	1.088	1.065–1.111	<0.001	
Using 2-year lag O ₃ exposure	1.025	1.003-1.048	<0.001	
Co-pollutant				
Main analysis adjusting for PM _{2.5}		1.191–1.312	<0.001	
Adjusting for NO ₂	1.286	1.222-1.352	<0.001	
Adjusting for PM _{2.5} and NO ₂	1.259	1.200-1.320	<0.001	

Table S3. Sensitivity analysis for the association between long-term ozone exposure and allcause mortality.

Notes: Main analysis was stratified by gender and age, adjusted for demographic characteristics: educational level, married status, residence and region; behavioral factors: alcohol consumption, smoking status and social activity; health status: BMI, hypertension, diabetes, disability; and annual average temperature. Abbreviation: GDP, Gross Domestic Product; DAG, directed acyclic graph.

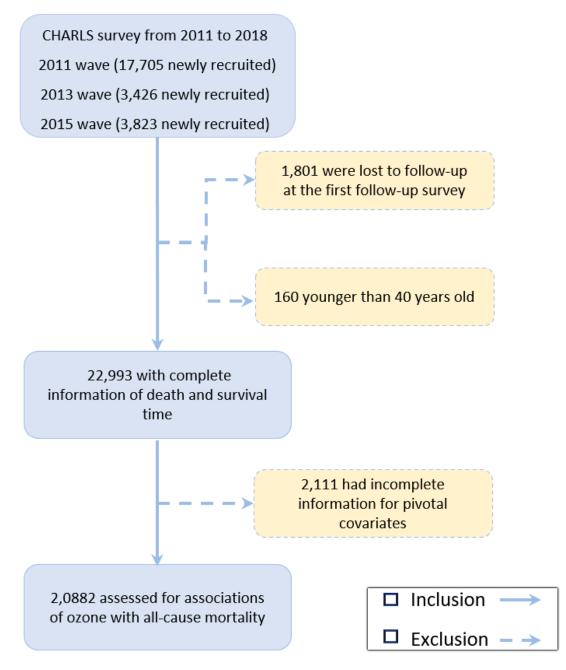
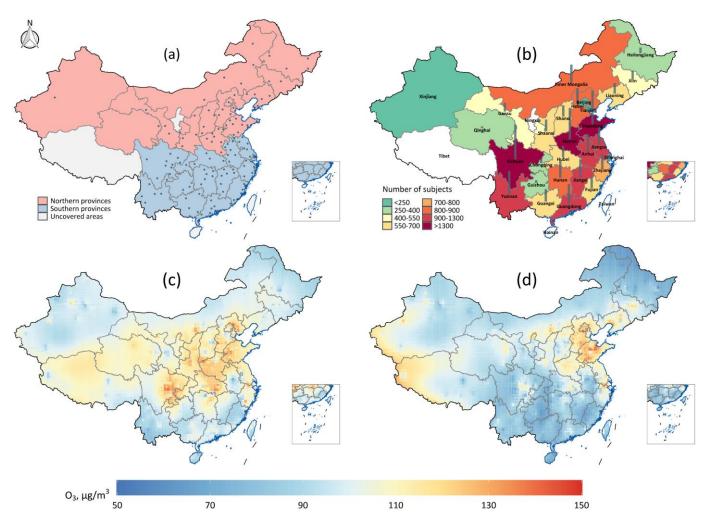
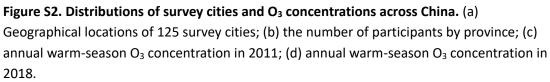
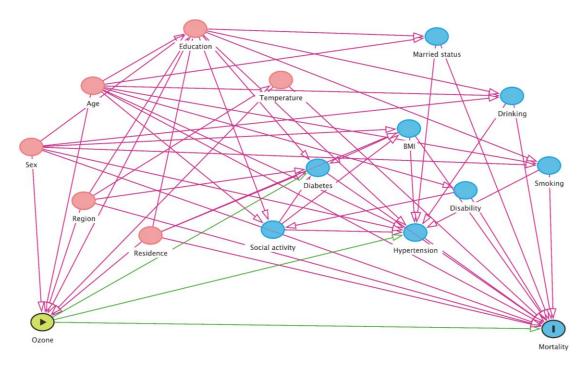





Figure S1. Flowchart of participant inclusion and exclusion.

Figure S3. The directed acyclic graph for the association between long-term O₃ exposure and mortality. DAG was created by using the online DAGitty tool (http://www.dagitty.net/, accessed on October 21th, 2022), and used to identify a minimal adjustment set of variables. In this study, the minimal set included sex, age, education, temperature, residence and region.

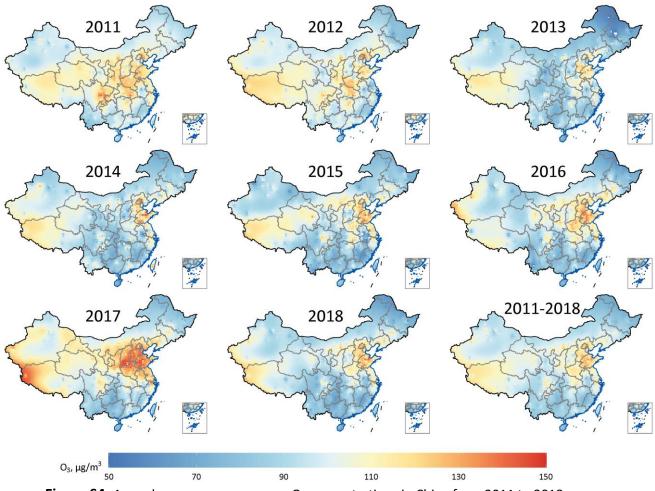


Figure S4. Annual average warm-season O_3 concentrations in China from 2011 to 2018.