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Supplemental Figures and legends
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Fig. S1. Correlation between predictability and signal strength of peak subsets. (A) A plot of
predictability (AUC, Y-axis) and the rank of signal strengths of peak subsets (X-axis). Each line
represents a distinct sample. A total of 8 representative examples, including primary/in vitro differentiated
cells and developing/adult tissues, are presented. (B) The distribution of Pearson correlations between
peak predictability and signal strength across ENCODE datasets; correlations between AUC and the rank
of signal strengths were computed per sample.
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Fig. S2. gkmQC outperforms other QC methods in identifying high-quality samples. (A) For each of
the six different QC metrics, correlation plots compare the quality scores to the precision of peak locations
using CAGE Enhancers from FANTOMS (top), CTCF peaks (middle), and H3K27ac peaks (bottom),
across the ENCODE samples. (B) Similar to (A), the quality scores are compared with the peak counts.
(C) The six different quality metrics are compared against each other in the pairwise correlation plots. The
histograms on the diagonal show the distribution of the corresponding quality scores.
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Fig. S3. Analyses of high-quality samples exclusively determined by gkmQC. (A) samples are
classified into four different groups based on gkmQC scores and another quality metric (SPOT2 scores
are shown as an example). HQ and LQ stand for high and low quality, respectively. We use the 50"
percentile as a cut-off for the classification. (B) Peak counts are compared between gkmQC-specific and
common HQ groups for each combination of the QC metrics. (C) The precision of peak locations (i) is
compared across the four sample groups. P-values are calculated between the gkmQC HQ group and
each of the others with the Mann-Whitney U test.
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Fig. S4. Analysis of biological and technical factors affecting quality metrics (A) Heatmap shows
covariation between several technical factors and quality metrics. Cramer’s V was used to quantify

correlations of continuous and discrete variables. Technical factors were not clustered with quality metrics

(bold black). (B) Boxplots show differences in quality metrics (x-axis) for several different technical
factors. P-values were calculated with one-way ANOVA of the quality metric scores with respect to the

technical factors.
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Fig. S5. Correlation analyses of gkmQC sample scores and S-LDSC coefficients for 48 pairs of
relevant tissues and phenotypes (2 pages). Dots in the scatterplots represent samples of chromatin
accessibility data. The X-axis is the gkmQC sample scores, and the Y-axis is the S-LDSC coefficient.
Correlations are Pearson’s correlation coefficients. The title of each scatterplot shows a tissue- or cell-
type for chromatin-accessibility data (Blue) and a relevant GWAS trait (Red).
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Fig. S6. Contribution of tissue-specific peaks in high-quality samples to relevant traits. (A)

Boxplots show distributions of S-LDSC coefficients of high- and low-quality samples paired with relevant

(left) and non-relevant traits (right). Mann-Whitney U test is used to test the significance of the

differences. (B) Histograms show differences in mean S-LDSC coefficients between high- and low-quality

samples for relevant and non-relevant traits. Paired t-test is used to test the significance of the

differences.
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Fig. S8. gkmQC scores are most strongly correlated with ranks of peak subsets compared to other
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across the four QC methods. P-values are calculated between the gkmQC and each of the other methods
with the Mann-Whitney U test.
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Fig. S9. Peak-calling optimization of kidney snATAC-seq data identifies more functional peaks for
rare cell types. (A) UMAP plot of kidney shnATAC-seq data. Color is based on the annotation of known
kidney cell types. (B) Comparison of peak counts before and after optimization where each dot
represents kidney cell type in (A). Dot sizes represent cell counts of the corresponding cell types. (C)
gkmQC curves for peaks from pseudo-bulk reads of kidney cells. Dashed lines are gkmQC curves for
optimized peak-calling. The five cell types with MinAUC >0.75 were optimized. (D) MinAUC scores of
kidney cell types (red line with dots; left Y-axis) are anti-correlated with cell counts (black bars; right Y-
axis), demonstrating more significant optimization in rarer cell types; cell types with MinAUC >0.75 are
highlighted (red). (E) A representative locus upstream of LMX1B containing a podocyte-specific peak. All
kidney cell types in the snATAC-seq and developing (DNase-seq) are shown. (F) Heritability is compared
between optimized and default peaks for five rare cell types with MinAUC >0.75. Similar to Fig. 5D, the
table presents heritability for three disjoint peak subsets; optimization-only (top), commonly found
before/after optimization (middle), and only with default values (bottom).
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Fig. S10. Peak-calling optimization of PBMC snATAC-seq data. Figs. A-E are analogous to Figs. S7A-
D and F, except that ten cell types were optimized for PBMC snATAC-seq data. Fig. F is analogous to
Fig. 6D. Here, two major cell types (CD14+ Monocyte and CD4+ Memory T cells) were analyzed.
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Fig. S11. Differences in peak-calling signals between peak subsets reflect differences in tissue-
specificity. Figs. A-C depict relative degrees of tissue-specificity of peak subsets as a function of their
peak predictability (AUC). We calculated overlaps of peak-subset pairs in a similar AUC range (A) from
the same tissue and (B) from different tissues via random sampling. Jaccard index coefficients were used
to quantify overlap. (C) The overlap ratios between (A) and (B) (Jtissue / Jrandom) are calculated for each of
the AUC ranges. (D and E) Principal component 1 (PC1) and PC2 from PCA analysis of the trained
sequence features are shown for several different tissues. Peak subsets are represented as dots, color-
coded for (D) AUCs and (E) tissues. Peak subsets in a medium range of predictability scores (0.8< AUC
<0.95) have more tissue-specific sequence features.
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Fig. S12. Enrichment analysis of enhancers and promoters with respect to peak signal and

predictability. (A) FANTOMS (distal) enhancers and (B) promoters are compared to peak subsets

according to their ranks and AUCs. Overlaps between two peak sets are calculated by the Jaccard index.

Boxplots represent overlap distributions across different samples.
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Legends of Datasets

Dataset S1 High-quality samples classified by gkmQC and other metrics.
Dataset S2 Metadata and quality metric statistics of 886 ENCODE DNase-seq samples.

Dataset S3 Results from partitioned heritability analysis using 200 ENCODE DNase-seq samples and
relevant GWAS traits.

Dataset S4 Archived files including the BED files of optimized peaks for 58 DNase-seq data.
(https://osf.io/download/9pez8/)

Dataset S5 Archived files including the BED files of optimized peaks for kidney and PBMC snATAC-seq
data. (https://osf.io/download/yx9p8/)

Dataset S6 Computing speed of gkmQC with respect to the number of peaks.
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