
Supplementary Materials for
The binding mode of orphan glycyl-tRNA synthetase with tRNA supports the 

synthetase classification and reveals large domain movements

Lu Han et al.

Corresponding author: Huihao Zhou, zhuihao@mail.sysu.edu.cn; Paul Schimmel, schimmel@scripps.edu

Sci. Adv. 9, eadf1027 (2023)
DOI: 10.1126/sciadv.adf1027

This PDF file includes:

Supplementary Method
Scheme S1
Figs. S1 to S9
Table S1
References



Supplementary Method 

Synthesis of GlySA 

Scheme S1. The synthesis of intermediate analog. (i) p-toluenesulfonic acid, DMOP, DMF, N2, 

rt, 20 h; (ii) NH2SO2Cl, DMA, N2, rt, 4h; (iii) Boc-Gly-OSu, DBU, DMF, rt, 8h; (iv) TFA: 

H2O=5:1, rt, 2h. 

2-chloro-5'-O-[N-(glycl)sulfamoyl) adenosine (GlySA). GlySA (26) was prepared as the

procedure shown in Scheme S1. The compound [(3aR,4R,6R,6aR)-6-(6-Amino-2-chloro-

9Hpurin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]-3-dioxol-4-yl]methyl sulfamate (1) 

was prepared via the similar method described previously (74)  with high yield. The compound 1 

(210 mg, 1.0 equiv) was dissolved in 10 mL DMF, and then DBU (84 μL, 1.1 equiv) and Boc-

Gly-OSu (150 mg, 1.1 equiv) were added to the reaction mixture. After stirring for 8 h at room 

temperature, the reaction mixture was diluted with 25 mL brine and extracted with 

dichloromethane. The organic layers were dried, concentrated and purified by flash 

chromatography to obtain the compound ((3aR,4R,6R,6aR)-6-(6-amino-2-chloro-9H-purin-9-yl)-

2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl ((tert-

butoxycarbonyl)glycyl)sulfamate (2) as a colorless glassy solid. 144 mg compound 2 was 

dissolved in TFA/H2O (5:2, 3 mL) and stirred at room temperature for 0.5 h. The reaction 

mixture was concentrated in vacuo, and then purified by preparative HPLC to afford the final 

product GlySA as colorless solid. 1H NMR (500 MHz, CD3OD): δ 8.31 (s, 1H), 6.00 (d, J = 4.3 

Hz, 1H), 4.61 – 4.56 (m, 2H), 4.51 (dd, J = 11.2, 4.0 Hz, 1H), 4.39 (t, J = 5.1 Hz, 1H), 4.30 (dd, 

J = 8.2, 3.9 Hz, 1H), 3.77 (s, 2H). MS (ESI) m/z: calcd for C12H17N7O7SCl [M + H]+, 438.05, 

found, 438.05. 





Fig. S1.  Structure superimposition of the two protomers of orphan EcGlyRS revealed that 

both their own structures and their tRNA binding modes are almost identical. One protomer 

and its substrate tRNAGly are colored the same as Fig. 1B, while the other protomer and its 

corresponding tRNAGly are colored in gray. 



Fig. S2. Electron density map of orphan EcGlyRS·GlySA∙tRNAGly complex structure. (A) 

2Fo-Fc omit electron density maps of the protein and nucleic acid chain are drawn as blue 

meshes contoured at 1.0 σ. (B-F) 2Fo-Fc omit electron density maps of the first four base pairs 

of tRNAGly acceptor stem (B), U73 (C), the 3’ CCA-end (D), GlySA (E) and anticodon triplets 

(F) are shown as blue meshes and contoured at 1.0 σ.



Fig. S3. The HD domain and ABD rotate as a whole upon tRNAGly binding, which also 

enlarges the interface between the HD domain and the α subunit. (A) The HD domain in the 

β subunit of orphan EcGlyRS bound with tRNA rotates related to that of EcGlyRS without tRNA 

when their B3 domains are aligned. (B) The ABD of EcGlyRS bound with tRNA aligns well 

with that of EcGlyRS without tRNA when their HD domains are superimposed. Thus, rotation of 

the β subunit C-terminal part mainly happens at the linker between the B3 and HD domains, and 

HD domain and ABD rotate as a whole. (C) When ɑ subunit in tRNA-bound state is 

superimposed to that in tRNA-free state, the HD domain moves towards ɑ subunit in tRNA-

bound state, resulting in a larger interface between HD domain and ɑ subunit. In (A-C), orphan 

EcGlyRS in tRNA-bound state is colored the same as Fig. 1B, while orphan EcGlyRS in tRNA-

free state is colored in gray. The interface areas were calculated using program PISA. 



