1	Supplementary materials for
2	Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced
3	mastitis through the TGR5-cAMP-PKA-NF-кB/NLRP3 pathways in mice
4	
5	Caijun Zhao ^{1#} , Keyi Wu ^{1#} , Haoyang Hao ¹ , Yihong Zhao ¹ , Lijuan Bao ¹ , Min Qiu ¹ , Yuhong He ¹ ,
6	Zhaoqi He ¹ , Naisheng Zhang ¹ , Xiaoyu Hu ¹ *, Yunhe Fu ¹ *
7	1. Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University,
8	Changchun, Jilin Province 130062, China.
9	
10	# Authors contributed equally to this study.
11	
12	* Corresponding author:
13	Yunhe Fu, E-mail: fuyunhesky@sina.com.
14	Xiaoyu Hu, E-mail: hxiaoyu@yeah.net.
15	

17

18 **Supplementary Figure 1. Data quality checks. A**. The Pearson correlation of milk QC samples.

- **B-C**. The PCA score plots for the healthy and SARA samples containing QC samples. QC, quality
- 20 control; Principal component analysis, PCA

22	Supplementary	Figure 2.	Classification and functional annotation of metabolites. A	4.	HMDB
----	---------------	-----------	--	----	------

23 classification annotation. **B.** KEGG pathway annotation for the healthy and SARA milk samples.

24 C. Lipid maps annotation for the healthy and SARA samples. HMDB, Human Metabolome

25 Database; KEGG, Kyoto Encyclopedia of Genes and Genomes.

27 Supplementary Figure 3. The effects of DCA and CA on *S. aureus* growth and biofilm 28 formation. A-B. *S. aureus* was cultured in a TSB supplemented with different concentration of 29 DCA or CA for 24 h and measured at OD 600 nm. C-D. *S. aureus* was cultured in a TSB 30 supplemented with different concentration of DCA or CA for 24 h without shaking. The biofilm 31 was detected at OD 570 nm after crystal violet staining. Data are expressed as the means \pm SD 32 (A-D). *p < 0.05, **p < 0.01, ***p < 0.001 indicate significance by Student's t-test.

Supplementary Figure 4. CA does not alleviate *S. aureus*-induced inflammatory response in MMECs. Cells were pretreated with CA (10, 20 and 30 μ M) for 2 h followed by *S. aureus* treatment for next 24 h, and the relative mRNA levels of proinflammatory TNF- α (A), IL-1 β (B) and IL-6 (C) from the indicated group were detected by qPCR. Data are expressed as the means \pm

38 SD (A-C) and one-way ANOVA followed by Tukey's test (A-C) was performed. ***p < 0.001

39 indicates significance. ns, no significance.

42 Supplementary Figure 5. The gut microbiota profiles after vancomycin treatment and SFB transplantation. A. Venn diagram from the indicated groups. B-C. Alpha diversity analysis by 43 ace and Simpson indices. D. Gut microbial compositions at the genus level from the indicated 44 45 groups. E. LEfSe showed different taxa that enriched in the indicated groups. Data are expressed 46 as boxplots, with the center line representing the median, the boundary of the whiskers 47 representing the minimum and maximum values of the dataset, and the boundary of the box 48 representing the 25th and 75th percentile of the dataset (B-C) and one-way ANOVA followed by Tukey's test (**B-C**) was performed. *p < 0.05 and **p < 0.01 indicate significance. 49

51 Supplementary Figure 6. Gut microbiota-mediated DCA production alleviates S. 52 aureus-induced mastitis in mice. Mice were treated with CA (30 mg/kg) or DCA (30 mg/kg) for 53 a week with or without antibiotics treatment, followed by S. aureus-induced mastitis. A. 54 Representative H&E-stained sections of the mammary gland from the indicated groups (scale bar, 55 50 μ m). **B**. Histological score for the mammary gland based on H&E-stained sections (n=6). 56 Inflammatory parameters of the mammary gland from different groups, including TNF- α (C), IL-1 β (**D**) and IL-6 (**E**) concentrations and MPO activity (**F**), were performed (n=6). Data are 57 expressed as the means \pm SD (**B-F**) and one-way ANOVA was performed, followed by Tukey's 58 test (**B-F**). p < 0.05, p < 0.01, p < 0.01, p < 0.01 indicate significance. ns, no significance. 59

61 Supplementary Table 1. Identified number of differential metabolites in Health and SARA

62 samples.

