Supporting Information

Flux growth, crystal structure and chemical bonding of Yb₂PdGe₃, an AlB₂ superstructure within the rare earth series

Riccardo Freccero^{1*}, Laura C. J. Pereira², Pavlo Solokha¹, Serena De Negri¹

¹Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, I-16146 Genova, Italy

²Centro de Ciências e Tecnologias Nucleares, Department of Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade Lisboa, Estrada Nacional 10, 2695-066 Bobadela,

Portugal

* To whom the correspondence should be addressed: Riccardo Freccero; E-mail: riccardo.freccero@.unige.it

Table S1. SEM/EDXS (at.%) and XRD data on the investigated *RE*-Pd-Ge samples (annealed at 800°C for 3 weeks). When the Pearson symbol is not reported the number of peaks in the powder diffraction pattern was not sufficient to unambiguously assign it. Asterisks (*) indicate samples containing unknown phases.

RE	Global EDXS			Phases	Phases EDXS Composition			Crystal	Lattice Parameters	
	Composition [at%]				[at%]			Structure	[Å]	
	RE	Pd	Ge		RE	Pd	Ge		a	С
Y*	34.1	16.8	49.1	$Y(Pd_xGe_{1-x})_2$ YPdGe ₂	34.8 23.5	17.7	47.5 53.9	$hP3-AlB_2$ $\rho J32-YIrGe_2$	4.186(1)	4.000(1)
La	33.4	17.2	49.4	$\begin{array}{c} \text{La}(\text{Pd}_x\text{Ge}_{1-x})_2\\ \text{La}\text{Pd}\text{Ge}_2 \end{array}$	33.5 25.5	17.1 24.8	49.4 49.7	<i>tI</i> 12-ThSi ₂ <i>oS</i> 16-CeNiSi ₂	4.293(1)	14.891(4)
Ce	33.6	17.5	48.9	$\begin{array}{c} Ce(Pd_xGe_{1-x})_2\\ Ce_2Pd_3Ge_5 \end{array}$	34.1 21.4	17.4 30.3	48.5 48.3	<i>tP</i> 12-CePd _{0.5} Ge _{1.5}	4.247(2)	14.801(7)
Pr	31.1	18.5	50.4	$\begin{array}{c} \Pr(\Pr d_x Ge_{1-x})_2\\ \Pr_2 \Pr d_3 Ge_5 \end{array}$	31.7 18.5	17.8 32.1	50.6 49.4	<i>hP</i> 3-AlB ₂ <i>oI</i> 40-U ₂ Co ₃ Si ₅	4.245(1)	4.219(2)
Nd	32.8	17.7	49.8	$\frac{\mathrm{Nd}(\mathrm{Pd}_{x}\mathrm{Ge}_{1-x})_{2}}{\mathrm{Nd}_{2}\mathrm{Pd}_{3}\mathrm{Ge}_{5}}$	32.6 19.7	17.0 30.8	50.4 49.5	<i>hP</i> 3-AlB ₂ <i>oI</i> 40-U ₂ Co ₃ Si ₅	4.233(1)	4.185(1)
Sm	30.9	17.5	51.6	$Sm(Pd_xGe_{1-x})_2$ $SmPdGe_2$ Sm_2PdGe_6	33.4 24.1 21.9	17.5 26.8 12.1	49.1 49.1 66.0	<i>hP</i> 3-AlB ₂ <i>oI</i> 40-U ₂ Co ₃ Si ₅ <i>oS</i> 18-Ce ₂ CuGe ₆	4.212(1)	4.117(1)
Gd*	32.9	16.8	50.3	$\frac{\text{Gd}(\text{Pd}_x\text{Ge}_{1-x})_2}{\text{Gd}_2\text{PdGe}_6}$	33.6 22.9	18.8 12.4	47.6 64.7	hP3-AlB ₂	4.207(1)	4.052(1)
Tb*	33.1	17.3	49.6	$Tb(Pd_xGe_{1-x})_2$	33.0	20.5	46.5	$hP3-AlB_2$	4.216(1)	3.981(1)
Dy*	32.2	18.1	49.7	$\begin{array}{c} Dy(Pd_xGe_{1-x})_2\\ Dy_2PdGe_6 \end{array}$	33.1 23.1	22.0 12.4	44.9 64.5	<i>hP</i> 3-AlB ₂	4.229(1)	3.906(1)
Ho*	37.6	17.6	44.8	$Ho(Pd_xGe_{1-x})_2$	34.2	22.6	43.2	hP3-AlB ₂	4.231(1)	3.851(1)
Er*	35.7	9.8	54.5	$\operatorname{Er}(\operatorname{Pd}_{x}\operatorname{Ge}_{1-x})_{2}$	31.3	21.5	47.2	hP3-AlB ₂	4.239(1)	3.789(1)
Yb	33.6	18.4	48.0	Yb ₂ PdGe ₃	34.6	16.9	48.5	hP12-Ce ₂ CoSi ₃	8.463(1)	4.073(1)

