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Referees' comments:

Referee #1 (Remarks to the Author):

This study provides a new perspective on dopamine that could in theory begin to drag the field away
from some of the rather dogmatic viewpoints. One of the problems with most studies on the role of
dopamine and RPEs in learning is that the ‘expectations’ are never actually measured, but are only
inferred post-hoc based on the size of the dopamine response, which is circular. For this reason, |
was excited to see proxy measures of expectation based on various behavioral markers. More
importantly, while a host of models can capture overall learning rates, there has not been a
principled way to capture the fluctuations in performance that individual animals exhibit. This study
proposes a comprehensive theory to explain both overall learning rates as well as these fluctuations
by arguing that the phasic dopamine signal adaptively changes the learning rate. The closed loop
contingent stimulation results are quite compelling, as they are counter-intuitive yet fit nicely with
model predictions. The theory also provides an explanation about how large stimulation during the
reward epoch of certain trials can produce larger dopamine responses to a cue, consistent with
value learning interpretations.

Obviously, any theory that challenges dogma will be greeted with apprehension. For this reason, |
feel strongly that the authors need to do a better job of describing their theory and the evidence
that potentially supports it. The following critiques are primarily made with this goal in mind.

| found it difficult to grasp what the authors were trying to convey until near the end of the Results
section. The theory remained murky until Fig 4 when | realized the main point was that dopamine
could adaptively determine the learning rate. | felt this concept was not clearly laid out in the
abstract, introduction or first paragraph of the results. | would strongly advise a major rewrite to
emphasize this critical point. A brief synopsis of the basic theory as described on lines 187-201
followed by a simplified and clear description about how this differs from current models of
dopamine function would be helpful. | also think that the paragraph beginning on line 404 in the
discussion is a better summary of the results than the first paragraph of the current discussion.

It is easy to model overall learning rates on such a simple task but what is much more difficult to
model are the trial-by-trial fluctuations of individual animals. While | can see how this is possible
within the framework proposed, the results are not really presented in the best possible light. The
reader needs to see how dopamine transients track with the trial-by-trial changes in performance. In
this regard, it is important to focus on the counter-intuitive cases, where for example the sustained
lick policy was high but a negative performance error occurred, thereby pushing the system away
from the sustained policy and causing the animal to subsequently exhibit less sustained licking. |
understand that the idea is that dopamine changes the overall policy rather than evoking an
immediate change in sustained behavior, but some type of trial-lag dependent approach might be
possible.



Fig 3 is critical to the theory, but it was not well set up and | wasn’t sure what part of it was relevant
to the overall story. Also, | don't think | completely understand it. Fig 3A shows that all behavioral
measures increase late, but in the right panels the blue and red lines overlap. Shouldn't the blue
lines be much higher for Fig 3C to work? This is especially true in Fig 3aii where the blue lines are
always slightly lower in the right panels. What am | missing?

The data presented in Fig 5ci are also critical to the theory, but my concern here is that they could be
interpreted in the traditional RPE framework. If the animal is doing well, it has a good idea of what
the cue means and that it should start licking when it hears it. However, there would be trials when
the cue does not register, due to perhaps a lapse of attention. As a result, the animal would not
expect reward on these trials. A skeptic might therefore argue that the results in Fig 5C are simply
due to the unexpected reward generating a larger dopamine ‘RPE’ on the lick- trials.

It is important to point out that the sound cue predicted the reward on 90% of trials but the solenoid
was the most reliable predictor of reward on 100% of trials. Therefore, the purpose of the cue was
different than in most RPE studies where it usually indicates the presence of the reward. In this
study, the cue evoked sustained licking that in turn helped the animal collect the reward, but again,
it was not the most reliable predictor of reward. It could therefore be argued that the unexpected
differences in cue responses were due in part to this unique aspect of the experiment.

The data presented in Figure 5f-1 are compelling and provide a nice way to square the results of this
study with past studies. | do however think it would be beneficial to walk the reader through these
results by contrasting the differences between the predictions of the two theories each step of the
way.

| can see how the optogenetic stimulation could create a state of confusion in the animal. Based on
what | garnered from the Methods, in some animals the stimulation was first added to the reward,
then it was added to the cue, then it was added in place of the reward when a new cue (light) was
introduced.

A minor issue relates to the implementation of the eligibility traces in the model. First, Shindou et al
(2019) cannot be used as a basis for eligibility trace modulation as this was an in vitro study and had
nothing to do with eligibility traces. Second and more importantly, the task is so simple and
performance improves monotonically such that all past behaviors directly relate to all future states.
Adding modulated eligibility traces to the model incorporates another free parameter but should not
be necessary for the model to work.

Referee #2 (Remarks to the Author):

The study by Coddington, Lindo and Dudman uses behavioral, multi-site photometry, and
optogenetic experiments, together with modeling, to investigate the role of midbrain dopamine
neurons in policy learning through performance errors. The authors conclude using a trace
conditioning pavlovian task the initial phasic response of dopamine to reward in the NAcc correlates
with the probability of having “predictive” licking responses later in learning. Through a variety of
analyses, models, and manipulations the authors take this as evidence that the phasic response of
dopamine to reward is related to learning control policies rather than the value of cues (and



actions). There is much to like about this study, especially the ACTR learning rule and model for
learning control policies. Certainly, the topic is important, and the role of midbrain dopamine
neurons in signaling performance errors or has been understudied. However, there are a variety of
experimental considerations that merit careful reflection before reaching such conclusions.

The choice of task in order to study if phasic dopamine activity regulates policy learning from
performance errors is unexpected. One would expect that a task where the policy would determine
the probability of getting reward would be more appropriate. A pavlovian task, in which licking
represents a consummatory response, may not be ideal for studying the learning of control policies
and performance prediction errors. Furthermore, the particular design of the task is peculiar. For
example, there are unsignaled rewards delivered in 10% of the trials and there seems to be no CS-.
This design may have biased what animals learned. Typically, in a pavlovian task, animals predict
that a neutral clue predicts reward and anticipate the consummatory response to the neutral clue
but not to other cues. Furthermore, they learn to not present consummatory responses in the
absence of the cue. So, learning can be measured by increased licking after CS+, but not CS- or the
intertrial interval. And, also by a decrease in the latency to collect reward to the CS+ as shown here,
but not to CS-. Therefore, a CS- would really help the interpretation of the results. Apart from that,
in the version of the task presented here it would be important to show the licking dynamics/rates
right after cue presentation versus during the intertrial interval and right before cue presentation
across learning. The fact that the latency to collect reward also decreases dramatically for the
uncued trials signifies that the licking rate in the intertrial periods also increased dramatically. This
could mean that in the current version of the task the cue is not the only or even main predictor of
reward (although there is a small difference in the latency of cued versus uncued trials), and maybe
the animals are also learning that they should lick when they are in this task, and that with the
passage of time there is an increased probability of getting a reward. This, of course, could mean
that animals with a strong dopamine response to reward early in training learn different strategies
than animals with a low response to reward, namely how predictive of reward the cue is. Hence, one
potential explanation for the results is that animals that do not have a strong phasic dopamine
response to reward show more licking in general late in training both after the cue but also before
the cue (before the cue late compared to before the cue early), and are just increasing expectation
for reward as the intertrial interval goes by.

Another issue that deserves attention is the method used for measuring dopamine activity. The fact
that the responses in NAcc and DS are different suggests that these are either different dopamine
populations of dopamine neurons, or less likely, that the projections to these targets have different
local modulation of axonal excitability. At any rate, at a time when the field is debating the
heterogeneity of dopamine populations and how some could signal reward-prediction errors and
others not, it is unclear what the authors are claiming here. Is the claim that different populations in
VTA encode RPEs versus performance errors, or that most dopamine neurons in VTA do both, or that
most VTA DA neurons are mainly involved in policy learning? It seems that fiber photometry is not
the best method to dissect this.

The different optogenetic stimulation protocols yield interestingly results, and this is predicted by
the ACTR model. The different results that the “calibrated” versus “uncalibrated” stimulation
produce are important. However, there are also some important considerations here. In both



protocols, a 30Hz frequency of stimulation is used, which is way higher than the physiological firing
of dopamine neurons. The authors should make sure that the dopamine neurons can follow the
stimulation frequency of 30Hz. Additionally, besides different stimulation lengths being used,
different optical powers are used. With higher optical powers many more dopamine neurons will be
activated, and importantly in regions further away from the fiber, and hence the results could be
because different subregions/subpopulations are being activated. Furthermore, in the current
version of the task, the calibrated stimulations could lead to less predictive value of the cue and
hence more sustained licking overall (not only after the cue), while strong activation of dopamine
after the cue could increase the predictive value of the cue and hence result in less licking overall.

Finally, a small note. Although the topic of dopamine’s role in policy learning through performance
errors is much less explored than in RPE, there are a few important studies demonstrating the role of
dopamine in signaling performance prediction errors, and hence the introduction and abstract seem
to set up too much of a strawman. One of the most important studies in the topic is only reference
number 38, and is first referenced in bundle with a lot of other studies (not mentioning that it claims
a role for midbrain dopamine neurons in signaling performance prediction errors).

Referee #3 (Remarks to the Author):

| thought the goal of the paper was admirable -- quantitatively linking recorded dopamine signals to
individual differences in learning and reinforcement learning models. However | found the specifics
of the paper very confusing, both in terms of what scientific points were being made, and what
evidence they had to support their arguments. For example, are they claiming that DA contributes to
policy learning (which is a mainstream view from the actor-critic framework), or are they claiming
DA does not contribute to value learning (which is hard to disprove, and | certainly do not think they
show convincingly it does not)? More details below.

Regarding what points were being made: the paper puts great emphasis on the distinction between
policy-only models, vs actor-critic models (the latter are commonly used to model the basal ganglia,
and posit a role for dopamine not only in value learning but also in policy learning). The difference
between policy-only vs actor-critic is subtle. After all, an RPE-like DA signal is still being learned in
this version of REINFORCE, and that signal is still being used to modulate plasticity to guide
reinforcement learning. I’'m not clear if their goal is to provide more support for that view, and show
it also applies in ventral striatum, or if they are trying to argue that dopamine does not also
contribute to value learning. Whatever point they are trying to make, | think it is very subtle, and in
addition, the latter would be a hard point to prove given that it’s hard to prove a negative.



Making the big picture even more confusing is that the choice of behavior is pavlovian conditioning.
Learning a “policy” is exactly equivalent to learning a value function in the context of pavlovian
conditioning, since mice are expected to display pavlovian behaviors in proportion to the value
function. Relatedly, the objective function that was used to train the network was based on time to
collect reward once available, which can be considered a discounted value function. Therefore, the
network seemed to be trained to calculate value, and then the derivative of that signal was used to
produce the dopamine signal (RPE) - which all in all seem exceedingly similar to traditional actor-
critic models.

| did think it was interesting that dopamine early on was so predictive of individual differences in
behavior, and that their model recapitulated it. But | couldn’t find an explanation of why their model
produced that effect. Also, could they show the learning trajectory of the two groups of mice?

It seems they claim a key piece of evidence in support of their model is that dopamine causes
activity away from the policy when they are in showing little licking behavior. Their explanation on
line 267 of why DA enhancement on lick+ trials lead to less licking is as follow : “Such trials with a
negative performance error are generally lick+ trials that occur relatively late in learning and have
sustained licking that happens to terminate prior to reward delivery. Selectively enhancing learning
rates on these trials with a negative performance error can have the effect of pushing the model
away from a policy with sustained licking especially by reducing transient response components.”
My understanding of this explanation is that despite calling these trials lick+, they are actually licking
less immediately before the reward. Can they show this directly in both model and mice? If this
explanation is correct, a value-based model would make the same prediction - if the behavior
immediately before the reward is “not licking” that will strengthen the policy in a policy model and
reinforce the action in a value learning mdoel (since most recent behavior is most eligbile for
modification given eligbility trace). Ultimately, it is not at all convincing that they have found a
regime that dissociates a value model from a policy model.

| found the mouse’s leaned behavior itself a bit confusing - The mice are getting much more efficient
at licking w/ low latency over time, irrespective of the presence of the cue. Any learning about the
cue is much more subtle and comes later. Is that because they are mostly learning about the
solenoid click? Perhaps that’s why the DA correlates in general are rather subtle for the cue, the
behavior learning seems very much about the solenoid opening, and much less learning about the
cue.

| found the Introduction to be very confusing. For example, in Line 26 about ‘performance errors”
versus RPEs - When | first read it | thought perhaps they were referring to RPEs with respect to
actions vs stimuli. But eventually | thought they meant the discounted value functon(since they used
time to reward collection as their performance error). It would be helpful to provide a clear



definition of performance prediction errors. In addition, evidence for claim in Introduction that
policy-only learning algorithms vs actor-critic models (that also include a policy) are better suited to
understand individual differences is lacking

It was extremely difficult to read & follow the Methods section on their model. | suggest the authors
should separate an explanation of the equations and concepts of the model versus details of the
implementation, simulations etc. A particularly important issue is lack of clarity on how the DA signal
is calculated, as the dopamine "beta" signal doesn’t seem to have an equation in methods, and is
explained in words very differently in Line 770 vs line 202 since one spot mentions a derivative and
the other a sum. Not knowing how the DA signal was calculated really hampered my understanding
of the model.

Is 4k & 4l referenced in Results? | searched for a reference to those figure panels and it did not come
up. This seems like another critical omission, since those panels are the key predictions of the model
that seem to really be the crux of the paper.

Why did lick- group lick more than lick+ in Fig 4H?

For figure 3.a.2, they should include the uncued reward response as well, to demonstrate if this an
ROE or reward response.

Calibration experiment in Figure 6 is interesting, but | don’t think it makes the effect of DA on
producing a cue response at all uninteresting or unconvincing. They are calibrating to the DA signal
immediately adjacent to the optical fiber in NAc. This should be conservative since not all dopamine
neurons are in the immediate vicinity of the NAc fiber. Also there may be other neuromodulators etc
that help enhance the effect of DA. They are still showing that DA signals are sufficient to enhance a
cue response, consistent w/ learning about the value of the cue. Presumably inhibition would be
sufficient to decreases that cue response. Also, does strong stimulation of DA in their model lead to
a greater cue response? If not, why not?



