Supplementary Material

Eligibility criteria
We considered research papers in English that were published in 2015 and afterwards,

including pre-prints. We excluded reviews, opinion pieces, conference proceedings, non-indexed

publications, and publications that did not use ML to integrate multi-omics data.

Information sources

We used the Google Scholar database, covering the years 2015 to present. The date we
last accessed it was 4 July 2022. The year 2015 marked a new era in ML research, since the
release of software libraries like TensorFlow (Abadi 2016) and Keras (Chollet et al., 2015
available at https://github.com/fchollet/keras) in 2015 and Pytorch (Paszke 2019) in 2016
allowed for easier application of ML models on GPUs. Following this, the application of ML

methods has rapidly gained popularity.

Search

Our full search strategy for the Google Scholar database was as follows:
1) Set a custom time range to 2015-present.
2) Search for “machine learning AND multi-omics AND integration”.

3) Order results by the Google Scholar “relevance” algorithm, which seems to be

heavily influenced by citation count (Beel 2009)" . In our experience, it seems to also

prioritise more recent papers.

! While this may exclude some newer papers which have not had as much time to gather citations, we argue that it is
a worthy trade-off for finding the most influential papers in the field.



4) Open each result, check if it fits our eligibility criteria.
5) Obtain answers to our review questions.

6) Stop when we reach 100 eligible publications.

Synthesis of results

Publications were individually assessed by the researchers and data was collected per
research question. These were then manually collated. Following this, we went through the
collated results to extract patterns/ trends/ clusters of paper types, using plots when applicable.
All processed data and plotting scripts are available in the project’s Gitlab repository.
gitlab.com/polavieja lab/ml_multi-omics_review , or in Zenodo

doi.org/10.5281/zenodo.7361807

Data charting process

For each research question we created a spreadsheet. In the leftmost column we entered
the names of our 100 papers. In the next column we entered the answer we had found for the
research question after reading the paper. We categorised each of the papers sequentially by
entering a ‘1’ in the relevant column to the right. As we went through the papers, we added
further category columns as necessary. After completing this process, we used python libraries,
primarily pandas and seaborn (Pandas dev. team 2020, Waskom 2021), to structure the data and

create the plots for this report.



Data items/ characteristics of sources of evidence

For each paper, we gathered answers to our research questions, namely:

Research question Data gathered

What was the goal of the ML Which broad ML goal did the study fit under, out of:
application? e C(lassification

e Regression

e Dimensionality reduction

e Network inference

e Other
Which ML techniques were Which type of technique was used, without using categories
used? we simply noted each machine learning technique used in
each paper.
Was a specific dataset used? We noted which dataset was used and whether this was:

e The Cancer Genome Atlas (TCGA)

e Other




Which omics types were used?

We categorised the omics types into:

e Transcriptomics, including:

RNA-Seq
MiRNA-Seq
Long non-coding RNA

Whole transcriptome

e Epigenomics, including:

Hi-C

Chip-Seq

DNA methylation

Gene methylation

CpG

Chromatin accessibility

Open chromatin regions

e Genomics, including:

Copy number variation
Copy burden

Copy aberration

Copy alteration

Whole genome, SNPs
Mutation

Transcription factor binding sites

e Metabolomics




e Proteomics
e Protein expression
e Reverse phase protein array
e Metagenomics, e.g. 16s
e Other, including:
e Fluxome
e QTX
e Histopathological features
e Microarray
e (linical
e Flow cytometry

e Imaging

What was the shape of the

data?

Where multiple studies were performed within a paper, we

took the maximum.




What labels were used? We categorised the type of label used into:

e Survival prediction

e Disease subtype

e Patient/ organism subtype

e Predict response to interventions

e Individual omic level

e None

e Disease progression

e C(Clustering to find survival subtypes

e Known association of omic to disease
e (ase vs control

e Disease A vs disease B

Selection and results of sources of evidence

The full list of the publications included in this review can be found in the references. All
tables with specific responses to the research question for each are included in the GitLab

repository: https://gitlab.com/polavieja_lab/ml multi-omics_review/
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Supplementary figure 3. Fisher’s exact test showing which techniques are used significantly

more often in “ML AND Integration AND multi-omics” versus in “ML AND Integration

techniques”
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