Fig. S4. Large conformational changes of aaRSs upon tRNA binding.  (A) The largest 

structural movement of class I aaRSs induced by tRNA binding is the C-terminal domain of 

TyrRS. It moves about 25 Å to contact and recognize the long variable loop of tRNATyr. (B) In 

human GlyRS, the Ins3 domain from the other subunit opens up to contact the elbow region of 

tRNAGly. (C) The C-Ala domain of AlaRS moves about 35 Å to contact the elbow region of 

tRNAAla. In (A-C), aaRSs in tRNA-bound state are colored in green for one subunit and salmon 

for the other, while that in tRNA-free state are colored in gray. 



Fig. S5. Sequence analysis of tRNAGly among archaea, bacteria and eukaryotes using 

tRNAviz . Sequence feature distribution for all positions of tRNAGly molecules among three 

domains of life were analyzed using program tRNAviz (37). The first four base pairs of the 

acceptor stem are squared in red. 





Fig. S6. Sequence alignments of the HD domain and the ABD of β subunits from orphan 

GlyRSs. Protein sequences of Escherichia coli GlyRS (EcGlyRS, UniProtKB ID: P00961), 

Helicobacter pylori GlyRS (HpGlyRS, UniProtKB ID: B5Z7X4), Rickettsia typhi GlyRS 

(RtGlyRS, UniProtKB ID: Q68VR4), Aquifex aeolicus GlyRS (AaGlyRS, UniProtKB ID: 

O67898), Oenococcus oeni GlyRS (OoGlyRS, UniProtKB ID: Q04F69), Bacillus subtilis GlyRS 

(BsGlyRS, UniProtKB ID: P54381), Lacticaseibacillus paracasei GlyRS (LpGlyRS, UniProtKB 

ID: Q038U3), Enterococcus faecalis GlyRS (EfGlyRS, UniProtKB ID: Q831U3), Streptococcus 

pneumoniae GlyRS (SpGlyRS, UniProtKB ID: B8ZL20), Synechococcus elongatus (SeGlyRS, 

UniProtKB ID: Q31SB9), Rhodospirillum rubrum (RrGlyRS, UniProtKB ID: Q2RQ43), 

Geobacter lovleyi GlyRS (GlGlyRS, UniProtKB ID: B3E621) were aligned using Clustal Omega 

program (72). The secondary structures corresponding to EcGlyRS are shown above the 

sequences. The conservation scores were calculated by the program Jalview (73) and presented 

in various shades of blue. Key residues which recognize the acceptor stem, 3’ CCA-end and 

anticodon of tRNAGly are shown in red, green and orange boxes, respectively. 



Fig. S7. Protein sequences beyond aminoacylation domain facilitate to recognize the 

acceptor stems and 3’ termini of tRNAs in many class II synthetases. (A) In HsGlyRS (PDB 

code 5e6m), the Ins1 and WHEP domains contact the minor groove of the acceptor stem and 3’ 

terminus of tRNAGly, respectively. (B) In ThrRS (PDB code 1qf6), the N2 domain contacts the 

minor groove of the acceptor stem of tRNAThr. (C) In AspRS (PDB code 1c0a), the insertion 

domain contacts the 3’ terminus of tRNAAsp. (D) In HisRS (PDB code 4rdx), the insertion 

domain contacts the 3’ terminus of tRNAHis. (E) In AlaRS (PDB code 3wqy), the Mid2 

subdomain (purple) and the loop (cyan) before helix 11(H11) of Mid1 subdomain (light blue) 

clamp the minor and major grooves of the acceptor stem of tRNAAla. (F) In orphan EcGlyRS, the 

loop (cyan) similar to that of AlaRS from HD domain (light blue) clamps the major groove of the 

acceptor stem of tRNAGly. In (A-F), the catalytic domains and ABDs are colored in green and 

yellow, respectively, and accessory sequences assisting the recognition of tRNA are colored in 

purple or light blue and circled. 