Author Rebuttals to Initial Comments:

Referee #1 (Remarks to the Author; Replies):

This study provides a new perspective on dopamine that could in theory begin to drag the field away from
some of the rather dogmatic viewpoints. One of the problems with most studies on the role of dopamine and
RPEs in learning is that the ‘expectations’ are never actually measured, but are only inferred post-hoc based on the
size of the dopamine response, which is circular. For this reason, | was excited to see proxy measures of expectation
based on various behavioral markers. More importantly, while a host of models can capture overall learning rates,
there has not been a principled way to capture the fluctuations in performance that individual animals exhibit. This
study proposes a comprehensive theory to explain both overall learning rates as well as these fluctuations by arguing
that the phasic dopamine signal adaptively changes the learning rate. The closed loop contingent stimulation results
are quite compelling, as they are counter-intuitive yet fit nicely with model predictions. The theory also provides an
explanation about how large stimulation during the reward epoch of certain trials can produce larger dopamine
responses to a cue, consistent with value learning interpretations.

We thoroughly appreciate these comments and the summary offered by the reviewer. It is a very accurate and to our
opinion insightful summary of our work placed nicely in the context of the field. Thank you. We have tried to ensure
the revised (overhauled) manuscript helps convey these points more clearly than our initial submission.

Obviously, any theory that challenges dogma will be greeted with apprehension. For this reason, I feel
strongly that the authors need to do a better job of describing their theory and the evidence that potentially
supports it. The following critiques are primarily made with this goal in mind.

We thank the reviewer for these critiques and found them very helpful in clarifying the main themes of this work.
Briefly, we have rearranged all figures to bring model and data closer together allowing detailed comparisons. We
have expanded our modeling to compare both multiple variants of ACTR models and in a few key places comparison
to a widely used alternative model in the field. Finally, we have done some new analyses inspired by reviewer
comments and some additional experiments to further solidify our conclusions. Your guidance, and the time spent
writing it out so clearly, have allowed us to strengthen the manuscript and it is greatly appreciated.

| found it difficult to grasp what the authors were trying to convey until near the end of the Results section. The theory
remained murky until Fig 4 when | realized the main point was that dopamine could adaptively determine the learning
rate. | felt this concept was not clearly laid out in the abstract, introduction or first paragraph of the results. | would
strongly advise a major rewrite to emphasize this critical point.

On reflection we agreed very much with this assessment, and indeed performed a major rewrite. We have re-focused
on the central importance of dopamine as a controller of adaptive learning rate and more clearly contrast our
discovery with alternative functions that DA signals could have in signaling errors (which the data does not support).
We now introduce the ACTR model earlier in the paper to focus on its predictive power for behavioral learning data
and then detail how we consider multiple different ways in which DA might map onto functions in the model through
close comparisons with data in all figures (Fig 1h-j; Fig 2f-g; Fig 3 c, e-f; Fig 4 g,i). This allows us to establish the
unique and excellent fit between the adaptive rate term of the model and our observations of DA activity and function
(via optogenetic manipulations).

A brief synopsis of the basic theory as described on lines 187-201 followed by a simplified and clear description about
how this differs from current models of dopamine function would be helpful. | also think that the paragraph beginning
on line 404 in the discussion is a better summary of the results than the first paragraph of the current discussion.

Thank you, we have taken this advice and used those passages to clarify the introduction and model description.

It is easy to model overall learning rates on such a simple task but what is much more difficult to model are the
trial-by-trial fluctuations of individual animals. While | can see how this is possible within the framework proposed, the
results are not really presented in the best possible light. The reader needs to see how dopamine transients track
with the trial-by-trial changes in performance. In this regard, it is important to focus on the counter-intuitive cases,
where for example the sustained lick policy was high but a negative performance error occurred, thereby pushing the



system away from the sustained policy and causing the animal to subsequently exhibit less sustained licking. /
understand that the idea is that dopamine changes the overall policy rather than evoking an immediate
change in sustained behavior, but some type of trial-lag dependent approach might be possible.

We appreciate the thinking here and the reviewer is quite right about both the importance of this analysis and also its
subtlety. We now include in Figure 1f-g analysis inspired by this point. Briefly, we show that (1) there are two
distinguishable components of learning and (2) performance errors on the prior trial are predictive of the change in
these components of the behavioral policy on the subsequent trial.

The reviewer is also correct that our model suggests that this effect should be oer
modulated by dopamine transients on the prior trial for anticipatory components. We 04t
would note from the outset that this point is complicated because DA transients are also
predicted to correlate, albeit in a bit of a complex way, with performance errors because
of shared components in the computations. This is just a restatement of the well known
limitations of using correlations to examine feedback in any closed-loop model. That
being said, at right we show the requested analysis and note that it shows the expected
effect consistent with the model. However, we also ran this analysis in the model and
found it to be very noisy (even though we know the underlying computations) and
indeed in the data the variance is substantial. Thus, we chose not to incorporate this in 08¢
the main manuscript. It is unclear whether this variance is due to measurement noise al
inherent in estimating single trial dopamine responses or whether there are additional
subtleties that will need to be discovered in future work (e.g. the effect of postsynaptic
dopamine could integrate over trials in a way we do not yet fully understand due to long M os 02 o o2 oa
time constant biochemical processes; or the single trial heterogeneity in DA magnitude A Performance error (trial N-1)
may reflect subtle variance in release location / cell type / etc that is not yet captured in

our modeling predictions).
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Fig 3 is critical to the theory, but it was not well set up and | wasn’t sure what part of it was relevant to the
overall story. Also, | don't think | completely understand it. Fig 3A shows that all behavioral measures
increase late, but in the right panels the blue and red lines overlap. Shouldn't the blue lines be much higher
for Fig 3C to work? This is especially true in Fig 3aii where the blue lines are always slightly lower in the right
panels. What am | missing?

We regret that this figure was confusing as originally constructed. The current version (now Fig 2c-e) was simplified
by (1) removing the individual examples, (2) zooming in on the remaining traces and highlighting the delay period in
between cue and reward where we measured preparatory behavior (gray dashed boxes in middle column), and (3)
plotting the quantified preparatory behaviors to the right of the traces. We also now show in the same figure the
corresponding simulations from the ACTR model that explains the relationship between individual differences in DA
signals and learned behavior (Fig 3 f-g). We hope this has clarified the presentation and we believe everything is
internally consistent.

The data presented in Fig 5ci are also critical to the theory, but my concern here is that they could be interpreted in
the traditional RPE framework. If the animal is doing well, it has a good idea of what the cue means and that it should
start licking when it hears it. However, there would be trials when the cue does not register, due to perhaps a lapse of
attention. As a result, the animal would not expect reward on these trials. A skeptic might therefore argue that the
results in Fig 5C are simply due to the unexpected reward generating a larger dopamine ‘RPE’ on the lick- trials.

Both DA and licking responses to the cue indicate that the cue was perceived and affected behavior even on Lick-
trials (shown below; in the submitted manuscript we only compare these DA signals with the equivalent model
prediction). This is consistent with our view that behavior can be controlled differently across successive trials even
without dramatic differences in the perception or predictive power of the cue.



However, we agree that while this particular data point is predicted by trials 1-200 trials 400-800
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possible versions inspired by value learning.

It is important to point out that the sound cue predicted the reward on 90% of trials but the solenoid was the most
reliable predictor of reward on 100% of trials. Therefore, the purpose of the cue was different than in most RPE
studies where it usually indicates the presence of the reward. In this study, the cue evoked sustained licking that in
turn helped the animal collect the reward, but again, it was not the most reliable predictor of reward. It could therefore
be argued that the unexpected differences in cue responses were due in part to this unique aspect of the experiment.
The data presented in Figure 5f- are compelling and provide a nice way to square the results of this study
with past studies. | do however think it would be beneficial to walk the reader through these results by
contrasting the differences between the predictions of the two theories each step of the way.

We thank the reviewer for this suggestion and we agree there is substantial benefit to comparing our model ACTR
with existing value learning models. We have now clearly contrasted the major predictions in question (Fig 4g) with
the actual closed-loop stimulation results (Fig 4c-e). We note that one might be concerned that the ACTR model is
more complex in its construction than standard value learning models used in the field. On the one hand this is
because our goal is much broader - we have attempted to explain in detail the learning of reward-related behavior as
well as the time course of DA signaling. Thus, we have also now included comparisons where we compare DA
activity functioning like the error term in ACTR with simulations in which DA activity functions as the adaptive rate
term. While the performance error term in ACTR is meaningfully distinct from RPEs for value learning, they share the
analogous function of directing learning towards or away from the agent’s state on the current trial. We find that the
evidence and data overwhelmingly support a role as an adaptive rate term as opposed to either type of error term.
This modification, inspired by the reviewers comments, has importantly clarified the distinct predictions of the different
models and better demonstrates the uniquely good fit of the ACTR model in which DA acts as the adaptive rate
component.

I can see how the optogenetic stimulation could create a state of confusion in the animal.

Based on what | garnered from the Methods, in some animals the stimulation was first added to the reward, then it
was added to the cue, then it was added in place of the reward when a new cue (light) was introduced.

In other work we have found the calibrated stimulation regime is imperceptible to the animals and does not interfere
with reward seeking when combined with cues (W.-X. Pan, Coddington, and Dudman 2021). Given that and also the
control in this paper that showed that stimulation at the cue did not immediately affect ongoing behavior (Ext Fig 3),
we believe we have good controls strongly suggesting animals were not confused or directly disrupted in their
behavior by the stimulation.

We do appreciate the concern over whether the order of experiments could confound their interpretation,
and were cognizant of that danger during experiment design. The experiments were thus ordered to avoid confounds
from previous stimulation paradigms—augmentation of DA cue responses (Ext. Data Fig 3) was only done for a single
brief session and only interpreted with respect to immediate effects on behavior, and then the cued DA experiment
used a novel visual cue to minimize confounds from any previous learning about an auditory cue (including any
disruptions that might have occurred as a result of augmenting cued DA signals for that one brief session). In
addition, as illustrated in Sup. Table 1, membership in the specific stim groups were counterbalanced across all these
experiments so that if there were lingering effects from one paradigm they would not bias the results of the next
experiment.

A minor issue relates to the implementation of the eligibility traces in the model. First, Shindou et al (2019)
cannot be used as a basis for eligibility trace modulation as this was an in vitro study and had nothing to do


https://paperpile.com/c/QlOToc/iZ2Y

with eligibility traces. Second and more importantly, the task is so simple and performance improves
monotonically such that all past behaviors directly relate to all future states. Adding modulated eligibility
traces to the model incorporates another free parameter but should not be necessary for the model to work.

This comment was very interesting. To be honest we thought about it in the converse. Initially we ran the simulations
without a decaying eligibility trace (which works as well), but worried that was biologically implausible and thus would
elicit concerns. So we introduced a decaying eligibility trace to ensure that it could work even with a decaying trace.
Essentially the two views can be reconciled - a non-decaying trace is a choice of a parameter with a huge time
constant whereas here we chose a reasonable time constant (half a second). In this sense there is no additional
parameter. We certainly could report results either way, but there is long standing evidence that associated learning
depends at least to a degree upon the interval between cue and reward and we presume that is reasonably well
captured by a decaying eligibility trace. We can remove the inappropriate reference, however, and will keep the
reference to (Izhikevich 2007). Below we show some example simulations with a relatively broad permutation of
initializations +/- eligibility trace decay. There are possibly subtle differences beyond stochastic gradient effects, but it
is not the case that the decay is necessary, we simply find it to more plausibly connect to biological signals for
plasticity.



https://paperpile.com/c/QlOToc/BLL7

Referee #2 (Remarks to the Author):

The study by Coddington, Lindo and Dudman uses behavioral, multi-site photometry, and optogenetic experiments,
together with modeling, to investigate the role of midbrain dopamine neurons in policy learning through performance
errors. The authors conclude using a trace conditioning pavlovian task the initial phasic response of dopamine to
reward in the NAcc correlates with the probability of having “predictive” licking responses later in learning. Through a
variety of analyses, models, and manipulations the authors take this as evidence that the phasic response of
dopamine to reward is related to learning control policies rather than the value of cues (and actions).

There is much to like about this study, especially the ACTR learning rule and model for learning control
policies. Certainly, the topic is important, and the role of midbrain dopamine neurons in signaling
performance errors has been understudied. However, there are a variety of experimental considerations that
merit careful reflection before reaching such conclusions.

The choice of task in order to study if phasic dopamine activity regulates policy learning from performance
errors is unexpected. One would expect that a task where the policy would determine the probability of
getting reward would be more appropriate. A pavilovian task, in which licking represents a consummatory
response, may not be ideal for studying the learning of control policies and performance prediction errors.

Indeed, the pavlovian task was chosen in part for comparison to the wealth of previous data due to its historical
association with DA-dependent learning, and not completely because it is specifically designed for the study of
performance error. However, one contribution of this work is the novel demonstration that learning in this well-trodden
context is surprisingly well-explained as optimization of policy guided by performance error, including some new
analyses in the current revised version (Fig 1g, j; Ext Fig 6e). It was not clear from previous accounts that a task with
such simple states and contingencies should produce the rich variation in individual learning trajectory that we
describe, and we find this to be an important illustration of how control policies and optimization of performance need
to be modeled explicitly in order to account for individual differences in behavior.

Additionally, when and how to lick is, though subtle, nonetheless a complicated and actively learned and controlled
process (Bollu et al. 2021; Gutierrez et al. 2006; Gong et al. 2020) and not a static consummatory response. Given
this, we do find it ideal to study the control policy for licking in isolation from the complications of other purposive
behaviors (e.g. navigation, interactions with manipulandum) and with a simple pavlovian contingency in which naive
learning is practical to capture.

Furthermore, the particular design of the task is peculiar. For example, there are unsignaled rewards delivered in 10%
of the trials and there seems to be no CS-. This design may have biased what animals learned. Typically, in a
pavlovian task, animals predict that a neutral clue predicts reward and anticipate the consummatory response to the
neutral clue but not to other cues. Furthermore, they learn to not present consummatory responses in the absence of
the cue. So, learning can be measured by increased licking after CS+, but not CS- or the intertrial interval.

