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I. The response function c(r) and its scaling
properties

We construct the response function c(r) as follows:

1. We define the dimensionless unit force dipole d(ij)

applied on the pair of nodes i, j as

d
(ij)
k =

∂rij
∂xk

= (δjk − δik) n̂ij , (S1)

where the kth node coordinates are denoted by xk,
rij≡|xij | is the (scalar) pairwise distance between
nodes i and j, xij≡xj−xi is the vector difference,
and n̂ij ≡ xij/rij is the unit vector pointing from
node i to node j.

We note that the contraction of the dipole d —
as defined in Eq. (S1) above — with a field corre-
sponds to taking the difference of the field across a
bond, i.e. to a discrete (network-level) gradient in
the bond direction.

2. The response of the network to a unit dimension-
less force dipole d(ij) acting on the (ij) spring is
calculated through

u(ij) = M−1 · d(ij) , (S2)

where M ≡ ∂2U
∂x∂x is the Hessian matrix. An ex-

ample of such a dipolar response is presented in
Fig. 1a in the manuscript. We then define the nor-

malized response as û(ij)≡u(ij)/
√
u(ij) · u(ij) and

subsequently use it.

3. We are next interested in the exten-
sion/compression of each spring connecting
nodes m,n, associated with the normalized re-
sponse û(ij) to a dimensionless unit force dipole
d(ij) applied on the pair of nodes i, j. This
quantity is given by

A(ij),(nm) = û
(ij) · d(nm) =

d(ij) ·M−1 · d(nm)

√
d(ij) ·M−2 · d(ij)

. (S3)
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Recall that a contraction of a vectorial field with
d(nm) corresponds to the difference of the vecto-
rial field across the nodes m,n, projected on the
direction of the (mn) bond.

4. We are then interested in the average dimension-
less energy density associated with the bond exten-
sion/compression of Eq. (S3) at a distance r from
the position where the dimensionless unit force
dipole d(ij) is applied. This quantity, denoted by
cij(r), is given (to quadratic order) by

cij(r) = ⟨A2
(ij),(nm)⟩rij,nm=r , (S4)

which is an angular average of A2
(ij),(nm) over all

(mn) bonds at a distance r from the (ij) bond.

5. Finally, the response function c(r) reported in
Fig. 1b-c in the manuscript is given by an aver-
age of the individual functions cij(r) over a large
set of random edges i, j.

In Fig. 1c in the main text, we presented a scaling
collapse of the products r6c(r) measured in 3D relaxed
Hookean spring networks. This is achieved by rescaling
the abscissa by 1/

√
z−zc (since the correlation length

ξ ∼ 1/
√
z−zc) and the ordinate by

√
z−zc. The latter

rescaling is motivated as follows.

First, we write the sum-of-squares of the dipole dis-
placement response function u as (omiting the (ij) su-
perscript for the ease of notation)

u · u = d ·M−2 · d =
∑
ℓ

(ψℓ · d)2

ω4
ℓ

, (S5)

where ψℓ are the eigenfunctions of the HessianM, ω2
ℓ are

the eigenvalues associated with the eigenfunctions ψℓ and
d is a dimensionless unit force dipole. It is known that
in relaxed Hookean spring networks with z→zc, one has
ψℓ ·d∼ωℓ [1]. The sum above can thus be approximated
by an integral over the vibrational density of states as [2]∑

ℓ

(ψℓ · d)2

ω4
ℓ

∼
∫
ω⋆

ω2 D(ω)

ω4
∼ 1

ω

∣∣∣∣
ω⋆

∼ 1

z − zc
, (S6)

where ω⋆ is a characteristic frequency in the unjamming
of relaxed Hookean spring networks, whose scaling ω⋆∼
z−zc is well established [3].
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Combining the results in Eqs. (S5)-(S6), i.e. u · u ∼
(z − zc)

−1, with the spatial scaling of u(r) discussed in
the manuscript, u(r)∼r−(d̄−2)/2, we obtain for the nor-
malized response û(r) the following prediction

|û(r)| ∼
√
z − zc |u(r)| ∼

√
z − zc

r(d̄−2)/2
. (S7)

To proceed, we consider the energy e associated with a
unit dimensionless dipole response u in a relaxed spring
network, summed over all springs apart from the per-
turbed spring. It was shown that [4]

e ∼
∫ ξ

a0

(u · d)2 rd̄−1dr ∼ z − zc , (S8)

where a0 is the bond length. If we then invoke the hypoth-
esis that u·d∼1/r(d̄−2)/2, spelled out in the manuscript,
and account for coordination-dependence of u·d by set-
ting (u·d)2≡ f(z)/rd̄−2, we obtain

e ∼ f(z)

∫ ξ

1

r−(d̄−2) rd̄−1dr ∼ f(z) ξ2 ∼ z − zc . (S9)

The last relation, together with ξ∼1/
√
z−zc, implies

that f(z)∼ (z−zc)
2. Consequently, A(ij),(nm) defined in

Eq. (S3), which scales as u·d, satisfies

A(ij),(nm)∼
√
z − zc

√
f(z)

r(d̄−2)/2
∼ (z − zc)

3/2

r(d̄−2)/2
. (S10)

Finally, since c(r) scales as (A(ij),(nm))
2, we obtain

c(r) ∼ (z − zc)
3 r−(d̄−2) , (S11)

for r<ξ, which was used in the manuscript in 3D (d̄=3).