Fig. S8. Sequence alignments of the α subunits from EcGlyRS and homologs. Protein 

sequences of EcGlyRS (UniProtKB ID: P00960), HpGlyRS (UniProtKB ID: B5Z7W3), 

RtGlyRS (UniProtKB ID: Q68VR3), AaGlyRS (UniProtKB ID: O67081), OoGlyRS (UniProtKB 

ID: Q04F71), BsGlyRS (UniProtKB ID: P54380), LpGlyRS (UniProtKB ID: Q038U2), EfGlyRS 

(UniProtKB ID: Q831U2), SpGlyRS (UniProtKB ID: B8ZL21), SeGlyRS (UniProtKB ID: 

Q31KD2), RrGlyRS (UniProtKB ID: Q2RQ44), GlGlyRS (UniProtKB ID: B3E622) were 

aligned using Clustal Omega program (72). The secondary structures corresponding to EcGlyRS 

are shown above the sequences. The conservation scores were calculated by the program Jalview 

(73) and presented in various shades of blue. Residues participating in the recognition of the 3’

CCA-end of tRNAGly are shown green boxes, respectively. 



Fig. S9. The roles of class II signature motif 2 in the recognition of CCA-end of tRNAs for 

class II aaRSs. (A) The motif 2 contributes to stabilizing the 3’ CCA-end of tRNA in typical 

class II aaRSs.  The pyrimidine ring of C74 interacts with the conserved Arg in the motif 2 of 

HsGlyRS (PDB code 5e6m), EcAspRS (PDB code 1c0a) and EcThrRS (PDB code 1qf6). (B) In 

AfAlaRS (PDB code 3wqy) and orphan EcGlyRS, their substrate tRNAs bind through an angle 

different to tRNAs of other class II aaRSs. As a result, the motif 2 of AfAlaRS and EcGlyRS 

does not contact with 3’ CCA-end of their tRNAs. In (A-B), the motif 2 sequences are colored in 

yellow, and polar interactions between the conserved Arg on motif 2 and the 3’ CCA-end of 

tRNA are labeled in orange dashed lines. 



Table S1. Statistics of X-ray diffraction data collection and structure refinement. 

EcGlyRS∙GlySA∙tRNAGly 

PDB accession code 7YSE 

Data collection 

Resolution(Å) 50.00-2.91(3.06-2.91)a  

Wavelength (Å) 0.979 

Space group P2221 

Cell dimensions 

a, b, c (Å)  72.71, 162.123, 324.09 

α, β, γ (°)  90.0, 90.0, 90.0 

Unique reflections 85473 (12313) 

Redundancy 6.6 (7.1) 

Rmerge
b 0.138 (0.749) 

CC1/2 0.990 (0.774) 

Average I/σ(I)  9.4 (2.6) 

Completeness (%) 100 (100) 

Refinement 

Resolution (Å)  50.00-2.91 

Reflections for refinement/test 80999/4393 

Rwork
c/Rfree

d  0.230/0.260 

RMSD bond (Å)  0.004 

RMSD angle (°)  1.231 

 No. atoms 

   Protein 14340 

   RNA 2952 

   Water 14 

   Ion 6 

   Ligand 56 

Average B factors (Å2) 86.0 

Ramachandran plot (%) 

Favored 93.74 

Allowed 5.83 

Outliers 0.43 

aValues in parentheses are for the highest resolution shell.
bRmerge = Σh Σl | I(h)l - <I(h)> | / Σh Σl I(h)l, where I(h)l is the lth observation of the reflection h and <I(h)> is the 

weighted average intensity for all observations l of reflection h. 
cRwork=∑h | | Fobs(h) | - | Fcal(h) | | /∑h | Fobs(h) |, where Fobs(h) and Fcal(h) are the observed and calculated structure 

factors for reflection h respectively. 
dRfree was calculated as Rwork using 5.0% of the reflections which were selected randomly and omitted from 

refinement. 
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