And, also by a decrease in the latency to collect reward to the CS+ as shown here, but not to CS-. Therefore, a CS-
would really help the interpretation of the results.

We thank the reviewer for suggesting analyses of baseline licking here and below, and we have followed up on this
and it provides additional evidence for cue-specific learning. We see little to no modulation of licking during this period
over the course of training and the extent of such ITI licking is uncorrelated with performance across mice (see final
figure in our response to you) - unlike the strong correlation between cue-responsive licking and
performance/learning.

In our opinion there are some important reasons not to utilize a CS- for this study. One important reason is that some
very compelling recent work has provided strong evidence that a CS- induces a kind of suppressive learning with a
separate time course from the appetitive learning to the CS+. Perhaps the nicest example of this comes from recent
collaborative work from Rob Froemke and Peter Holland (Kuchibhotla et al. 2019). Although unpublished currently,
we have similar results from our lab observing that learning to suppress false alarms happens with a distinct time
course from learning on CS+ trials. Indeed, in some prior work mice fail to learn to suppress responses to CS- despite
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monotonic learning of the CS+ (Lee et al. 2018). Subsequent work from that same group has focused on CS+ only
paradigms as a relevant example (Lee et al. 2020).

These two components of learning are an additional and fascinating aspect to model going forward and we think our
policy learning perspective has great potential to explain the different time courses of suppressive and appetitive

learning; however, we felt that that was beyond the scope of the already substantial study herein and our focus on the

specifically on the learning of the appetitive component.

Apart from that, in the version of the task presented here it would be important to show the licking dynamics/rates
right after cue presentation versus during the intertrial interval and right before cue presentation across learning.

We thank the reviewer for the specific

suggestions about licking analyses and a
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fact that considerable time has elapsed trials trials

since the previous trial. We now include
this data in the manuscript as requested.

The fact that the latency to collect reward also decreases dramatically for the uncued trials signifies that the
licking rate in the intertrial periods also increased dramatically.

Above, we do not find a “dramatic” increase in lick rate in the intertrial period that would explain the fact that animals
on average learn to collect uncued rewards in ~0.3 seconds. Instead the entirety of the data presented in the

manuscript is consistent with improvements in animals’ reactions to sensory evidence of reward delivery. We describe

this in our current paper as a “reactive” component - namely, mice learn to use sensory evidence of reward delivery
(whether that be a solenoid click or the smell or chemosensation of water in front of the face (Coddington and
Dudman 2018; Galifianes, Bonardi, and Huber 2018)) to rapidly initiate licking and collect reward. A naive mouse (as
we show in figure 1) has relatively slow reaction time to the delivery of water reward, but this reaction time improves
in a way we model as strengthening a sensorimotor pathway from sensory evidence of water reward -> initiation of
licking. This is sufficient to explain the improvement in reward collection latency for uncued trials since the same
evidence of reward availability is present in both trial types. Consistent with this we observe quite low levels of
baseline or background licking. In contrast, in published work we have observed >2Hz, hazard-modulated baseline
licking for fully uncued reward delivery after learning a cue (W.-X. Pan, Coddington, and Dudman 2021).

This could mean that in the current version of the task the cue is not the only or even main predictor of reward
(although there is a small difference in the latency of cued versus uncued trials), and maybe the animals are also
learning that they should lick when they are in this task, and that with the passage of time there is an increased
probability of getting a reward. This, of course, could mean that animals with a strong dopamine response to reward
early in training learn different strategies than animals with a low response to reward, namely how predictive of
reward the cue is. Hence, one potential explanation for the results is that animals that do not have a strong

800
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phasic dopamine response to reward show more licking in general late in training both after the cue but also
before the cue (before the cue late compared to before the cue early), and are just increasing expectation for
reward as the intertrial interval goes by.

We thank the reviewer for their guidance on evaluating the alternative

interpretation they propose. We do not find a correlation between initial DA h 2 % =075

reward responses and baseline licking just before trial start. We are certainly in N |r=012

agreement that “animals with a strong dopamine response to reward early in 5

training learn different strategies than animals with a low response to reward” - iy o©
that is our conclusion as well, but the question is how to describe the difference &5 1 o fo)

in terms of learning mechanisms. Our argument from modeling and analysis is z o

that this observation is accounted for as a different behavioral policy for =

preparatory licking. Specifically, high dopamine responses are associated with = 00 @)

excessively strong reactive policies early that impair the slower development of 0 0 1 P
the predictive, preparatory policy (due to a vanishing gradient as explained final baseline licking (Hz)

below and in the text on Fig 2 of the current manuscript). Our modeling nicely

captures this and importantly captures this phenomenon in the context of a full

model that has substantial additional explanatory power (the same model is used to capture all the other key
observations in the manuscript).

We should clarify a few points here. First, we agree that the cue is not the only predictor of reward, only that it is the
earliest predictor of reward. There is a rich tradition of study in the learning field that emphasizes that the time interval
between trials is also a reward predictor that can be used to anticipate reward delivery (albeit with substantial timing
uncertainty) via a hazard function (Gallistel and Gibbon 2000). \We go to some lengths to degrade the information
present in the intertrial interval by using an exponential interval distribution that produces a flat hazard function
(Gallistel and Gibbon 2000; Kepecs et al. 2008; Coddington and Dudman 2018) limiting the amount of information the
passage of time conveys about reward. This exponential distribution is a relatively standard approach, but we also
highlight that the intertrial intervals we use are considerably longer than other comparable work (~25 s on average,
compared to <10 s for work from the Uchida lab for instance), magnifying the usefulness of the cue in preparing for
reward delivery. It is also of interest to note that results from the Schultz group (and others) did not use the now
standard exponentially-dstirbuted ITI in many classic papers (a short uniform distribution of 5-7 seconds was often
used (Schultz, Apicella, and Ljungberg 1993)) and thus it is an important caveat to interpretation of those prior results
for the reasons the reviewer nicely illustrates.

Next, while we agree there is a large improvement in overall reward collection latency at the beginning of training for
all mice, the difference between uncued and cued is not small in a relative sense that it is demonstrably significant.
Cued trials allow animals to halve their latency to collect reward. If, as is standard in many other studies, we only
reported data from mice late in training or after extensive pre-shaping, then the cued vs uncued latency effect would
dominate. But by showing how initially slow mice can be to collect water reward on the same plot we believe it gives
the most holistic representation of the full learning process. Very importantly, we also highlight that our ACTR model
formally demonstrates that the relatively small gain in performance achieved by preparatory licking (Ext Data Fig 1e)
is sufficient to drive the learning that we observe in

mice.

trials 1-100 trials 600-800 final cued resp.
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consistent with mice failing to learn the predictive cue. Second, we note that our analysis in Figure 2c (shown at right)
is absolute lick frequency (not normalized). One can see that the high DA cohort still does elicit a clear uptick in lick
frequency relative to baseline after the cue. This increase in preparatory licking is learned, but the learning is smaller
and saturates at a low level associated with less good performance. The ACTR model captures this effect quite well.
While there is a statistically insignificant trend towards an offset in baseline licking in the higher DA response subset
apparent in the graph, when we examined the mice there was no correlation between background licking rate and
reward collection latency (p=0.9, r=0.04) or initial DA responses (p=0.75, r= 0.12) in contrast to the very clear and
robustly significant correlation between DA transients and final reward collection latency (p=0.008, r=0.81; Fig. 2e).
Thus, we do not believe these data are consistent with the proposal that high DA reward response is associated with
a different strategy with respect to background licking rate.

Finally, we do think it is valuable to note that the reviewer’s proposed interpretation is on some levels not so different
from the explanation we argue for in the paper. We do indeed propose that mice fail to effectively use the cue to elicit
sustained, preparatory behavioral policies. As we note this can happen because of the somewhat complicated
interplay between reactive and preparatory components of behavioral policies and key properties of policy learning
and not because mice used a totally distinct strategy (i.e. baseline licking). In policy learning agents are attempting to
follow the noisy gradient of performance as they adjust their policies. A key problem that arises for complex policies
(ours isn’'t extremely complex, just a reactive and sustained component, but that is enough complexity) is something
referred to as “vanishing gradients”. If an agent learns to react very fast to the presence of reward and learns that too
soon before they have started to develop a predictive, preparatory policy they have a bit of a problem. The marginal
improvement in performance becomes very small for incremental increases in preparatory licking. As a result the
learning rule cannot pick up on the improvement of an incremental change in preparatory policy over the noisiness of
the licking plant and the good reactive component. Thus, the preparatory policy doesn’t ‘see’ much of a gradient
(hence the term ‘vanishing gradient’) and this component of learning stalls out (although the fast, reactive
components to cues and reward are unaffected - explaining the normal DA cue response in the context of our model).
While this computational language is different from the language chosen by the reviewer, we find it advantageous
because it describes the mechanisms of the ACTR model which fits a broad set of data and is consistent with the
dual components of learning observed clearly from behavioral data (Fig. 1a-g). Nonetheless, we believe the
descriptions are not so far apart conceptually.

Another issue that deserves attention is the method used for measuring dopamine activity. The fact that the
responses in NAcc and DS are different suggests that these are either different dopamine populations of dopamine
neurons, or less likely, that the projections to these targets have different local modulation of axonal excitability. At
any rate, at a time when the field is debating the heterogeneity of dopamine populations and how some could signal
reward-prediction errors and others not, it is unclear what the authors are claiming here. Is the claim that different
populations in VTA encode RPEs versus performance errors, or that most dopamine neurons in VTA do both, or that
most VTA DA neurons are mainly involved in policy learning? It seems that fiber photometry is not the best method to
dissect this.

Recent work has, like us, used fiber photometry measurements to argue for distinct signaling in dopamine release /
axonal activity relative to the mean somatic spiking activity in VTA (Mohebi et al. 2019). So we don’t think photometry
per se is a problem unique to our study in this respect. It is clear from anatomy in mice that dorsal striatum and
nucleus accumbens are innervated by largely
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VTA signals, so we are certainly not claiming different encoding of information at soma and axon terminals. We are
also distinctly not claiming that DA signals performance errors, as readers might have regrettably inferred from our
focus in the previous manuscript on the idea that policy learning is driven by performance error. We have overhauled
the current manuscript to clearly reflect what we are claiming: that the mesolimbic DA pathway (VTA—NACc) transmits
a signal that modulates the learning rate on policy updates.

Fiber photometry offers the current most accurate and tractable path to measuring DA activity in projection regions
where DA exerts its function over learning. We have produced the largest dataset to date of single cell recordings of
optogenetically identified dopamine neurons (Coddington and Dudman 2018). In that prior work we found that there
were not categorically distinct subsets of dopamine neurons within VTA or SNc, but there were differences in the
mean distribution of properties across those areas. As a result we thought it was a good approach to use photometry
to address our specific questions here and allow for the potential to see distinct axonal and somatic signaling
(however, we found high correlation). In addition to the reasons above, there are also clear merits to knowing the
average dopamine response in a downstream region since it is often thought to be a paracrine signaling mechanism
and postsynaptic neurons within an area the size of a fiber might well be sensitive to the average dopamine output
and not be able to detect subtle differences across individual DA neurons. This again is a fascinating question that
will require future work in the field.

We develop a computational model, ACTR, that is a biologically plausible model of a class of RL models known as
direct policy learning. In Fig 1 we show that this model is the first model that can capture core behavioral details of
learning as well as capturing the diversity of individual differences in learning (a point nicely summarized by Rev 1).
We then use recording of DA neuron activity in VTA/NAcc and find that it is highly consistent with a specific
component of the ACTR model - namely, ‘Beta’ a feedback unit that is responsible for adaptively modulating the
learning rate. The activity of this unit Beta encodes something that can be correlated to inferred reward prediction
errors, but there is no reward prediction error computed in ACTR. We then show using both further model-based
analysis and a key optogenetic manipulation experiment that VTA-NAcc dopamine activity is most consistent with
modulating learning rate (i.e. Beta) and is not consistent with the predictions of models in which dopamine neurons
function like signed prediction errors (either the performance errors computed in ACTR nor reward prediction errors
computed in published value learning models that we implemented; Fig. 4 in particular). Finally, we show that when
we use very strong, uncalibrated stimulation of dopamine neurons we get some effects that are more similar to
prediction errors, but still not quite the same (clarified better in revised Fig 3d-e).

Thus, our study arrives at the conclusion that the role of VTA dopamine neurons is more consistent with models in
which dopamine adaptively modulates learning rate, and not fully consistent with predictions of a signed reward
prediction error.

We finally note that this is not to say that there are no predictions of RPE-based models that appear consistent with
prior experiments - indeed many do and we replicate some of those here. But, the reason for that is because there
are experiments that fail to distinguish between an effect on learning rate and an effect on signed errors. When we
design a key, novel experiment that can distinguish rate from error we find evidence strongly in favor of the rate
interpretation (Fig. 4). Moreover, we show that a model (ACTR) that does not compute reward prediction errors, can
nonetheless fully and with unprecedented accuracy capture the correlates of dopamine neuron activity over initial
learning (Fig. 3f; including the observations that are known to be inconsistent with RPE predictions (Coddington and
Dudman 2019)).

The different optogenetic stimulation protocols yield interesting results, and this
is predicted by the ACTR model. The different results that the “calibrated” versus

“uncalibrated” stimulation produce are important. However, there are also some calibrated
important considerations here. In both protocols, a 30Hz frequency of stimulation is

used, which is way higher than the physiological firing of dopamine neurons. The ’\
authors should make sure that the dopamine neurons can follow the stimulation

frequency of 30Hz. 1'_3 mW
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We appreciate this point, and we have now added a new control

experiment to address this (Ext Data Fig 5). When we stimulate over

the VTA at different strengths, the input-output relationship is similar across PFC, dorsal and ventral striatum.
However, as we acknowledged in the original discussion we cannot rule out that increased release in regions other
than the NAc contributes to the categorically different effects of large DA stimulation. This remains a very interesting
area for further research that is motivated by one of our main findings—that there are dissociable effects between
calibrated and large DA stimulations. As a final note, in previous work we showed a dissociation between calibrated
and uncalibrated DA stimulation in SNc (Coddington and Dudman 2018). The uncalibrated stimulation in SNc could
produce some direct movement effects. However, uncalibrated stimulation in VTA did not produce these movement
effects (and again did not produce them in the current work) suggesting that uncalibrated stim maintains some
anatomical/functional specificity. This provides some additional evidence that a change in spatial spread may not be
the most parsimonious explanation of the dissociation between calibrated and uncalibrated stimulation in VTA.
Nonetheless, as stated we acknowledge the impossibility of fully ruling out this alternative or some more complex
interaction between spatial spread and duration and amplitude.

