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1. Additional Results and Discussion

To further investigate the reproduction abilities of the model with and without similarity

loss, we analyzed the distribution of molecular weights of the 100,000 molecules predicted to

be closest to the reference (Figure S1).

Figure S1: Reproduction of molecular weights. The histograms show the distribution of
molecular weights of the 100,000 most similar compounds to reference1 (A), reference2
(B), and reference3 (C) calculated using either the exact similarity metric, the model with
similarity loss, or the vanilla transformer model.
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The data show that all three models are well able to reproduce the molecular weight

distribution of the 100,000 most similar compounds to reference1 while the triplet loss

model outperforms the other two models. This effect is the most pronounced at the lower

end of the scale where the vanilla and triplet loss models are able to reproduce more of

the low molecular weight compounds than the similarity loss model. More detailed analysis

of this phenomenon revealed that these low molecular weight compounds are all highly

dissimilar to the reference compound. When only including compounds with a similarity

to reference1 of 0.3 or more, these compounds disappeared and the similarity loss model

showed a better overlap with the ground truth. Still, the triplet loss model showed a slightly

better reproduction of the molecular weights than the other two models (Figure S2). The

sampling of very dissimilar molecules may be due to the fact that the vanilla and triplet

loss models generated a much denser latent space, leading to a generally lower distance

between the very high molecular weight compounds and the molecules with lower molecular

weight. While this benefits the two models for reference1, it decreases their performance

for reference2 and reference3 (Figure S1 B & C). In these examples, the model with

similarity loss is generally better able to reproduce the distribution of molecular weights

from the underlying (exact) similarity metric. Here, the vanilla transformer model is likely

suffering because there are a lot of molecules in the screened data set that have a similar

molecular weight to the two reference compounds. This causes the model to over-sample

these compounds in the densely packed latent space. In these cases, the sparser latent space

generated by the similarity loss may prevent such an over-sampling.

For reference 2, the triplet loss model performed similarly to the vanilla model (Fig-

ure S1B). However, for reference 3 it appears that the triplet loss model has about the

same performance as the similarity loss model (Figure S1C). Here, it must be noted that

while the 100,000 sampled compounds have a similar distribution of the molecular weight,

only 96 had a similarity of at least 0.3 to the reference compound (compared to 8,236 for the

similarity loss model, Figure S2C). Thus, while in some cases the triplet loss model is able to
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Figure S2: Reproduction of molecular weights. The histograms show the distribution of
molecular weights of the 100,000 most similar compounds to reference1 (A), reference2
(B), and reference3 (C) calculated using either the exact similarity metric, the model with
similarity loss, or the vanilla transformer model. Only compounds with a similarity of at
least 0.3 are considered.

nicely reproduce compounds with a similar molecular weight compared to the ground truth,

it still lacks the ability to find compounds with high structural similarity to the reference.

2. Additional Materials and Methods

The following section will describe the detailed neural network architecture, its hyperparam-

eters, and the datasets used to train and test the model.

2.1 SMILES Transformer

Our model uses a transformer architecture as described in the publication by.S1 It was

implemented in PyTorch using their integration of the Transformer module. The vocabulary

was generated using tokenized SMILES strings that were used as input and encoded into 256

dimensional latent space. Our model consisted of 4 encoder and decoder layers with attention

layers containing 4 heads. All models were trained using an Adam optimizer with a learning

rate of 10−4 and 128 samples per batch. Since it was not possible to further increase the

batch size due to memory limitations, we accumulated the gradients over 4 batches.

In order to determine the ground truth similarities, we calculated the Tanimoto coef-

ficients based on 1024 bit Morgan fingerprints implemented in RDKit with a radius of 2.
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To conserve similarities in latent space, it is imperative that during training, each batch

contains at least one similar compound to each sample (and for the triplet loss also at least

one dissimilar compound). For the model trained on the similarity loss, we first randomly

assigned compounds to a batch which act as anchor. To guarantee that similar compounds

exist for each of those reference compounds, the algorithm randomly selected 3 of the 100

most similar compounds to the reference which were added to the batch. For the model with

the triplet loss, we randomly selected 64 anchors per batch and for each chose a random

compound with a Tanimoto similarity to the anchor of at least 0.6. It was assumed, that

due to the intrinsic diversity of the dataset, for each anchor in a batch, there will always be

a negative sample present. We defined negative samples as any compound with a similarity

of less than 0.4 to the anchor.

The scaling factor a required by the similarity loss function was set to 20.0 in the initial

tests on a small dataset and was later decreased to 10.0 for the scaled up training. The

margin m for the triplet loss function was set to 1.0 for the comparison of the loss functions

as well as for the scaled up model. These values were determined based on the retrospective

analysis of the performance of each trained model.

Training a model with the similarity loss and the hyperparameters described above for

1000 epochs took roughly 9 days on a single GTX 1080 Ti.

2.1.1 Datasets

During an initial test phase, we used a randomly selected subset of 10,000 SMILES extracted

from the natural compounds dataset obtained from the ZINC database. The dataset was

randomly split into a training (80%) and validation (20%) set. The validation set was used

to compare the performances of three different loss functions. In the upscaling experiments,

we randomly selected 0.03% of the compounds in each tranche downloaded from the ZINC

database, leading to a dataset consisting of approx. 500,000 compounds. Following the

method of the initial test, the dataset was randomly split into a training and validiation set
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using a 80/20 split. For testing the optimized model, the whole ZINC database was used

which consisted of around 1,458,000,000 compounds at the time of testing.

For reproducibility, all used SMILES strings were converted to their canonical form using

openbabel prior to training and testing.

2.2 Similarity Search

Once obtained, the distance aware SMILES embeddings were used to efficiently calculate

distances (i.e. similarities) in embedding space. Facebook’s faiss was utilized for this task

using a FlatL2 index to calculate Euclidian distances in latent space. Faiss allows the

construction and search of several types of indexes with various degrees of approximation.

The search was performed on pre-calculated latent space embeddings of the whole ZINC

database. Searching 94 reference compounds against the complete database took roughly

2.75 hours on a machine with 64GB RAM that was equipped with an HDD. Around 65%

of the computation time was needed to read the pre-computed embeddings from disk. By

using either a server with solid state drives or more memory, the computational cost could

therefore be significantly decreased. Searching the same database using RDKit’s BulkTan-

imotoSimilarity function (with pre-computed fingerprints) on the same machine required

around 3.40 hours for a single reference compound.

3. Additional Figures
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Figure S3: Example of SMILES tokenization. The 2D structure of a molecule, its SMILES
representation, and the tokenized SMILES are shown. ”<SOS>” and ”<EOS>” represent
labels specifying the start and the end of the sequence, respectively.

Figure S4: All reference compounds used for the assessment of the reproduction ability.

Figure S5: Performance of the model trained with the similarity loss scaling factor set to 1 for
the ”hit identification” task. The data for reference1 (A), reference2 (B), and reference3
(C) are shown.
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