

Supplementary Information for

Scientific Selection: A Century of Increasing Crop Varietal Diversity in U.S. Wheat

Yuan Chai^{*}, Philip G. Pardey, Kevin A.T. Silverstein

* Corresponding author: Yuan Chai **Email:** <u>chaix026@umn.edu</u>

This PDF file includes:

Supplementary text Figures S1 to S3 Tables S1 SI References

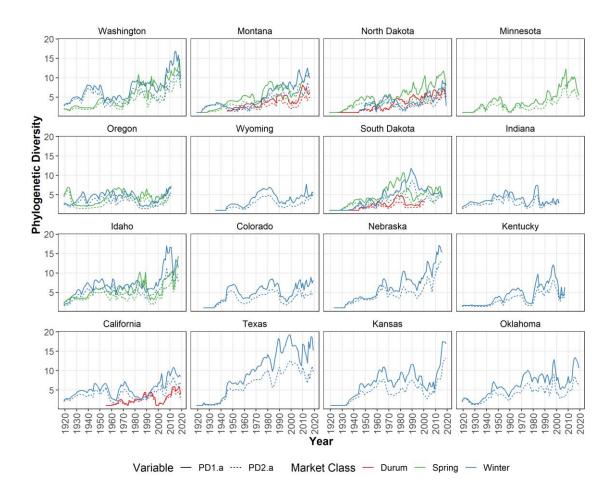
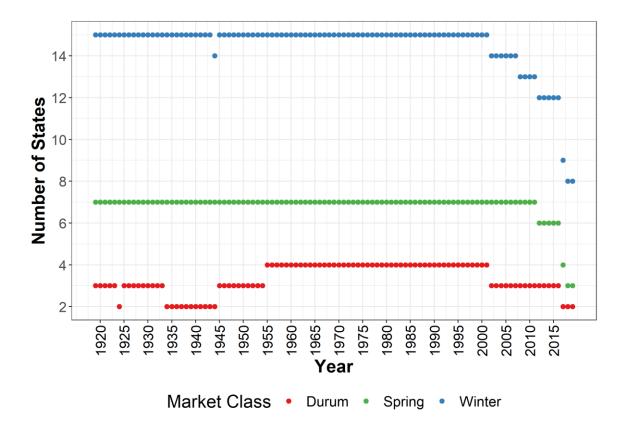
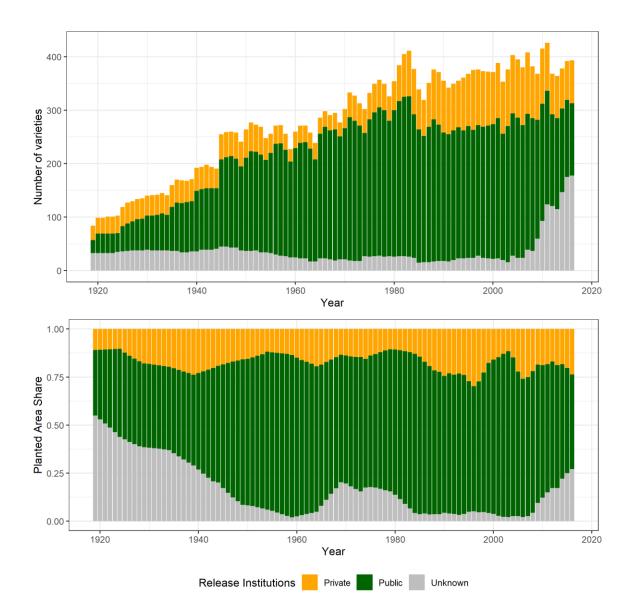




Fig. S1. Comparing phylogenetic diversity indexes of order 1 and 2 for major U.S. wheat producing states, 1919-2019.

Notes: The number of states reported here include interpolated data to fill in missing years when possible. Data availability for more recent years dropped significantly, especially after 2016.

Fig. S3. Number of varieties and planted area share by releasing institutions for U.S. wheat, 1919-2016.

Notes: The numbers reported in this figure only include available data collected by authors in selected states. The "Unknown" category include varieties without releasing institution information. Data availability for more recent years dropped significantly, especially after 2016.

Studies	Number of varieties	Spatial and Temporal Extent	Taxonomy-informed Diversity Measures			Taxonomy-	Spatial /
			Pedigree- based	Phenotypic traits	Molecular marker ¹	blind Diversity Measures	Temporal Dynamic Measures
Cox et al. (1)	Between 60 and 262 depending on year	U.S. winter wheat states (1919-1984)	COP (area weighted)	_2	-	-	Time trend of COP
Murphy et al. (2)	110	U.S. winter wheat states	COP	-	-	-	-
Kim and Ward (3)	22	North America	COP	-	RFLP	-	-
Brennan and Byerlee (4)	not specified	Regions in Argentina, Australia, Brazil, Mexico, Netherlands, New Zealand Pakistan, U.S. (1970-1986)	-	-	-	Varietal area and age	Time trend of varietal area and age
Chen et al. (5)	45	25 varieties from U.S. 20 varieties from China, Pakistan, India, Iraq, Hungary, Austria, Yugoslavia	-	-	STS	-	-
Souza et al. (6)	57	Two regions: the Yaqui Valley, Mexico (1972-1991) and the Punjab Province of Pakistan (1978-1990)	COP (area weighted)				5-yr temporal diversity change in COP