Furthermore, in the current version of the task, the calibrated stimulations could lead to less predictive value
of the cue and hence more sustained licking overall (not only after the cue), while strong activation of
dopamine after the cue could increase the predictive value of the cue and hence result in less licking overall.

It is not entirely clear to us how or why the reviewer hypothesizes that calibrated stimulation leads to less predictive
value of the cue since a cue always preceded the calibrated stimulation. For example, we used a published value
learning model (representative of the model class) to simulate dopamine stimulation as per standard interpretation in
the literature. These models predict an increased predictive value of the cue (Fig. 4g). Although not shown we also
implemented several other value learning models from the literature all of which make the same prediction. Moreover,
in our work, and that of others, increasing the value of the reward (e.g. larger volume) increases the magnitude of
dopamine reward responses and increases the predictive value of cues (Eshel et al. 2015).

We can also consider what the predictions would be if calibrated stimulation reduced the predictive value of the cue
(independent of whether that is expected from existing models or what the mechanism underlying such an effect
could). In that case when we couple calibrated stimulation to the lick+/- contingency we should see reduced
preparatory licking and reduced DA responses to the cue in either case. However, as we describe in the paper (Fig
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4c-d), calibrated stimulation triggered on trials that lack anticipatory licking (“lick-") enhances DA encoding of cues
and enhances preparatory licking in response to the cue (i.e. increases predictive value). Thus, calibrated stimulation
does not necessarily reduce the predictive value of the cue.

In addition, we have done the requested analysis and analyzed baseline lick rate outside of the trial (Ext Data Fig 8,
and shown below). Again, we find no increase in baseline licking as a consequence of calibrated stimulation and no
difference between uncalibrated (stim++Lick+) and calibrated (stimLick+/-) on the baseline lick rate. We also find no
relationship between the extent of learning across all mice and the amount of learned baseline licking.

d e

N
iy
worst 4 =
~6F ocia = 18
N Jest £
z g 10
o4 :
£ £ 05
< ]
=2 & 00
IV N
& oer.
oo°.§°,6§>°>9°
} CHENS
- 5\
time from rew (s) B

f all mice g

300f p=046 300
o r=-017 =950

%200

2
®© 150

100

1 -
background licking (Hz) background licking (Hz)

Finally, a small note. Although the topic of dopamine’s role in policy learning through performance errors is much less
explored than in RPE, there are a few important studies demonstrating the role of dopamine in signaling performance
prediction errors, and hence the introduction and abstract seem to set up too much of a strawman. One of the most
important studies in the topic is only reference number 38, and is first referenced in bundle with a lot of other studies
(not mentioning that it claims a role for midbrain dopamine neurons in signaling performance prediction errors).

Thank you, this is a really important point and we put substantial effort into better describing our results in the context
of this prior work as well as highlighting this important reference much earlier in the manuscript. In the revised
manuscript we distinguish 3 types of computations that have been associated with dopamine function: (1) reward
prediction error from value learning models (Eshel et al. 2015; Schultz 2015), (2) performance errors invoked in the
context of an actor-critic model (Gadagkar et al. 2016; Chen et al. 2019), (3) adaptive rate modulation from a policy
learning model (our proposal). Both 1 & 2 are signed error terms that are critical to guide the direction of change
(towards or away) at each learning step. Our proposal, #3, which has close parallels in the machine learning /
optimization / RNN literature (Bottou, Curtis, and Nocedal 2018; Kingma and Ba 2014; Sussillo and Abbott 2009), has
been little if at all explored in neuroscience (although it has some similarities to Pearce Hall attentional modulation
models as well as with other qualitative theories).

The key difference is that rates are unsigned quantities that determine what fraction of the error is captured
on a given iteration’s update. Deciding when and how to adapt the learning rate turns out to use some related, but
clearly distinct, computations to the calculation of errors. For example, some purely computational models make the
learning rate directly proportional to the average size of errors (Sussillo and Abbott 2009) whereas other optimization
methods have quite complex calculation of learning rate based upon a number of computed quantities (Kingma and
Ba 2014). Our computation (described in Fig. 1) is somewhere in between these prior examples and draws upon
previous insights that dopamine activity is a combination of 2 components (Coddington and Dudman 2018). This is
the reason that the adaptive error rate term can have similar correlates to prediction/performance errors. However,
the really key difference is the effect on learning.

Learning rates are sensitive to the sign of the error and thus exaggerating learning rates when errors are
negative can, for example, impair learning by pushing the model away from that policy. On the other hand, selectively
exaggerating learning rates when errors are positive can speed learning towards the improved or optimal policy. This
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is the reason for adapting learning rates in the first place and can be very critical when errors are stochastic (as they
are in direct policy learning). We thus show that closed-loop perturbation experiments can selectively distinguish a
rate from an error effect (either prediction error or performance error) in Fig. 4. This is the key distinction between our
current work and prior work and a critical component of why we argue for our conclusion (#3 above).



Referee #3 (Remarks to the Author):

| thought the goal of the paper was admirable -- quantitatively linking recorded dopamine signals to individual
differences in learning and reinforcement learning models. However | found the specifics of the paper very confusing,
both in terms of what scientific points were being made, and what evidence they had to support their arguments. For
example, are they claiming that DA contributes to policy learning (which is a mainstream view from the
actor-critic framework), or are they claiming DA does not contribute to value learning (which is hard to
disprove, and | certainly do not think they show convincingly it does not)? More details below.

Regarding what points were being made: the paper puts great emphasis on the distinction between policy-only
models, vs actor-critic models (the latter are commonly used to model the basal ganglia, and posit a role for
dopamine not only in value learning but also in policy learning). The difference between policy-only vs actor-critic
is subtle. After all, an RPE-like DA signal is still being learned in this version of REINFORCE, and that signal is still
being used to modulate plasticity to guide reinforcement learning. I'm not clear if their goal is to provide more support
for that view, and show it also applies in ventral striatum, or if they are trying to argue that dopamine does not also
contribute to value learning. Whatever point they are trying to make, | think it is very subtle, and in addition, the latter
would be a hard point to prove given that it's hard to prove a negative.

Thank you for this excellent critique, it has very much provided useful guidance as to how to clarify the
novelty and distinctions in our current conclusions while also allowing us to continue to demonstrate how our model
can nonetheless account for many phenomena of prior models. We understand two main criticisms from the above
which are tricky to address until they are disentangled:

1) There is no substantial difference between policy

learning and actor-critic.

We find the passage included at right (from a widely cited
review of RL for robotics (Kober, Bagnell, and Peters 2013)) to
be a clear and intuitive delineation of actor (policy learning),
critic (value learning), and actor-critic methods. It clarifies that
in actor-critic, learning is restricted to a critic that learns a
value function. The RPEs that are computed from this value
function are then used to evaluate policies that are explicitly
maintained. Policy learning uses performance of the policy
(e.g. in ACTR we use latency to collect reward) to evaluate
policies. Thus we agree with the reviewer that actor-critic and

Policy-search methods are sometimes called actor-only
methods; value-function methods are sometimes called
critic-only methods. The idea of a critic is to first observe
and estimate the performance of choosing controls on the
system (i.e. the value function), then derive a policy based
on the gained knowledge. In contrast, the actor directly tries
to deduce the optimal policy. A set of algorithms called
actor—critic methods attempt to incorporate the advantages
of each: a policy is explicitly maintained, as is a value-
function for the current policy. The value function (i.e.
the critic) is not employed for action selection. Instead, it
observes the performance of the actor and decides when
the policy needs to be updated and which action should
be preferred. The resulting update step features the local

actor-only share some important architecture (explicit

maintenance of a policy with respect to action), but we (and the field of computational reinforcement learning (e.g.
(Nachum et al. 2017; Konda and Tsitsiklis 2000)) do not find the distinctions too subtle to be meaningful, and we find
the distinctions to be mechanistic, not semantic.

When DA is proposed to participate in actor-critic learning in the basal ganglia, what is specifically being proposed is
the same as for critic-only learning: that DA signals an RPE that updates a value function. Thus it is not “mainstream”
to argue that dopamine participates in direct evaluation of policies rather than indirect evaluation through construction
of value functions. Recent work from Yael Niv and colleagues (Bennett, Niv, and Langdon 2021) for example has
clearly summarized that prior work had considered only relatively limited roles for dopamine in actor learning and had
focused extensively on a primary role of dopamine in determining learning of the critic (i.e. value learning) (see also a
prescient work from Loewnstein and colleagues (Mongillo, Shteingart, and Loewenstein 2014)). These well-written
reviews from experts in learning theory make it abundantly clear that direct policy learning (which can be referred to
as “learning in the actor”, policy-gradient learning, policy search) represents a clear alternative to the mainstream
view in which the goal of learning is to create a value function that predicts reward from states.

We find it helpful to separate the above discussion from the associated criticism below.


https://paperpile.com/c/QlOToc/1qs3
https://paperpile.com/c/QlOToc/WTGp+GdHb
https://paperpile.com/c/QlOToc/qwNk
https://paperpile.com/c/QlOToc/KvPR

2) It is unclear which component of learning DA is signaling in our account (and if it is clear, it is not novel)

Our paper and its conclusions constitute a substantial revision to the “reward prediction error hypothesis” of
dopamine function. That hypothesis clearly exists and has been declared a success for a good and important reason:
there is a well replicated set of observations that are consistent with the RPE hypothesis. We recognize the
significance of revising this important insight and we also appreciate that it requires a possibly tricky combination:

(a) account for the key results that support the RPE hypothesis, but also (b) distinguish our claims from this
hypothesis.

In the revised manuscript we distinguish 3 types of computations that have been associated with dopamine
function: (1) reward prediction error from value learning models e.g. (Eshel et al. 2015; Schultz 2015), (2)
performance errors invoked in the context of an actor-critic model e.g. (Gadagkar et al. 2016; Chen et al. 2019), (3)
adaptive rate modulation from a policy learning model (our proposal). Both 1 & 2 are signed error terms that are
critical to guide the direction of change (towards or away) at each learning step. Our proposal, #3, has close parallels
in the machine learning / optimization / RNN literature (Bottou, Curtis, and Nocedal 2018; Kingma and Ba 2014;
Sussillo and Abbott 2009) but has been little if at all explored in neuroscience (although it has some similarities to
Pearce Hall attentional modulation models as well as with other qualitative theories).

The key difference is that rates are unsigned quantities that determine what fraction of the error is captured
on a given iteration’s update. Deciding when and how to adapt the learning rate turns out to use some related, but
clearly distinct, computations to the calculation of errors. For example, some purely computational models make the
learning rate directly proportional to the average size of errors (Sussillo and Abbott 2009) whereas other optimization
methods have quite complex calculation of learning rate based upon a number of computed quantities (Kingma and
Ba 2014). Our computation (described in Fig. 1) is somewhere in between these prior examples and draws upon
previous insights that dopamine activity is a combination of 2 components (Coddington and Dudman 2018). This is
the reason that the adaptive error rate term can have similar correlates to prediction/performance errors, even though
something very distinct is being signaled to dopamine-recipient areas.

Inspired by the Reviewer’s insight we have tried to clarify the above issues in the current manuscript. It is
true that our REINFORCE-based model has an error computation that is used to estimate the policy gradient. This
error computation is, as the reviewer notes, “RPE-like” (e.g. it is a signed error). However, as we now show more
clearly dopamine signaling recorded during our task and the effects of optogenetic dopamine stimulation are not
consistent with dopamine playing this “RPE-like” error computation role. Rather dopamine activity is most consistent
with the term beta in our model which is an adaptive learning rate term that is separate from the signed error term.

Finally, while it is important to report results that are inconsistent with current dogma, we would indeed like
to avoid resting the success of this work on “proving a negative.” We have made a concerted effort instead to present
an alternative formulation to value learning by RPE signaling, one that can explain dopaminergic correlates to inferred
RPE signals while still explaining a collection of observations that are inconsistent with value learning.

Making the big picture even more confusing is that the choice of behavior is paviovian conditioning.
Learning a “policy” is exactly equivalent to learning a value function in the context of paviovian conditioning,
since mice are expected to display pavlovian behaviors in proportion to the value function.

This is an exceptionally important point made by the reviewer and we thank them for the clarity of this statement. This
was in fact one inspiration for our choice of paradigm: in the context of value learning, there should be no
meaningful dissociations between the time course of the emergence of “pavlovian behaviors” and RPE correlates in
dopamine activity - since they are both a function of the same underlying value function. To reference the previous
discussion about “actor-only” vs. “actor-critic”, in this task, as we think the reviewer has pointed, one would not expect
to be able to dissociate “critic-only” learning from “actor-critic” learning. However, policy learning (“actor-only”) instead
implies substantial individual differences as the stochastic search process dominates the learning curves, and does
not share the same constraint with respect to matching the emergence of DA signals. Indeed, we see a clear
dissociation between the learning of putative value encoding by DA cue signals and the emergence of individual
differences learned behavior (Fig 2). We show that there is excellent quantitative agreement between those sources
of variance in policy learning and the variance we observe across individuals (Fig 1 and 2).