Figure S1. X-ray powder patterns for the Ce-Pd-Ge, Pr-Pd-Ge, and Tb-Pd-Ge samples selected as representatives for light and heavy *RE*. Blue dashed lines for RE = Pr, Tb point out both the positions and Miller indexes of the missing super-reflections for the hypothetic RE_2PdGe_3 ordered compound.

Figure S2. X-ray powder pattern for the Yb-Pd-Ge sample synthesized in metal flux after In removal

Table S2. Interatomic distances for Ge_6H_6 and Ge_6^{6-} optimized employing different exchangecorrelation functional (f_{xc}): the Perdew and Wang (PW) for the local-density approximation (LDA), the Perdew, Burke and Ernzerhof (PBE) for the generalized-gradient approximation (GGA), and the B3LYP hybrid functional.

Compound	$f_{\rm xc}$	$d_{\text{Ge-Ge}}$ [Å]	$d_{\text{Ge-H}}$ [Å]
	pw	2.26	1.53
Ge ₆ He ₆	pbe	2.30	1.53
	b3lyp	2.29	1.52
	pw	2.68	
Ge_{6}^{6-}	pbe	2.77	/
	b3lyp	2.77	

Figure S3. Superconducting volume fraction of Yb₂PdGe₃ at 2.5 and 5.0 mT.

Figure S4. Band structure and first Brillouin zone for Yb₂PdGe₃. The selected *k*-path, indicated by green arrows, and the $\Gamma(0, 0, 0)$, M $(\frac{1}{2}, 0, 0)$, K $(\frac{2}{3}, \frac{1}{3}, 0)$, A $(0, 0, \frac{1}{2})$, L $(\frac{1}{2}, 0, \frac{1}{2})$ and H $(\frac{2}{3}, \frac{1}{3}, \frac{1}{2})$ symmetry points and lines are shown into the Brillouin zone.

Figure S5. Total and atom-projected Density of States (DOS/*p*DOS) for Yb₂PdGe₃ (top left) and Ca₂PdGe₃ (top right) calculated at a DFT/LSDA (PW) level of theory. The 4*f* states of the Yb species are located close to E_F , as expected when a Hubbard *U* parameter is not employed. To enable a better comparison among the DOS curves, that for Yb₂PdGe₃ generated with a DFT + *U* treatment is also shown (bottom).

A splitting of the ELI-D attractors occurs for Ge–Ge interactions, so that there are two instead of one along the germanium homocontacts, being symmetrically located above and below them with respect to the honeycomb Ge/Pd layer (Figure S6, left). They merge into one reducible localization domain (Figure S6, right) at a slightly lower ELI-D value, i.e. 0.01, than at the attractor. A similar feature was described for the calculated ELF of the SrGa₂ and BaGa₂ gallides¹ along the Ga–Ga contacts. Interestingly, the same does not hold for metal diborides² nor for benzene³, probably suggesting that

this splitting is more prone to occur moving down along the periodic table groups. Since this very tiny effect does not affect the overall bonding interpretation, one basin set was generated for each Ge–Ge bonding (purple basin in Figure 9c).

Figure S7. Structural similarities among the coordination environments of Ge species within Yb₂PdGe₃ and Y₂PdGe₆.

Figure S8. DOS and *p*DOS for Yb_2PdGe_3 (DFT+*U*). The A and B regions selected for the partial ELI-D (pELI) calculation are highlighted.

Figure S9. The a_{2u} and $e_{1g} \pi$ Kohn-Sham orbitals for the Ge₆H₆ and Ge_6^{6-} molecules. Orbitals are represented by means of isosurfaces with absolute values of 0.040 and 0.030 e/bohr³ for Ge₆H₆ and Ge_6^{6-} , respectively. Blue and red denote positive and negative values, respectively.