
Supplemental Material 

 

Pediatric Age Estimation from Thoracic and Abdominal CT Scout Views  

using Deep Learning 

 

Neural Network architecture 

All networks considered during hyperparameter search consisted of a backbone (selected from 

ResNet-18, ResNet-34, ResNet-50, and DenseNet-121) and a fully connected head. The head 

replaced the final classification layers of the backbone and comprised three fully connected 

layers. Between the backbone and the head, a dropout layer (with fixed dropout of 0.1) was 

applied. The loss of the network was optimized using the AdamW optimizer (with default values 

betas = (0.9, 0.999) and a weight decay of 0.01). The batch size was chosen as large as feasible, 

which was 32. The maximum number of epochs was fixed at 100. Early stopping was used to 

prevent overfitting and training was stopped when the decrease in the validation loss was less 

than 0.05 over 20 epochs. 

 

For the three methods using ordinal classification, a direct conversion of age to a label would not 

allow for prediction accuracy below one year; accordingly, ages were converted into classes by 

multiplying by 4 to allow for a higher precision. This conversion was reversed after prediction, so 

as not to affect the MAE by this conversion. 

 

Augmentations 

Neural networks benefit strongly from small image transformations called augmentations which 

change the appearance of an image without destroying the information contained. For example, 

rotating a CT scout view will generally result in a different appearance but does not change the 



patient's age. Therefore, only small rotations (between -10 and 10 degrees), small changes in 

brightness and contrast (up to 10%), and random paddings (up to either 32 pixels for images that 

are 224x224 pixels or 64 pixels for images that are 512x512 pixels) with subsequent cropping to 

the original image size were applied. The latter transformation amounts to randomly shifting the 

image in horizontal and vertical directions. In addition, since most CT scout views are centered in 

the upper half of the image, padding was applied anisotropically, i.e., padding was not applied to 

the bottom of the image since this cropping could cut off a large part of the patient’s body. 

 

Hyperparameter Optimization 

The neural network architecture and its training depend on several hyperparameters one must 

choose appropriately. To optimize all these parameters, “Optuna”, a hyperparameter optimization 

library based on Tree Parzen Estimators, was chosen for efficient tuning1. In detail, the following 

parameters were optimized by Optuna:  

 

- The choice of network backbone (ResNet-18, ResNet-34, ResNet-50, DenseNet-112) 

- The size of the three fully connected layers of the head (each between 4, 8, 16, …, 1024) 

- The image size (either the original resolution of 512x512 pixels or downscaled to the size 

of the ImageNet data set, 224x224 pixels) 

- The freezing of pretrained layers (between -1 and 4; -1 = use random weights, 0 = use 

pretrained weights, 1..4 = use pretrained weights and freeze parts of the network) 

- The learning rate (log-uniform in the range 0.1 and 1e-6) 

- The learning rate schedule (gamma in 0.1, 0.2, …, 1.0 and step size in 15, 16, …, 30).  

 

For the AMR loss, two additional parameters were tuned: the top-K number (K in 3, 4, … 10) and 

the l2 parameter (in 0.0, 0.01, 0.02, … 0.2). The l1 parameter was fixed to 0.2, as suggested in 

the original study. 



 

Scheduling was performed by multiplying the learning rate with the chosen gamma after a given 

number of epochs (called step-size scheduling). Finally, the freeze parameter was optimized, 

which determined how many parameters of the backbone were trainable or fixed during training. 

For this, the layers of each network architecture were roughly divided into four parts. In more 

detail (using the naming conventions of the respective studies by He et al.2 and Huang et al.3): 

 

- For the DenseNet-121: Freeze = 1 froze convolutional+pooling layers and dense block 1 

and transition layer 1. Freeze = 2 froze in addition dense block 2 and transition layer 2. 

Freeze = 3 froze in addition dense block 3 and transition layer 3. Freeze = 4 froze all 

layers.  

- For the ResNets: Freeze = 1 froze convolutional+pooling layers and conv2_x. Freeze = 2 

froze in addition conv3_x. Freeze = 3 froze in addition conv4_x. Freeze = 4 froze all layers. 

 

Weights of fully connected layers were initialized using the method by He et al.4 and were always 

trainable. A full overview of the amount of trainable and non-trainable parameters can be found 

in Table S1. 