We can also give a more qualitative description that we believe is insightful. When Bellman first derived a solution to
what we now call value learning his goal was to model the task with an auxiliary function (attach a value to
environment states) rather than model the agent’s control policy itself (the agent’s state-action mapping) (Kober,
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Bagnell, and Peters 2013). This was because of the understandable concern that the parameter space of an agent’s
control policies seemed too large to search efficiently. As it turns out some ~40 years later Williams and Sutton
realized that there are efficient approaches for direct policy learning (learning the gradient wrt policy parameters)
even in the absence of learning value (Williams 1992; Sutton et al. 2000). The strength of value learning (attempting
to represent the environment states) that allows it to nicely converge on an optimal approximation is also what is
limiting in its ability to account for the diverse solutions that individual animals may find. The environment we use here
is deterministic and thus all value models converge similarly. The individual animal’s solutions, as we show in Fig 1,
are not deterministic or related to each other by a simple scaling term, but rather quite idiosyncratic befitting the
multiple solutions to the problem. In this sense ACTR focuses on the agent rather than the environment - and we
believe this is a very intriguing conceptual shift in thinking about RL and associative learning, both of which have
focused almost exclusively on the information present in the environment.

Relatedly, the objective function that was used to train the network was based on time to collect reward once
available, which can be considered a discounted value function. Therefore, the network seemed to be trained to
calculate value, and then the derivative of that signal was used to produce the dopamine signal (RPE) - which all in
all seem exceedingly similar to traditional actor-critic models.

We appreciate the reviewers point and drawing out connections between our formulation and existing theory.
Importantly, both direct policy learning and value learning are methods that seek to, in the terminology of
reinforcement learning, maximize the returned reward from the environment - thus, both methods can be considered
to maximize value. They are just distinct algorithms for achieving such maximization. We do not mean to claim that
policy learning is not trying to maximize reward return - the difference is just what gradient is being estimated and
descended. In policy learning it is a gradient of reward with respect to change in policy. In value learning it is a
gradient of the predicted value (value function).

Or to state this another way - we are generally sympathetic to the point that there must be approximate similarities
that can be drawn between reinforcement learning models and they certainly all share some common features.
However, there are a number of differences between the methods (as noted above these differences are described
well in the RL literature, e.g. (Kober, Bagnell, and Peters 2013)) despite the fact that the goal of maximizing returned
reward is shared. Moreover, there must be additional similarities. The field has found approximate correlates to RPEs
for a long time across many groups (Schultz 2015), our group’s data included. But, the exceptions that one model
explains but another does not is critical to arriving at models that provide the best description of the underlying
learning process. We provide one example of why this is valuable. To date there is no description of a biologically
plausible policy learning formulation that captures animal behavior in the detail that we succeed to, nor is there a
description of a biological implementation of adaptive modulation of learning rate. These are both interesting insights
that will spur future research. It is not to say that continuing work on value learning is not interesting as well, but all
modern machine learning approaches combine these methods in sophisticated ways that nonetheless remain less
efficient than animal brains. We hope to provide insight that pushes such thinking forward and inspires new
experimental inquiry.

Finally, we do not just draw subtle distinctions in correlates, but we also use causal manipulations to demonstrate
how this distinction matters for learning. We hope that a similar filter will be applied to observations of similarities
between models: are these models similar enough that they don’t make meaningfully distinct predictions? We believe
that we have shown that they are not.

1 did think it was interesting that dopamine early on was so predictive of individual differences in behavior,
and that their model recapitulated it. But | couldn’t find an explanation of why their model produced that
effect. Also, could they show the learning trajectory of the two groups of mice?

We now show the analysis requested by the reviewer and appreciate the suggestion greatly. It is a very helpful
visualization (Fig 2c, right). Second, we have endeavored to be more explicit about how this aspect of the model
works in the text.
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Here is a complementary, additional attempt to explain this result that is a bit longer than we have space for in the
text.

We propose that a subset of mice fail to effectively use the cue to elicit sustained, preparatory behavioral policies as a
consequence of individual differences in initialization. This can happen because of the somewhat complicated
interplay between reactive and preparatory components of behavioral policies and key properties of policy learning
and not because mice used a totally distinct strategy (i.e. baseline licking). In policy learning agents are attempting to
follow the noisy gradient of performance as they adjust their policies. A key problem that arises for complex policies
(ours isn’'t extremely complex, just a reactive and sustained component, but that is enough complexity) is something
referred to as “vanishing gradients”. If an agent learns to react very fast to the presence of reward and learns that too
soon before they have started to develop a predictive, preparatory policy they have a bit of a problem. The marginal
improvement in performance becomes very small for incremental increases in preparatory licking. As a result the
learning rule cannot pick up on the improvement of an incremental change in preparatory policy over the noisiness of
the licking plant and the good reactive component. Thus, the preparatory policy doesn’t ‘see’ much of a gradient
(hence the term ‘vanishing gradient’) and this component of learning stalls out (although the fast, reactive
components to cues and reward are unaffected - explaining the normal DA cue response in the context of our model).
Since DA transients (beta) reflects the balance of reactive and sustained components it provides some insight into
the initial conditions of the model and we propose latent states in animal’s that are not revealed well in overt behavior.

It seems they claim a key piece of evidence in support of their model is that dopamine causes activity away from the
policy when they are showing little licking behavior. Their explanation on line 267 of why DA enhancement on lick+
trials lead to less licking is as follows : “Such trials with a negative performance error are generally lick+ trials that
occur relatively late in learning and have sustained licking that happens to terminate prior to reward delivery.
Selectively enhancing learning rates on these trials with a negative performance error can have the effect of pushing
the model away from a policy with sustained licking especially by reducing transient response components.” My
understanding of this explanation is that despite calling these trials lick+, they are actually licking less
immediately before the reward. Can they show this directly in both model and mice? If this explanation is
correct, a value-based model would make the same prediction - if the behavior immediately before the reward
is “not licking” that will strengthen the policy in a policy model and reinforce the action in a value learning
mdoel (since most recent behavior is most eligbile for modification given eligbility trace). Ultimately, it is not
at all convincing that they have found a regime that dissociates a value

e

model from a policy model.

Just in case this is a simple misunderstanding, we want to clarify at the outset that 400
the above statement referred to a select subgroup of lick+ trials in which
preparatory licking did not produce good performance, while in many lick+ trials
licking does not end early in a suboptimal way. Even though these select lick+
trials with negative performance errors do not always happen, the vanishing
gradient for lick+ trials with good performance means that the subgroup of “bad”
lick+ trials can come to dominate learning under the close-loop stimulation
contingency in our experiment. We now include a graph in Ext Data Fig 6e (shown
at right) that illustrates this point. For performance errors across trials in the
second half of training (when stimLick+ effects are most clear), there is a bias in
the distribution towards negative performance errors in lick+ trials. The only way c\}-f
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for these trials to exhibit a negative performance error is to have a good or pretty N \\0
good policy and then have an individual trial (for a variety of reasons) exhibit less

good performance. Since lick+ correlates with having a good/pretty good policy,

negative performance errors are more likely on lick+ trials. On the converse, the probability of having a good policy
(necessary for negative PE) but exhibiting a lick- trial type is low.

That possible misunderstanding aside, the explanation offered by the reviewer for a mechanism revealed by
StimLick+ trials cannot be reconciled with the other half of the experimental data. It would imply StimLick- could not
work - it would reinforce “not licking”, but we observe stimLick- produces extra licking beyond that in control animals.
Moreover, their explanation conflicts with other results in the previous manuscript that larger, uncalibrated



stimulations reinforce licking (and thus do not reinforce “not licking” as proposed by the reviewer) when conditioned in
an identical way on lick+ trials (previously Fig 6e-g, now Fig 4h-i). It is also not clear that the reviewer’s explanation
would account for the changes in DA cue signals in stimLick- vs stimLick+ animals—regardless of the actions being
reinforced, value learning predicts that increased DA signals at reward should result in larger DA signals at a
predictive cue. The only route that we have found to reconciling all of these results is to invoke a learning rate
signaled by phasic DA activity that is independent from (though can be correlated with) the error signal that directs
learning.

I found the mouse’s learned behavior itself a bit confusing - The mice are getting much more efficient at
licking w/ low latency over time, irrespective of the presence of the cue. Any learning about the cue is much
more subtle and comes later. Is that because they are mostly learning about the solenoid click? Perhaps
that’s why the DA correlates in general are rather subtle for the cue, the behavior learning seems very much
about the solenoid opening, and much less learning about the cue.

These are very important points and we have now done 2 new experiments to address the reviewer’s concern, a new
set of model-based analyses, and simulations to address these multiple questions. Here we describe the two new
experiments.

Learning about the sensory evidence of reward availability—be it a solenoid click or 4r
chemosensation of a water drop under the nose—does not necessarily preclude learning
about the cue. We have found that if anything mice take longer to learn cued behavior
when the solenoid is silenced. Shown for comparison are 4 mice trained under identical
conditions and trial statistics as the mice in this study, but with a silent solenoid whose
opening is undetectable to the animals (unfortunately DA signals and face video were
not recorded for these animals). Intuitively, this is likely the same principle that pet
trainers exploit when using a clicker to confirm that desired behavior has been

——audible (n=9)
silent (n=4)

cued licking (Hz)
N

performed. Formally, neither RPE models nor our ACTR policy model predict that 200 400 600 800
sensory evidence of reward availability would disrupt cue learning. One touted strength trials
of temporal difference learning is its ability to transfer to the earliest predictor of reward
regardless of whether subsequent predictors are present, a quality that famously allowed it to reproduce
psychological phenomena like blocking. Nonetheless, we take the reviewer’s question to be about behavioral learning
in mice and we do not find evidence that an audible solenoid impairs learning. We do have a 1-sec long trace interval
(time from tone offset to reward) and this is well known to slow learning relative to delay conditioning or shorter traces
(0.5 sec is often used instead). In this particular case we see that as an advantage as the somewhat slower learning
allows us to discover the multiple separable components that can be otherwise obscured by pre-shaping, rapid delay
conditioning, and other paradigms.
We also have collected some new data that we believe further 0.5stone 1sdelay
address this issue. The current pavlovian design was modified such Yo lick triggers rew b 2s
that after the 1 sec delay between cue and reward, animals had to rew col lat  lick NAG-DA
lick in order to trigger reward delivery. Thus, the cue provides much 0 i g &=
more unique predictive information about when reward will be 200 i
available, as the solenoid click will only occur after mice have »
already licked once for reward. Here again we find that mice £ 400 F
consistently learn this task by driving down the reward collection 600 £
latency in part by establishing cue-driven preparatory responses. If ;
anything the learning of this cue driven response is a bit slower 800 —— Ttb
compared to the standard paradigm used throughout the paper with s
an audible (but quiet relative to background noise (Coddington and 6 trials 700-800 z paviovian (n=9)
. . & instrumental (n=4)

Dudman 2018)) solenoid. Thus, these two new experiments suggest = 4| uncued & 5
that the audible solenoid does not impair cue learning, rather if g , cued g
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somewhat long trace interval (1.5 sec if animals primarily respond to 0
cue onset), possibly lower salience auditory cue compared with high
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concentration odors used in many studies are more likely explanations for “slow” learning. But again, we believe that
the time constant of learning here is very useful to reveal the two components of learning that could otherwise have
been missed.

| found the Introduction to be very confusing. For example, in Line 26 about ‘performance errors” versus RPEs -
When | first read it | thought perhaps they were referring to RPEs with respect to actions vs stimuli. But eventually /
thought they meant the discounted value function (since they used time to reward collection as their
performance error). It would be helpful to provide a clear definition of performance prediction errors. It was
extremely difficult to read & follow the Methods section on their model. | suggest the authors should
separate an explanation of the equations and concepts of the model versus details of the implementation,
simulations etc.

We have now updated Fig 1 to be much more clear about the calculation of variables . Furthermore, we have clarified
these calculations substantially in the Methods and now offer a ‘pseudocode’ version of the ACTR algorithm to
facilitate understanding of the key computations which is reproduced below for convenience. We believe this
addresses the major concerns of the reviewer and appreciate the detailed guidance on what was confusing.
Moreover, the code will be available and we cross reference individual model components to the line of code where
they are computed in the model code.

ACTR Simulation - pseudocode

Definitions
Initialize trial to T=0 T = current trial
Initialize ACTR with W(0), 8., (T), Scue(T) W = RNN connection weight matrix
S = sensory input strength
repeat
Run RNN simulation engine for trial T
Compute plant input m(T) = O(T) + S(T) 0 = RNN output; m = behavioral policy

Computelick output L(t) = Plant(m(T))
Compute latency to collect reward t.qe < find L(t) >t

Compute Cost(T) = 1—exp(—At/500) At =t ect - trew
Evaluate eligibility trace at collection e « e;;(tcpecr)
Compute oy =1+ p(Am(tey,) + Siew) @ = nonlinear (sigmoid) transform
Compute R,,;,(T) = 1—(1—exp(—At/500)) — O(Tt.,,—1)
Estimate objective gradient PE = R,,,(T)—(R(T)) (R(T)) = running mean PE
Compute update AW = —n; X e X PE X B, 7,= baseline learning rate for RNN
Update W(T+1) <« W(T) + AW
Update 8 eyard(T+1) < 81w (T) + 115 X Rypi(T) X Bpa ns = baseline learning rate for input §
Update Sqo(T+1) < See(T) + 15 X Ryp(T) X Boa

Until T==800

In addition, evidence for claim in Introduction that policy-only learning algorithms vs actor-critic models (that
also include a policy) are better suited to understand individual differences is lacking.



In the introduction we note that a primary issue with direct policy
learning is that it is much noisier and more variable than value
learning. This is due to the fact that the gradient of the objective with
respect to the parameters of the policy generally cannot be
calculated directly. Specifically, in our biologically plausible
implementation there is stochasticity from both the approximate
gradient estimation (Miconi 2017) and the due to the noise in the
motor plant. Finally, we now provide a few references that all state
this point about the variability of policy learning explicitly including
(Konda and Tsitsiklis 2000; Kober, Bagnell, and Peters 2013;
Schulman et al. 2017; Bottou, Curtis, and Nocedal 2018). An
example at right.