Barbosa-Neto et al. (7)	112	U.S. midwest	COP	-	RFLP	-	-
van Beuningen and Busch (8)	270	North America	COP	-	none	-	-
Barrett et al. (9)	43	U.S. Pacific Northwest	COP	-	AFLP	-	-
Hartell et al. (10)	18	Pakistan	COP	-	-	Varietal area and age	Time trend of varietal area and age
Corbellini et al. (11)	40	Central and South Europe	СОР	-	RFLP, AFLP	-	-
Almanza- Pinzón et al. (12)	70	32 accessions from CIMMYT 38 accessions from 15 countries	COP	-	AFLP, SSR	-	-
Marić et al. (13)	14	Croatia	COP	Yes ³	RAPD	-	-
Fufa et al. (14)	30	U.S. Northern Great Plains	СОР	Yes ³	SSR, SRAP	-	-
Chao et al. (15)	43	U.S.	none	-	SSR	-	-
Fradgley et al. (16)	454	U.K.	Kinship	-	SNP	-	-
Sthapit et al. (17)	320	U.S. Pacific Northwest (1900-2019)	-	-	SNP	Varietal area	Time trend of varietal area

¹Abbreviations for different molecular markers: AFLP (amplified fragment length polymorphism); RAPD (random amplified polymorphic DNA); RFLP (restriction fragment length polymorphism); SNP (single nucleotide polymorphisms); SRAP (sequence related amplified polymorphism); SSR (simple sequence repeats); STS (sequence tagged sites).

²Dash (-) indicates such measures were not used.

³Marić et al. (2004) includes 12 morphological traits; Fufa et al. (2005) includes 5 morphological traits and 4 end-use quality traits

SI References

- 1. Cox, T.S., J.P. Murphy, D.M. Rodgers. Changes in genetic diversity in the red winter wheat regions of the United States. *PNAS*. 83, 5583-5586 (1986).
- 2. Murphy, J.P., T.S. Cox, and D.M. Rodgers. 1986. Cluster analysis of red winter wheat cultivars based upon coefficients of parentage. *Crop Science* 26(4):672–676.
- Kim, H.S., and R.W. Ward. 1997. Genetic diversity in Eastern U.S. soft winter wheat (Triticum aestivum L. em. Thell.) based on RFLPs and coefficients of parentage. *Theoretical and Applied Genetics* 94(3):472–479.
- Brennan, J.P. and D. Byerlee. The rate of crop varietal replacement on farms: measures and empirical results for wheat. *International Journal of Plant Varieties and Seeds* 4, 99-106 (1991).
- Chen, H.B., J.M. Martin, M. Lavin, and L.E. Talbert. 1994. Genetic diversity in hard red spring wheat based on sequence-tagged-site PCR markers. *Crop Science* 34(6):cropsci1994.0011183X003400060037x.
- Souza, E., P.N. Fox, D. Byerlee, and B. Skovmand. 1994. Spring Wheat Diversity in Irrigated Areas of Two Developing Countries. Crop Science 34(3):cropsci1994.0011183X003400030031x.
- Barbosa-Neto, J.F., M.E. Sorrells, and G. Cisar. 1996. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. *Genome* 39(6):1142–1149.
- van Beuningen, L.T., and R.H. Busch. 1997. Genetic diversity among North American spring wheat cultivars: I. analysis of the coefficient of parentage matrix. *Crop Science* 37(2):cropsci1997.0011183X003700020043x.
- Barrett, B.A., K.K. Kidwell, and P.N. Fox. 1998. Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. *Crop Science* 38(5):1271–1278.
- 10. Hartell, J., M. Smale, P.W. Heisey, and B. Senauer. The contribution of genetic resources and diversity to wheat productivity in the Punjab of Pakistan, In Smale, M. ed. *Farmers Gene Banks and Crop Breeding: Economic Analyses of Diversity in Wheat Maize and Rice*. Dordrecht: Springer Netherlands. (2000).
- Corbellini, M., Perenzin, M., Accerbi, M., Vaccino, P. and Borghi, B., 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. *Euphytica* 123(2), pp.273-285.
- 12. Almanza-Pinzon, M.I., Khairallah, M., Fox, P.N. and Warburton, M.L., 2003. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. *Euphytica* 130(1), pp.77-86.
- Marić, S., Bolarić, S., Martinčić, J., Pejić, I. and Kozumplik, V., 2004. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. *Plant Breeding* 123(4), pp.366-369.
- Fufa, H., P.S. Baenziger, B.S. Beecher, I. Dweikat, R.A. Graybosch, and K.M. Eskridge. 2005. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. *Euphytica* 145(1):133–146.
- Chao, S., W. Zhang, J. Dubcovsky, and M. Sorrells. 2007. Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (triticum aestivum I.) germplasm representing different market classes. *Crop Science* 47(3):1018–1030.

- Fradgley, N., K.A. Gardner, J. Cockram, J. Elderfield, J.M. Hickey, P. Howell, R. Jackson, I.J. Mackay. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. *PLOS Biology* (2019): doi.org/10.1371/journal.pbio.3000071.
- Sthapit, S.R., K. Marlowe, D.C. Covarrubias, T.M. Ruff, J.D. Eagle, E.M. McGinty, M.A. Hooker, N.B. Duong, D.Z. Skinner, D.R. See. Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest. *Crop Science* (2020). doi: 10.1002/csc2.20299.