 

 

Image size Freeze 
level 

Parameter DenseNet-
121 

ResNet-18 ResNet-34 Res-Net-50 

224 0 Trainable 6,953,856 11,176,512 21,284,672 23,508,032 

Non-trainable 0 0 0 0 

1 Trainable 6,576,000 11,019,008 21,053,184 23,282,688 

Non-trainable 377,856 157,504 231,488 225,344 

2 Trainable 5,524,224 10,493,440 19,936,768 22,063,104 

Non-trainable 1,429,632 683,072 1,347,904 1,444,928 

3 Trainable 2,160,128 8,393,728 13,114,368 14,964,736 

Non-trainable 4,793,728 2,782,784 8,170,304 8,543,296 

4 Trainable 0 0 0 0 



Non-trainable 6,953,856 11,176,512 21,284,672 23,508,032 

512 0 Trainable 6,953,856 11,176,512 21,284,672 23,508,032 

Non-trainable 0 0 0 0 

1 Trainable 6,576,000 11,019,008 21,053,184 23,282,688 

Non-trainable 377,856 157,504 231,488 225,344 

2 Trainable 5,524,224 10,493,440 19,936,768 22,063,104 

Non-trainable 1,429,632 683,072 1,347,904 1,444,928 

3 Trainable 2,160,128 8,393,728 13,114,368 14,964,736 

Non-trainable 4,793,728 2,782,784 8,170,304 8,543,296 

4 Trainable 0 0 0 0 

Non-trainable 6,953,856 11,176,512 21,284,672 23,508,032 

 

Table S1: Parameter count for the backbones of the network architectures. The freeze level refers to the 

layers that were frozen during training. A freeze level of 0 will not freeze any layer, while a freeze level of 4 

will freeze all weights of the backbone; only the network head with fully connected layers will be trainable 

in this case. 

 

 

The total rounds of parameter sets to be searched by Optuna were fixed to 100. In each 

optimization round, Optuna selected the hyperparameters of the network, which were then trained 

on the training data set and evaluated on the validation set by computing the MAE. After 

optimization, the hyperparameters of the best-performing model in terms of MAE was chosen as 

the final model. 

 

After the best network structure was determined, the network was trained using both training and 

validation data sets. This is because, in general, neural networks benefit from more data. The 

training was conducted as many epochs as during the training of the best model. The retrained 

model was considered to be the final model. Its performance was then evaluated on the 

independent test data set. This final evaluation took only place once to avoid introducing any bias 

by repeatedly optimizing for the test set, which would lead to severe overfitting.  



 

Loss curves 

To judge the overall quality of the training of the best model and whether overfitting occurred, the 

loss curves of the best-performing models were plotted (Fig. S1). 

 

 

Figure S1  Loss curves for the best-performing model. Note that since the methods use different loss 

functions, their absolute value cannot be compared directly (except for the two methods using L1 loss). 

 

Benefit of DICOM tags 

Since the acquisition of scout views depends on several imaging parameters like exposure time 

and kilovoltage peak, we tested whether such information could help in improving the network 

predictions. For this, we extracted the following DICOM tags from each scout view: kilovoltage 



peak (KVP), x-ray tube current, exposure (in mAs), the computed tomography dose index 

(CTDIVol), the maximum of the pixel spacing in both directions. In addition, the sex of the person  

was extracted from the DICOM tags as it is known to be an important factor in child and 

adolescence maturity and growth. Missing DICOM tags affected mainly the CTDIVol tag (N = 170 

in the training set, N = 7 and N = 1 in the test and validation set resp.) and only marginally the 

Exposure tag (N = 5 in the training and N = 2 in the test set). All missing DICOM tags were 

replaced by the mean of the corresponding tag in the training set, i.e., CTDI was replaced by 0.11 

while Exposure was replaced with 184.9. 

These tags were then input into a small network with three fully connected layers and ReLU 

activations. The sizes of these layers were considered to be hyperparameters and were subjected 

to tuning. The output of this network was then concatenated to the encoded feature vector from 

the backbone and then processed with several fully connected layers. Apart from this change, the 

very same procedure was performed, i.e. the same hyperparameter tuning was used. 

The optimized network used the ResNet-50 as backbone, and used the CT scout views at full 

resolution; it used pretrained weights, but all layers were trainable. The fully connected layers 

processing the DICOM tags had sizes of [4, 4]; the head layers processing the concatenated 

feature vector had a size of [8, 1024, 1024] while the learning rate was 1.5e-4 and was multiplied 

by 0.9 every 22 steps.  

This network showed an MAE of 1.43 ± 1.45 years on the validation set, which was slightly higher 

than the 1.39 ± 1.44 years of the same procedure without DICOM tags. Therefore, it seemed that 

adding DICOM tags to the network did not improve predictive performance.  

 

Software 

The neural network was developed using the Python 3.8, Pytorch 1.135. For reproducibility, the 

code for training the neural network and evaluation will be made available on GitHub 

(https://github.com/aydindemircioglu/scout.view.age). 
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