A particularly important issue is lack of clarity on how the DA
signal is calculated, as the dopamine "beta" signal doesn’t
seem to have an equation in methods, and is explained in
words very differently in Line 770 vs line 202 since one spot
mentions a derivative and the other a sum. Not knowing how

Actor-Critic Algorithms

Vijay R. Konda John N. Tsitsiklis
Laboratory for Information and Decision Systems,
M ) Toeti of Technol

Cambridge, MA, 02139.
konda@mit.edu, jnt@mit.edu

The vast majority of Reinforcement Learning (RL) [9] and Neuro-Dynamic Pro-
gramming (NDP) [1] methods fall into one of the following two categories:

(a) Actor-only methods work with a parameterized family of policies. The gra-
dlent of the performance with respect to the actor pa:ameters is directly
dated in a direction of

d by 1 and the
improvement [4, 5, 8, 13]. A possible drawback of such methods is that the
gradient esti may have a large vanance Furthermore as the pol-

icy changes, a new gradient is dently of past
Hence, there is no “learning,” in the sense of accumulanon and consolida-
tion of older information.

the DA signal was calculated really hampered my understanding of the model.

We apologize for any confusion that may have resulted. We now show the key equation for beta in the main figure,
define the equation in the methods (Bps =T + ¢ ( Am(t,ew) + Srew)) Where T is ‘tonic activity’ and equal to 1 for
majority of the paper except where noted in Fig. 1j, and also in the newly added pseudocode shown above.

Is 4k & 41 referenced in Results? | searched for a reference to those figure panels and it did not come up.
This seems like another critical omission, since those panels are the key predictions of the model that seem

to really be the crux of the paper.

Fig. 4 like all other figures have been substantially revised. This has allowed us to put data and model predictions
close together in the same figure that facilitates careful comparison. Moreover, we add new simulations of alternative
model formulations in multiple figures, but of particular relevance to this point in Fig 1 and Fig 4.

Why did lick- group lick more than lick+ in Fig 4H?

Assuming this is an issue relating to confusing presentation in original figures, we hope that it has been resolved in
the updated manuscript. Otherwise, since there was nothing about “lick-" and “lick+” in the original Fig 4, we infer that
this question might have referred to licking on lick- vs lick+ trials in Fig 4L? That panel was modeling the closed-loop
stimulation experiment, and so the explanation is that DA actually signals a learning rate rather than an error in the
ACTR model, and so closed loop stimulation produces these seemingly paradoxical effects of biasing against the
stimulation contingency (mouse and ACTR data is now the subject of Fig 4 in the new text).

For figure 3.a.2, they should include the uncued reward response as well, to demonstrate if this an RPE or reward

response.

The cued vs uncued analysis for this data is shown in the new Fig 3f, and was originally shown in the original

manuscript in Fig 2c.

Calibration experiment in Figure 6 is interesting, but | don’t think it makes the effect of DA on producing a cue
response at all uninteresting or unconvincing. They are calibrating to the DA signal immediately adjacent to the
optical fiber in NAc. This should be conservative since not all dopamine neurons are in the immediate vicinity of the

NAc fiber.

We do agree that not all dopamine neurons are in the immediate vicinity of the fiber, but we note that the relevant
fraction for our optogenetics experiment is all dopamine neurons stimulated by the optical fibers over VTA. We firmly
argue that in this case the fiber location in NAcc should be considered by far the most relevant representative
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fraction, since it is the largest single projection target

of VTA neurons and it is the focus of standing e f
arguments about the causality of DA signaling for mouse 9 trials: 1-100
value learning (Steinberg et al. 2013). Consistent with [} < —~
thi . . NAc — =038 '

is we find very clear correlations when VTA ST 1
simultaneously imaging in VTA and NAcc (see figure at o) § /\
right) - suggesting that we sample a largely <ZE X 0 X
overlgppllng populatlor'] in VTA ar.1d NAcc. It is common NAC mouse 4 55| 0w = 0.8 :
practice in the field to interpret differences of only a DS b aT '
few Hz in peak firing rates to be significant <c":> o N:r_
confirmations of predicted roles of DA in learning. pd £ 04—
Further, it is often the case that uncalibrated -1 Otim(13

stimulation is delivered to only one hemisphere in

order to produce reinforcement effects. Here we are

stimulating a majority of VTA-DA neurons bilaterally in a way that reproduces the entirety of measured reward
responses in the main projection target of the VTA.

We do agree with the reviewer that even calibration in the manner we performed has some limitations and
caveats to its interpretation. We have also now performed a new control experiment to assess whether uncalibrated
stimulation produces a different spatial pattern of dopamine release across frontal cortex, dorsal and ventral striatum
(Ext Data Fig 5). This new experiment strongly suggests that uncalibrated stimulation produces longer and larger
changes in dopamine release, but does not produce a substantial change in the spatial pattern of release across
major DA target areas. Moreover, it suggests that the measurement in NAcc is accurate and proportional to
stimulation, indicating it is a reasonable target for calibration. Finally, it also demonstrates that as reason would
suggest, even the relatively small (although still large in that it reproduces the largest measured physiological signals
in our data) calibrated stimulation over the VTA recruits significant DA signals across many projection targets. It is
unclear what specifically the reviewer had in mind, but if they were concerned that our calibrated stimulation did not
produce release in areas such as the prefrontal cortex or the dorsal striatum, their concerns should be addressed
here.

Also there may be other neuromodulators etc that help enhance the effect of DA. They are still showing that DA
signals are sufficient to enhance a cue response, consistent w/ learning about the value of the cue.
Presumably inhibition would be sufficient to decrease that cue response. Also, does strong stimulation of DA in
their model lead to a greater cue response? If not, why not?

We now have reorganized the relevant figures to make these points much more clear. We agree that our
‘uncalibrated’ stimulation experiments show that DA signals can be sufficient to enhance a cue response. But, we
also note a few important points that further distinguish our results from those in prior studies.

(1) Our data are consistent with either a pure effect on learning rate without a value-like effect (calibrated stimulation;
other correlates in the paper); and

(2) We also now clarify in Figure 3 that there are still differences between the effect we observe and predictions in
value learning models, and thus we refer to the effect as ‘value-like’.

(3) The data is most consistent with our models in which uncalibrated DA stimulation produces both a learning rate
effect and a value-like (error) effect. Thus, we always see data consistent with DA modulating learning rate even
when value-like effects start to emerge in addition.

(4) We show that calibrated stimulation when delivered contingent on a specific trial type can be sufficient to decrease
cue responses - an effect that is not consistent with value learning predictions (multiple different model predictions
now shown in Fig 4). This leads to the insight that there is a surprising dissociation between the learning effects of
calibrated and uncalibrated stimulation.
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Referee #1 (Remarks to the Author):

| was generally satisfied with the responses to my comments but | have a few more suggestions.
The cost term in the model should be explained in a more intuitive way in the main body of the text.
Licking should only occur after the cue is delivered. If the authors wish to show that the cue served
as a discriminative lick/no lick signal, performance should be defined based on the number of licks
on cued versus cue-omission trials using a ROC-type approach.

| was intrigued by this sentence and would urge the authors to unpack it.: “activity of the feedback
unit was the sum of the state change in the behavioral plant (akin to an efference copy of reward-
related action initiation commands 47) and the change in behavioral policy at the time of reward
delivery(akin to a reward-predictive sensory evidence8). This feedback scheme has a direct and
intentional parallel to the phasic activity of midbrain DA neurons in this task”

Many readers will not be familiar with REINFORCE and the authors need to spell out how REINFORCE
is different from a reinforcer in psychology and an RPE in neuroscience.

When you say: “(3) a basal learning rate was intact but there was no adaptive component (akin to
disruption of phasic mDA activity..)” | think you mean disruption of a phasic DA RPE signal.

Referee #3 (Remarks to the Author):

While | appreciate their efforts to revise the paper, overall | found that their responses did not help
clarify.

| agree with the authors that policy models may in fact better explain behavioral and neural data
than value models (while hybrid actor-critic models are probably the best to encompass all data,
which has long been thought in the field). However, my enthusiasm for this paper is limited because
they do not seem to be providing much in the way of rigorous support for that assertion. When |
wrote the difference between various types of RL models was subtle, | didn’t mean it was
nonexistent, | meant they would need to provide strong and clear evidence to dissociate the models.
They are not providing a systematic comparison of value versus policy RL models to see which class
of models best fits behavior and/ or neural activity on a trial-by-trial basis (or moment-by-moment



basis), to rigorously support the assertion that a policy model best explains the data. Note that the
model comparisons of collection latency does not seem to be informative (1j). One would expect an
RNN should converge to zero latency if trained correctly so not clear what is the issue exactly. To
rigorously compare the ability of different models (such as policy vs value) to explain data, the best
fit parameters of each model to the data are normally identified, and the likelihood of the data
under the best fit parameters is normally compared. For example see Li & Daw 2011, where they did
exactly that- they compared the ability of policy versus value models to fit trial-by-trial choices, and
concluded the policy model was indeed superior.

| think ultimately their central claim may be that DA provides a learning rate rather than a signed
error signal. If so, I’'m not sure that point has anything to do with policy versus value models, since
learning rates may be “adaptive” in either class of models, again making the big picture point of their
paper confusing.

| recognize that the stimlick+ and stimlick- expt appears to be a critical test in their mind of learning
rate versus error signal. | have read the text and figure legend multiple times and | remain unclear
about their arguments. They are not stimulating on trials with negative vs positive performance
errors, they are stimulating on all lick+ vs lick- trials (if | understand correctly), so | do not follow their
arguments - it’s not clear which trials have which performance errors. It seems like it would be much
preferable to actually design an experiment that is intended to differentiate between a contribution
of DA to learning rate versus to a signed prediction error much directly, if that is their goal. They
could design a task with some trials with positive and others with negative prediction errors, and
showing that increasing DA increases learning rate in both sets of trials.

Moreover, their comment in the rebuttal that DA isn’t traditionally thought to contribute to the
policy learning in traditional actor-critic models isn’t true. DA projections to dorsal striatum are
thought to help train the “actor” in actor-critic models, where the actor is classically placed in dorsal
striatum and the critic in ventral striatum. One idea is DA in dorsal striatum could train the actor by
serving as a “baseline” term in a REINFORCE-like actor.

In addition, in re-reading the new manuscript, another big concern arose for me. They clarify
“Performance errors used to train the model were proportional to the difference between the policy
output at the time of reward delivery and the latency to collect water reward (see Methods).” This
error signal doesn’t make much sense as a learning rule for a naive agent. For the agent to calculate
the difference in time between reward delivery and reward collection latency, and use that as an
error signal, they would need to know when the reward has been delivered based. Isn’t knowing
when the reward is delivered the entire point of learning a trace conditioning task? Is the idea that
they have already learned the sound of the solenoid click means that reward is available, but haven’t
learned how to lick in the presence of the click? This really doesn’t make much sense- seems more
like a supervised learning rule that a reinforcement learning rule. In fact the paper they reference
(49) is a supervised learning paper.



Minor:

In general, the paper is hard to read. E.g. what does it mean for stimulation to have an “input-output
property”? Many of the sentences are not stand-alone and they require going between the text and
figures many times to understand the intended meaning.

Similarly, many of the figure legends seem incomplete, making it hard to understand the figures. For
example Fig 4h legend doesn’t seem to describe the right most panels, only the “data” panels

The goal of the GLM in F1 to predict behavior from other behavior measures was not clear.

| think they may mean “temporal difference” model, not “temporal discount” model.

Figure 4b- please include time axis units and clarify how many mice/sessions etc are being averaged



Author Rebuttals to First Revision:

Referee #1

-The cost term in the model should be explained in a more intuitive way in the main body of the text.

We have attempted this now in the Results section describing the model. “The

performance error (PE) used to train the model was proportional to the difference between .
cued vs uncued licking

performance, as measured by the latency to collect the water reward, and expected ] prior to rew delivery

performance, estimated by the policy output at the time of reward delivery (see Methods).

Both reactive and preparatory learning occurred in proportion to this PE, but they were

implemented at different positions within the network.”

-Licking should only occur after the cue is delivered. If the authors wish to show that the 06
cue served as a discriminative lick/no lick signal, performance should be defined based on 05
the number of licks on cued versus cue-omission trials using a ROC-type approach. 200

We have done this analysis, with results at right showing a high degree of discriminability ele

between licking behavior during the delay period before reward on cued vs uncued trials.

-l was intrigued by this sentence and would urge the authors to unpack it.: “activity of the feedback unit was the sum
of the state change in the behavioral plant (akin to an efference copy of reward-related action initiation commands 47)
and the change in behavioral policy at the time of reward delivery(akin to a reward-predictive sensory evidence8).
This feedback scheme has a direct and intentional parallel to the phasic activity of midbrain DA neurons in this task”
We now more directly explain how this relates to the findings about DA encoding the sum of action and cues from our
previous work ', as well as why this faithfully reproduces measured DA responses.

-Many readers will not be familiar with REINFORCE and the authors need to spell out how REINFORCE is different
from a reinforcer in psychology and an RPE in neuroscience.

-When you say: “(3) a basal learning rate was intact but there was no adaptive component (akin to disruption of
phasic mDA activity..)” | think you mean disruption of a phasic DA RPE signal.

Thank you for the helpful guidance, we have now clarified in the revised text.

800


https://paperpile.com/c/m7kJP7/GCT6

Referee #3 (Remarks to the Author):

-While | appreciate their efforts to revise the paper, overall | found that their responses did not help clarify. | agree with
the authors that policy models may in fact better explain behavioral and neural data than value models... However,
my enthusiasm for this paper is limited because they do not seem to be providing much in the way of rigorous support
for that assertion. When | wrote the difference between various types of RL models was subtle, | didn’t mean it was
nonexistent, | meant they would need to provide strong and clear evidence to dissociate the models. They are not
providing a systematic comparison of value versus policy RL models to see which class of models best fits behavior
and/ or neural activity on a trial-by-trial basis (or moment-by-moment basis), to rigorously support the assertion that a
policy model best explains the data. To rigorously compare the ability of different models (such as policy vs value) to
explain data, the best fit parameters of each model to the data are normally identified, and the likelihood of the data
under the best fit parameters is normally compared. For example see Li & Daw 2011, where they did exactly that-
they compared the ability of policy versus value models to fit trial-by-trial choices, and concluded the policy model
was indeed superior.

We thank the reviewer for providing particularly clear guidance about how additional model comparison
would make them enthusiastic about our study. We have now implemented an explicit model comparison as
the reviewer proposes and we also find that it provides additional, compelling motivation for the main work of the
paper - articulating a plausible, neural network based implementation model of direct policy learning. We note, the
reviewer has no questions whether our ACTR model explains all of our experimental data, but rather a
question whether policy learning models are also better at explaining trial by trial behavioral learning data than a
value learning model - which we now show they are.