II. The response function C(r)

For completeness, we present in Fig. S1 the response
function C(r) ∼ ⟨u(r) ·u(r)⟩ (for various level of con-
nectivity z), where ⟨·⟩ stands for an angular average —
see also the main text —, as measured in our disordered
networks of Hookean springs. C(r) indeed reveals two
different power laws at small and large r’s, which are
more cleanly quantified by analyzing c(r), defined above
and presented in Fig. 1b,c in the main text.

III. Computer disordered networks

We created disordered networks of 16 million nodes
each, composed of relaxed Hookean springs connecting
(unit) point masses, with both positional and topologi-
cal (i.e. degree of connectivity) disorder. This is achieved
by adopting the interaction networks of simple, three-
dimensional (3D) soft-spheres glasses (see Ref. [5] for a
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FIG. S1. Response functions C(r) are shown to decay as r−1 for
r≪ξ and as r−4 for r≫ξ, as expected.

description of the soft-spheres model), where we place a
Hookean spring between every pair of interacting parti-
cles in the original glass.

This procedure results in a disordered spring network
of initial coordination z≈ 16, which is much larger than
the Maxwell threshold zc = 6 in 3D. We then systemat-
ically remove bonds (springs) by considering in each it-
eration the bond i, j whose combined connectivity zi+zj
is largest. Since there are many bonds that share the
same combined connectivity zi+zj , we consider a sec-
ondary bond-removal criterion: amongst all bonds i, j
whose zi+ zj is maximal, we select to remove a bond
whose difference |zi−zj | is smallest. These two criteria
ensure that the connectivity fluctuations of the resulting
disordered spring network are small. This procedure is it-
eratively applied until a target connectivity z is reached.
We present the bond dilution algorithm in great detail
next.

S-1. Network dilution algorithm

We assume having in hand a soft-sphere-packing-
derived, highly coordinated initial network of N nodes,
and a set of edges E . An edge eij ∈E connects between
a pair of neighboring nodes i, j, with ranks zi and zj re-
spectively. For every edge eij we define the sum of ranks
sij=zi+zj and the absolute difference dij= |zi−zj |.
The algorithm first pre-processes the initial network

as follows: each edge in the network is represented by a
link which is stored in a data-structure — illustrated in
Fig. S2 — that is tailored for efficient access to edges with
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FIG. S2. Illustration of the data-structure used by the algorithm
for creating homogeneous random networks. Each link holds the
indices i, j of an edge eij , in addition to a pointer to the next link.
See text for further details.

respect to the sum and absolute difference of their ranks
during the dilution process. The data-structure consists
of a two dimensional array-of-linked-lists A of dimensions
smax×dmax, where smax is the maximal sum of ranks, and
dmax is the maximal absolute difference of ranks, amongst
all of the network edges. Each list is a concatenation of
links that represent edges; each link holds a pointer to
the next link in a list, and the two indices i and j that
define the edge eij represented by that link, as illustrated
in Fig. S2. Links that share same sum of ranks s and
same absolute difference d are concatenated into a single
list which is anchored at A(s, d). The pre-processing is
described by the following pseudo-code:

Algorithm 1 Pre-processing : O(N)

Assign an smax × dmax array-of-lists A
for each edge eij ∈ E do

sij ← zi + zj

dij ← |zi − zj |
Add chain link L(i, j) at A(sij , dij)

end for

We can now proceed with deriving a network with some
desired average connectivity z̄f from the initial network
using the production stage of the procedure. The main
idea is to proceed as follows: we will start from the first
non-empty list A(s, d) with the highest index s and low-
est index d; while a list is found and is non-empty, we will
remove the first link from that list, and check for its va-
lidity in terms of its attributes sij and dij (the two latter
could have changed by previous edge removals). If valid,
we remove the represented edge from the network, or,
otherwise, we will re-insert the link into the appropriate
list. In this way edges are consecutively removed from
the network until reaching the target mean connectivity
z̄f , following the min-max scheme discussed above.

The number of edges which need to be removed from
the initial network in order to reach z̄f < z̄ is k ≡
⌊N(z̄−z̄f )⌋, where z̄ is the mean connectivity of the ini-
tial network. The production stage is described by the
following pseudo-code:

Algorithm 2 Production : O(N)
s← smax

d← 0
counter ← 0
while counter < k do

while A(s, d) is empty do
if d < dmax then

Increase d
else

Decrease s
d← 0

end if
end while
Read L(i, j) at A(s, d)
if (zi + zj = s) AND (|zi − zj | = d) then

Remove L(i, j) from A(s, d)
Update zi and zj , and remove eij from the network
Increase counter

else
Insert L(i, j) to A(zi + zj , |zi − zj |)

end if
end while

To estimate the complexity of this algorithm, we con-
sider the worst case scenario in which each link visits
all of the smax×dmax lists before removal, then the run-
ning time would be ∝ smax×dmax×N . However, since
both parameters smax and dmax are independent of N ,
the complexity remains O(N).
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