In order to make a fair 1

. a 5000 5000 2 5000 3 b 0
comparison to the _ 4000 4000 4000 1500 b
-
low-parameter value I 3000 3000 3000
learning models that are 5 2000 2000 2000 - "
standard in the field®*, we ¢ g gt .
iculated ! 8 1000 1000 1000 ; o
articulated a 5 Z <
© @
. . . £ 1100 . £
policy-gradient model with e oo e R 2
f 5000 5000 5000 ° e .t %2
an equal number o ~ 4000 4000 4000 LI
parameters that captures 2 3000 3000 3000 900 .
a key feature of ACTR (it 5 2000 2000 2000
uses the same policy £ 700555 1500 1500 1400 I —
gradient) ThiS direct §, 1000 1000 1000 Optimal -LL value Optimal AIC value
' Cc
model comparison 0 10_;) 200 0 10; 200 0 1090 200 10000 4
ini 5000 5000 5000
revealed both minimum _ 4000 2000 4000 5000 X
negative log likelihood 2 3000 3000 3000 E 2
(-LL) and minimum AIC 5 2000 2000 2000 P <?
) o S
were obtained with a i & 4000 2,4
. . 1000 1000 1000
policy learning model 8 2000
0
rather than a value 0 100 200 0 100 200 0 100 200 2000 6000 10000 0 2 4
individual paramaterizations Median -LL value Median AIC value

learning one (revised Fig.
1h; revised Extended
Data Figure 1). Moreover,
policy learning models

Extended Data Figure 1. Comparison of low dimensional policy learning and value
learning model fits to behavioral learning
a) Fits of value (blue) and policy (orange) learning models for each mouse across the space of
were dramatically less possible parameterizations, measured as -log likelihood (smaller number is better fit)
brittle 5 than value b) Comparison of optimally parameterized policy and value models for each mouse, quantified
learning (Ext Data Fig 1c). by -log likelihood (left) or Aikake information criterion (right)

c) Comparison of median parameterized policy and value models for each mouse, quantified by
These low-parameter -log likelihood (left) or Aikake information criterion (right)

treatments are informative

as to which type of model seems best to pursue, but lack important implementational and mechanistic detail. For
example, there is no clear way to account for the two dissociable learning components directly inferred from
behavioral learning data (which we name ‘reactive’ and ‘preparatory’; Fig 1), nor how to relate phasic DA signals to
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key variables in a REINFORCE policy learning formulation. Thus, we find that the principled approach the reviewer
suggested above greatly strengthens the motivation in the manuscript to pursue a fuller, more plausible
network-based implementation of a policy learning model, and we now incorporate their suggested model comparison
into the main text, figures and add an additional extended data figure.

Note that the model comparisons of collection latency does not seem to be informative (1j). One would expect an
RNN should converge to zero latency if trained correctly so not clear what is the issue exactly.

While this is already addressed, we quickly note that a comparison of performance or examination of differential
predictions is a standard model comparison approach in machine learning (a recent example is Figure 2 in ®) due to
the fact that neural network models with large numbers of parameters are not guaranteed to be practically
optimizable (unlike low parameter models 7). This performance comparison isn't a singular piece of evidence that
perfectly arbitrates between competing views, but it is a legitimate piece of evidence in favor of the function we are
proposing for mesolimbic DA of setting an adaptive learning rate and not other terms in the ACTR model. With
everything else equal in ACTR, using DA signals as the error term rather than the adaptive rate term caused the RNN
to perform terribly because using the feedback unit activity as a signed error interferes with convergence. Given the
close match of our predicted DA signals to those in real mice over learning (Fig 3), this addresses a reasonable
question readers might ask: couldn’t DA-like signals be used in ACTR to signal an error signal analogously to its
function in value learning?

A final implication of the reviewer’s statement above is that they are concerned that the model doesn’t converge to
zero latency, but rather to a stable plateau around ~150 ms. It is thus crucial to note that the RNN output does
converge to its optimum with training (as shown in Extended Data Figure 2a); however, the latency of collection is
determined by the behavioral plant which has biologically realistic reaction times and stochasticity that lead to
non-zero latencies for collection. This matches mice’s stable learned performance, which suffers from similar real
physical constraints. We should finally note that while REINFORCE is a fascinating class of models, convergence is
not proven for all implementations (as Williams noted in his original paper &) and our model is a particular form similar
to, but not exactly articulated by Williams, and thus convergence can only be demonstrated by simulation at this time.

I think ultimately their central claim may be that DA provides a learning rate rather than a signed error signal. If so, I'm
not sure that point has anything to do with policy versus value models, since learning rates may be “adaptive” in
either class of models, again making the big picture point of their paper confusing.

Our primary claim is indeed that DA functions as a learning rate that modulates teaching signals rather than serving
directly as a teaching signal - the title of the paper “Mesolimbic dopamine adapts the rate of learning ...” is intended
to reflect that primary assertion. But the motivation for AND validation of this account depends crucially on differences
between direct policy learning and value learning.

Motivation: the fact that signed RPEs are not required for policy learning (i.e. the gradient is relative to policy not
relative to a value function) opens up the possibility that midbrain dopamine activity could be mapped onto a different
component of the learning model and motivates our theoretical exploration. Adaptive rates in particular are especially
critical to policy learning methods °.

Validation: The learning rate function that we propose is in many cases hard to distinguish from a signed error
teaching signal. For instance, stimulating DA on every trial of learning could speed or even unblock learning whether
it was functioning as a teaching signal or as a learning rate. The closed-loop stimulation paradigm that we chose (Fig.
4) offers the possibility to distinguish these functions specifically within a framework like our policy learning model
ACTR where behavioral performance is being related to policy updates at a trial wise level.

Thus adopting a novel policy learning model was instrumental in elaborating and validating the novel function we are
proposing for mesolimbic dopamine in signaling an adaptive learning rate.

We are enthusiastic about the reviewer’s point that value learning models can also make use of adaptive learning
rates — it is intriguing to consider whether even in hybrid actor-critic type models dopamine’s function might also be
best described as an adaptive learning rate. While policy learning models offer superior fits to behavioral and neural
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data in the context studied here, there may be tasks or phases of learning when a value learning / hybrid model is the
best fit compared to a policy model. We hope the reviewer agrees that if a future dataset was better captured by a
value learning model than a policy learning model and dopamine was best modeled as an adaptive learning rate in
that context - that would be consistent with a primary conclusion of our work (we do not claim that nothing can ever
be value learning) and an exciting discovery building upon our work in two ways:

1. Dopamine has for ~25 years been associated with the signed error term in value learning '°; so a
subsequent paper discovering it was an adaptive rate term in value learning would add to the impact of our study.

2. We show a novel biological implementation that is useful for computing an adaptive learning rate. In
machine learning, adaptive rate computations are ubiquitous ("' has been cited >100,000 times in 8 years according
to Google Scholar) but a plausible biological implementation of an adaptive rate term has not been proposed prior to
our work.

| recognize that the stimlick+ and stimlick- expt appears to be a critical test in their mind of learning rate versus error
signal. | have read the text and figure legend multiple times and | remain unclear about their arguments. They are not
stimulating on trials with negative vs positive performance errors, they are stimulating on all lick+ vs lick- trials (if |
understand correctly), so | do not follow their arguments - it's not clear which trials have which performance errors. It
seems like it would be much preferable to actually design an experiment that is intended to differentiate between a
contribution of DA to learning rate versus to a signed prediction error much directly, if that is their goal. They could
design a task with some trials with positive and others with negative prediction errors, and showing that increasing
DA increases learning rate in both sets of trials.

We apologize that this point has remained unclear. The reviewer
states “They are not stimulating on trials with negative vs positive f

performance errors” and “it's not clear which trials have which PEs by trial-type g PEs captured by

performance errors”. The data very simply and directly clarify this in control mice closed-loop stim
point, but we have failed to highlight this. We have now updated 0.4 . 0.4

the main text and added new analyses (shown here as well) to ki
directly focus on this point: in mice (not just the ACTR model), 0.2 0.2 é
lick- trials on average have positive PEs, and lick+ trials on w w

average have negative PEs (Ext. Data Fig. 8f, shown at right). g o7 = 50 Eii """"
As would then be expected, when we performed experiments

with the stimLick+/stimLick- contingencies (carefully tuning 0.2 02

stimulation to be a matched subset of each trial type; Fig. 5b), we 04 s ) 04 \-,\c‘:@( \->c‘,“'
indeed successfully captured the appropriately signed \->c§“ &F ,-O@\ (-}\@

performance errors (Ext. Data Fig 8g, shown at right). StimLick+

and StimLick- contingencies thus are a technique for

stimulating at the time of reward delivery on trials that on average have negative or positive performance
errors, respectively.

In addition to this experiment design in fact selecting for distinct PE distributions (contrary to the reviewer’s
understanding but hopefully cleared up now), it is crucial to recognize that simulations in Fig. 5 show clearly that this
paradigm of stimulating on Lick+ vs Lick- trials makes unique and strongly distinguishing predictions between
multiple models. Indeed, we find this design particularly useful because it uniquely competes many different model
predictions against each other.

Other designs, for example stimulating during putative negative and positive reward prediction errors, are less
straightforward to distinguish from standard models and thus are less useful. For one, they require some inference
about when signed prediction errors occur that could be debated, whereas detection/no detection of licking is
unambiguous across labs trying to replicate our work. Second, stimulating on positive prediction error trials makes
identical predictions for an RPE/value learning framework and our adaptive rate framework and a behavioral
reinforcement framework; thus, one half of the manipulation experiment would be uninformative with respect to our
main conclusions. We do think that an essential next step will be to design new tasks that are specifically tailored to
even better distinguish performance errors and decorrelate them from positive and negative prediction errors - but we
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also see a great deal of power in taking a canonical task for the value learning interpretation and showing a surprising
result.

In addition to previous comparisons in Fig 5, we also now include for comparison the predictions of “on-policy” TD
learning and the commonly held notion of direct behavioral reinforcement by DA (as invoked by the reviewer
previously). In the first round of review, the reviewer wondered (very reasonably) whether direct reinforcement of
behavior by dopamine stim might explain our effects. We pointed out that 1) the pause right before reward was not
true of the data, 2) that still would not explain stimLick- where there was no licking to be reinforced, 3) the
stim++Lick+ condition (supraphysiological stimLick+) under the reviewer’s proposal would lead to a stronger
reduction in licking over training rather than the observed increase. Thus, the design in question provided several
lines of evidence to rule out the reviewer’s specific alternative model. To help readers more broadly appreciate this
important aspect of the design we also now include those rejected predictions in revised Figure 5.

... hybrid actor-critic models are probably the best to encompass all data, which has long been thought in the field...
Moreover, their comment in the rebuttal that DA isn’t traditionally thought to contribute to the policy learning in
traditional actor-critic models isn’t true. DA projections to dorsal striatum are thought to help train the “actor” in
actor-critic models, where the actor is classically placed in dorsal striatum and the critic in ventral striatum.

We agree that in actor-critic models of the basal ganglia that “DA projections to the dorsal striatum are thought to help
train the actor” and regret any language that would have contradicted that statement. Below is the relevant passage
from our rebuttal:

When DA is proposed to participate in actor-critic learning in the basal ganglia, what is specifically being proposed is
the same as for critic-only learning: that DA signals an RPE that updates a value function. Thus, it is not “mainstream
to argue that dopamine participates in direct evaluation of policies rather than indirect evaluation through construction
of value functions. Recent work from Yael Niv and colleagues 2 for example has clearly summarized that prior work
had considered only relatively limited roles for dopamine in actor learning and had focused extensively on a primary
role of dopamine in determining learning of the critic (i.e. value learning) (see also a prescient work from Loewnstein
and colleagues ™)

”

The reviewer agrees that direct policy learning (and REINFORCE algorithm in particular) is distinct from both value
learning and actor-critic learning. We think the reviewer is then implying a few related, but different follow ups:

1) Is the function of DA in the ACTR model distinct from its function in value/actor-critic learning models?

2) Is the ACTR model itself meaningfully different from existing actor-critic models in the literature?

3) Does the ACTR model offer greater explanatory power than value learning models?

We have extensively addressed Point (1). Even when the field has considered DA in the context of actor-critic
learning, DA was used as an RPE that can update both the critic and the actor, very clearly illustrated in '. Using a
dopaminergic RPE to update or direct the actor is not necessarily direct policy learning (no explicit calculation of the
policy gradient; our point in prior rebuttal) and is fundamentally distinct from using a dopaminergic adaptive learning
rate to modulate the error signals that directly update the actor.

Point (2): The reviewer argues that actor-critic is a distinct, superior option preferred by the field, but the vast majority
of primary work considers pure value learning models and prominent reviews consistently argue that mesolimbic
dopamine and NAc are the ‘critic’ (value) component. See for just a few high profile examples of this: 23101522 As one
example within this set “A Unified Framework for Dopamine across Timescales, Kim et al, Cell 2022” a recent paper
from Gershman & Uchida labs only considers variants of value learning models (not actor-critic). By comparison, full
actor-critic models are most often discussed in reviews e.g. %22 rather than in primary literature modeling
experimental results. For instance, we are unaware of a study measuring dorsal striatal dopamine signals and
explaining them as updates or action selection commands to an actor (in contrast, RPEs have been discussed in
relation to SNc dopamine activity extensively 242%),

Furthermore, actor-critic AND pure value models universally place the critic in ventral striatum and the mesolimbic
dopamine projections there. Our work explicitly considers those regions and projections as specifying and learning
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the policy, and thus is fundamentally distinct from proposals that critic signals learned via error signaling by the
mesolimbic DA circuit are broadcast to the dorsal striatum.

Point (3) Our approach has the distinct advantage of providing a more plausible neural network-based mechanistic
account that includes explicit modeling of behavioral responses and accounts for empirical learning data (two
dissociable learning components) that are not accounted for in any existing actor-critic (or other) model formulations.
Moreover, this more mechanistic model makes connections to circuitry (e.g. DA receives inputs in parallel with
sensorimotor pathways %, the source of action initiation correlates in DA 27; dopamine responses are the summed
combination of a sensory and action components ') that can inform future work and provide a new perspective on
past work.

The direct, rigorous model comparisons suggested by the reviewer and now included further support our claims here.
Further, as discussed above, the closed-loop stimulation results from Fig. 5 are not explained by models that have
VTA dopamine functioning as an RPE in critic learning.

One idea is DA in dorsal striatum could train the actor by serving as a “baseline” term in a REINFORCE-Ilike actor.
We would appreciate to know the citation that the reviewer has in mind here as we are not aware of any clear
articulation or testing of such a hypothesis. Perhaps the reviewer is referencing proposals that tonic dopamine activity
might represent a baseline reward rate term? In the absence of references from the reviewer, we are aware of the
use of a dopaminergic baseline term has been proposed to control response vigor 2 or exploitation/exploration
trade-offs 2 or inattention % or more speculative (without explicit modeling) ideas about relations to many behavioral
functions 3'. However, none of these models referenced REINFORCE or considered explicit direct policy learning
models or anything close to the implementation level detail that we develop here in the ACTR model. We would be
happy to discuss this idea at some point in the paper (though again this idea relates to dorsal striatal, not nucleus
accumbens dopamine) if the reviewer clarifies which study they have in mind.

In addition, in re-reading the new manuscript, another big concern arose for me. They clarify “Performance errors
used to train the model were proportional to the difference between the policy output at the time of reward delivery
and the latency to collect water reward (see Methods).” This error signal doesn’t make much sense as a learning rule
for a naive agent. For the agent to calculate the difference in time between reward delivery and reward collection
latency, and use that as an error signal, they would need to know when the reward has been delivered based. Isn’t
knowing when the reward is delivered the entire point of learning a trace conditioning task?

In the first round of review comments the reviewer wrote: “Relatedly, the objective function that was used to train the
network was based on time to collect reward once available, which can be considered a discounted value function.”
The reviewer appreciated in their first reading how we used the objective function and that it was, in their words, like a
standard discounted reward term 2,

It is standard to give RL models veridical knowledge of reward delivery timing. In some contexts this might be
unfair/unphysiological, however in this case it is well appreciated that delivery of a water droplet under the nose of an
expectant head-fixed rodent is a highly salient sensory event that is perceptible with subsecond timing (for instance,
see %2). Thus the perception of water is not something we train the mice on, rather mice know how to perceive the
presence of water and they also know that perception of water is a distinct percept from consumption of water (water
touching the tongue). In Figure 1 we provide quite direct behavioral evidence that the animal is aware of reward
delivery since they modify a number of behaviors at short latency after reward delivery even in the first 10 trials of
training. Part of the improvement in learning, as we show in Figure 1, is to more rapidly react to the detected
presence of reward and shorten the latency to a host of behavioral responses (nose movement ‘nosing’, whisking,
body movement). We postulate that collection latency is computed as the latency between these distinct perceptual
events much like latencies between sensory events are known to be calculated®.

The mice can also learn to use novel information about presence of water (e.g. solenoid click) for such latency
estimates, but as we showed in previous rebuttal with a cohort of mice trained without the solenoid noise this is not
essential.
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Is the idea that they have already learned the sound of the solenoid click means that reward is available, but haven’t
learned how to lick in the presence of the click?

Yes, this is part of the idea and strongly supported by the experimental data reported in Figure 1. A naive animal must
learn to control the licking behavior - in the context of the ACTR model, the policy network must learn that sensory
input around water delivery should be coupled to the output of the policy network and drive a rapid onset of licking
(the “reactive” component of the behavior described in Figure 1). Recent papers underscore the importance of this
aspect of the learning problem in rodents 3435,

seems more like a supervised learning rule that a reinforcement learning rule. In fact the paper they reference (49) is
a supervised learning paper.

It is clear that Miconi used a supervised objective and thus dating back to the first manuscript version we explain how
we modified ACTR to be distinct from Miconi’s formulation. Using the model’s own current policy output as a
comparison is not a labeled, veridical target output (i.e. a supervised label; by contrast, Miconi for example told the
model that the correct output unit activity at the end of trial type A == 1 and B == -1). Minimizing an objective like
latency to collect reward is also not a supervised learning problem. As the reviewer has pointed out in other
arguments, this learning objective could be considered as broadly similar to RPEs and value discounting which also
use a (albeit quite distinct) self-generated estimate (value function) to compare to veridical current trial reward value
provided to the model; but this is not considered a supervised learning algorithm.

Minor points:

In general, the paper is hard to read. E.g. what does it mean for stimulation to have an “input-output property”?

Many of the sentences are not stand-alone and they require going between the text and figures many times to
understand the intended meaning.

We have edited the paper and endeavored to make a number of the confusing points raised above more clear and
easy to understand - in some cases without reference to the figures. The reviewer is referring to the following clause:
“In separate experiments, calibrated and uncalibrated VTA-DA stimulations had similar input-output properties across
the medial prefrontal cortex and the dorsal-to-ventral axis of the striatum.” An input-output property is the relationship
between the strength of stimulation and magnitude of measured output. We found that the spatial profile of output
magnitude was similar for calibrated and uncalibrated stimulation. Hopefully, this terminology of spatial profile is more
clear.

Similarly, many of the figure legends seem incomplete, making it hard to understand the figures. For example

Fig 4h legend doesn’t seem to describe the right most panels, only the “data” panels

Thank you, the oversight on Fig 4i has been corrected and we have gone back over the rest of the figure legends to
confirm they are complete.

The goal of the GLM in F1 to predict behavior from other behavior measures was not clear.

The goal was stated in the text: “To assess whether changes in both preparatory and reactive components were
correlated with improvements in reward collection performance, we built generalized linear models (GLM).”

Thanks to the reviewer’s feedback, we now further re-confirm this goal of formally assessing the relationship between
behavioral measures and the performance metric at the end of the relevant paragraph, saying: “Thus each behavioral
measure reflected at least partially distinct aspects of improving policies, and the significantly different time courses of
preparatory and reactive learning (Fig. 1g) further confirm that these two learning components are dissociable
processes.”

To restate and elaborate: we are asking whether both reactive and preparatory components of behavior appeared to
contribute to the overall learning (reduction in collection latency). One way to provide good statistical evidence for the
dependence of one variable (latency) on another set of independent variables (reactive, preparatory) is to construct a
GLM and ask whether the regression weights on the independent variables are non-zero and whether removing one
or more independent variables reduces the explained variance (r-squared). We use the GLM in Figure 1 to formally
evaluate these statistical dependencies.

| think they may mean “temporal difference” model, not “temporal discount” model.
Thank you for pointing out this typo. The only such reference we could find was in the legend for former Fig 3c, and it
has been corrected.
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Figure 4b- please include time axis units and clarify how many mice/sessions etc are being averaged

Thank you for the clarification. The n values that were listed next to the traces (n=5 and n=6) were referring to
mice and the legend described the data as coming from “Mean NAc-DA reward responses across training”.
We have now further clarified “Mean NAc-DA reward responses across training (trials 1-800) for each mouse”
and added a time scale bar (“1 s” or 1 second) in the figure. Thus the traces visualize the average DA reward
transient seen by each mouse on unstimulated (black) vs stimulated (colored) trials.

On the question of model comparison

We performed the requested model comparisons but would like to articulate two further general points about model
comparison. As Maneesh Sahani (among others) has pointed out - model comparison has a clear limitation which is
that it can only discover the best model out of those considered and the models may be brittle ® especially when one
uses abstract models (like low parameter RL models) to compare to variable physiological or behavioral data. In his
colorful example, it can allow us to determine if a banana is better modeled as an apple or an orange. For this
reason, we do believe it is important to also articulate (1) novel, (2) generative, and (3) implementational models with
additional explanatory power like the ACTR model described here. We also find it to be comforting and supportive of
our general endeavor in this study that policy learning models are dramatically more stable and robust against
parameter variation than value learning models over the bounded parameter range used for optimization (Ext. Fig. 1).

However, neural network based generative models are not always amenable to formal model comparison techniques
especially when the dimensionality is large 7. Indeed, as Breiman began to appreciate in the context of large scale
genetic data and more recently in machine learning with algorithmic models and the huge dimensionality of
parameters - performance is often considered rather than explicit model comparison. This is in part because the
parameter space can be massive in generative network models and one cannot always guarantee the true global
optimum parameterization has been discovered because the required simulations would be too extensive. For these
reasons we focus on examining performance of ACTR (akin to much work in the machine learning literature) where
appropriate and model comparison for low-parameter model equivalents. We now have endeavored to provide the
best of both worlds thanks to the reviewers’ feedback so we believe we have satisfied any potential concerns about
model comparison.

Some important clarifications from Round 1:

We appreciate that the reviewer has raised additional questions in this round including new questions that were not
raised in the first round. We believe we have addressed these new concerns above. We would also like to summarize
a number of key contributions of the manuscript that have been clarified without further inquiry:

1. Anew, principled, and detailed description of learning during the acquisition of trace conditioning that we
connect to concepts of policy optimization in machine learning (Fig 1). There have been calls from prominent
theoreticians to explore this space; ours is the first empirical+modeling study to do so and includes multiple
points of unique explanatory power as well as confirmatory causal experiments.

2. Our careful examination of individual differences in learning reveal, for the first time, that the response of
mesolimbic dopamine (mMDA) to the first few naive rewards predicts the final learned state ~1000 trials in the
future (Fig 2). The sign of this relationship is opposite to predictions of the dominant interpretations in the
field while consistent with our model.

3. We demonstrate that the functional effects of mDA stimulation on learning depend upon the intensity and
duration of stimulation. This potentially re-contextualizes many results in the field (Fig 3).

4. We articulate a more detailed and plausible implementation level model of reinforcement learning (‘(ACTR’
model) and demonstrate that this model can account for well known, unexplained discrepancies between
mDA responses and prevailing models (Fig 3-4).

5. we develop and test a novel closed loop stimulation experiment that is uniquely consistent with our model,
but inconsistent with 3+ existing hypotheses about mDA function in learning (Fig 4)
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Below we summarize several specific points that were clarified (no further questions asked):

“The network seemed to be trained to calculate value, and then the derivative of that signal was used to produce the
dopamine signal (RPE) - which all in all seem exceedingly similar to traditional actor-critic models.*

We endeavored to clarify that we are claiming dopamine produces a signal critical for adaptive modulation of learning
rate not a signed prediction error term. The reviewer now appreciates this distinction between policy and value
learning and agrees that our main conclusion is that the function of DA reward signals, whatever quantities they may
encode, are to set an adaptive rate term rather than a signed error term (the reviewer correctly notes this is our main
conclusion reflecting why we used it as the title of our paper).

“I did think it was interesting that dopamine early on was so predictive of individual differences in behavior, and that
their model recapitulated it. But | couldn’t find an explanation of why their model produced that effect. Also, could they
show the learning trajectory of the two groups of mice?”

We clarified how the model explains this effect and this remains a crucial point because the sign of the effect on
individual differences is opposite to that predicted from models that propose dopamine is a signed error term
(generally in value learning models previously), and this is thus very useful for distinguishing between competing
models.

My understanding of this explanation is that despite calling these trials lick+, they are actually licking less immediately
before the reward. Can they show this directly in both model and mice? ... if the behavior inmediately before the
reward is “not licking” that will strengthen the policy in a policy model and reinforce the action in a value learning
mdoel (since most recent behavior is most eligbile for modification given eligibility trace).

We disconfirmed the reviewer’s hypothesis about the behavior here (DA stim is not selecting for a pause in licking)
and we further show that a value-based model does not make the same prediction and fails to account for data
(revised Fig. 4). Moreover, standard actor-critic implementations use a signed error term and thus also fail to account
for these effects (our experimental data go in the opposite direction of “reinforcement” as the reviewer proposes). As
described below we now update the figure with this additional prediction from an actor-critic framework.

Is that because they are mostly learning about the solenoid click?
We presented a new experimental dataset without solenoid clicks and showed very comparable behavioral learning
ruling out “mostly learning” about the solenoid click.

It would be helpful to provide a clear definition of performance prediction errors. It was extremely difficult to read &
follow the Methods section on their model. | suggest the authors should separate an explanation of the equations and
concepts of the model versus details of the implementation, simulations etc.

We extensively updated the methods section providing an explicit break out of all equations and terms as requested.
No further clarification was requested.

A particularly important issue is lack of clarity on how the DA signal is calculated, as the dopamine "beta" signal
doesn’t seem to have an equation in methods
This was much more explicitly and intuitively described. No further clarification was requested.

I don’t think it makes the effect of DA on producing a cue response at all uninteresting or unconvincing. They are
calibrating to the DA signal immediately adjacent to the optical fiber in NAc. This should be conservative since not all
dopamine neurons are in the immediate vicinity of the NAc fiber.

We added a new experimental dataset allowing a reader to explicitly evaluate the extent to which calibration was just
for dopamine neurons in NAc. We also reiterate that even if conclusions were restricted to the mesolimbic DA
pathway as the reviewer seems to be suggesting, this pathway is the most closely associated with value learning (or
the critic in actor-critic) in the literature and thus of greatest interest to the arguments of the manuscript and those
raised by the reviewer.

Also, does strong stimulation of DA in their model lead to a greater cue response?
We added new modeling and analysis that showed strong stimulation leads to greater cue responses both in
experimental data and the ACTR model as requested (revised Figure 4g-h). No further clarification was requested.
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Reviewer Reports on the Second Revision:

Referees' comments:

Referee #3 (Remarks to the Author):

| thank the reviewers for the revised comments. | think the manuscript is much clearer than before
in terms of understanding what the main points and conclusions are. | think they are bringing up an
interesting hypothesis, and have interesting results. While I still find several components unintuitive
(from the very concept of using a Pavlovian conditioning task to distinguish value learning from
policy learning, to the points about the learning rule that | brought up before, and finally the
experimental predictions in Figure 5 remain unintuitive to me), | think this data and modeling work is
extensive and the message is interesting, and it is time to publish this work & share the results
broadly with the field.
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