Compared	Number of total	Number of total	Number of	Number of
Sample	identified	significant	significant Up	significant Down
SARA. vs. Healthy	213	44	5	39

⁶³

Supplementary Table 2. Metabolites significantly upregulated in SARA cows and ranked
according to the P-value

Name	Formul	FC	log2F	Pvalu	VIP
	а		С	e	
1-methyl-N-(3-methyl-5-cinnolinyl)-1H-imidazol	C13	3.325	1.733	0.028	1.768
e-4-sulfonamide	H13 N5	244	46	923	183

	O2 S				
3-(methylsulfanyl)-5H-[1,2,4]triazino[5,6-b]indol	C10 H8	4.365	2.126	0.013	3.064
e	N4 S	467	136	204	469
Cinnamoylglycine	C11	2.173	1.119	0.004	1.270
	H11 N	313	896	915	383
	O3				
Epinephrine	C9 H13	3.231	1.692	4.10E-	1.872
	N O3	945	403	07	821
N-(1,1-Dioxotetrahydro-1H-1λ6-thiophen-3-yl)-4-	C12	9.397	3.232	3.13E-	3.506
methoxybenzamide	H15 N	567	287	07	554
	O4 S				

FC, fold change; VIP, variable importance in the projection

Supplementary Table 3. Metabolites significantly downregulated in SARA cows and ranked according to the P-value

Name	Formula	FC	log2FC	Pvalue	VIP
LPE 14:0	C19 H40 N	0.50811	-0.9767	0.03993	1.19383
	O7 P	5	7	2	5
SM (d14:1/14:0)	C33 H67	0.20185	-2.3085	0.03487	1.77633
	N2 O6 P	8	9	1	
Cholic acid	C24 H40	0.12203	-3.0346	0.03283	2.19600
	05	5	4	6	8
Deoxycholic acid	C24 H40	0.27184	-1.8791	0.03193	1.68554
	O4	8	3	1	9
FAHFA (18:1/20:3)	C38 H66	0.56169	-0.8321	0.02073	1.01958
	O4	6	4	7	8
FAHFA (18:1/18:2)	C36 H64	0.53339	-0.9067	0.01256	1.00469
	O4	7	2	8	4
PS (18:0/22:4)	C46 H82 N	0.37562	-1.4126	0.01157	1.77248
	O10 P		5	8	
FAHFA (18:1/19:2)	C37 H66	0.51183	-0.9662	0.01079	1.21477
	O4	9	4	8	7
(R)-3-Hydroxy myristic acid	C14 H28	0.35062	-1.5120	0.01054	1.88635
	03	2	1	7	8
LPG 18:1	C24 H47	0.47780	-1.0654	0.01033	1.25172
	O9 P	9	9	1	6
Eicosapentaenoic acid	C20 H30	0.49815	-1.0053	0.00860	1.06136
	O2	5	3	1	5
LPE 22:4	C27 H48 N	0.39868	-1.3266	0.00402	1.36796
	O7 P	6	7	1	6
cis-2-Decenoic acid	C10 H18	0.31500	-1.6665	0.00175	1.84329
	O2	8	4		3
Heptanoic acid	C7 H14 O2	0.30468	-1.7146	0.00171	1.77304
		5	1	8	5

α-Linolenic acid	C18 H30	0.46655	-1.0998	0.00120	1.19371
	O2	3	9	2	3
γ-Linolenic acid	C18 H30	0.46681	-1.0990	0.00118	1.19271
	O2	2	9	7	7
FAHFA (16:0/18:2)	C34 H62	0.39321	-1.3466	0.00110	1.51862
	O4	2	2	1	8
LPS 22:4	C28 H48 N	0.30965	-1.6912	0.00103	1.75315
	O9 P	6	6		7
Pentadecanoic acid	C15 H30	0.43584	-1.1981	0.00080	1.34573
	O2	3	2	9	7
FAHFA (16:1/18:3)	C34 H58	0.13839	-2.8531	0.00052	3.18450
	O4	8	1	9	4
Ethyl myristate	C16 H32	0.51544	-0.9561	0.00036	1.04839
	O2		2	2	8
Adrenic acid	C22 H36	0.24492	-2.0295	0.00034	2.27353
	O2	5	9	6	3
Hexanoic acid	C6 H12 O2	0.35958	-1.4756	0.00034	1.63476
		2	1		2
FAHFA (18:2/18:2)	C36 H62	0.21453	-2.2207	0.00032	2.54354
	O4	8		8	6
FAHFA (14:0/16:2)	C30 H54	0.14979	-2.7389	0.00028	3.07954
	O4	4	5	4	6
13-Hotre(R)	C18 H30	0.46130	-1.1162	0.00027	1.1945
	O3	2	2	5	
16-Hydroxyhexadecanoic acid	C16 H32	0.33524	-1.5767	0.00027	1.68989
	O3	2	2		4
Tridecylic acid	C13 H26	0.26090	-1.9384	0.00024	2.16590
	O2	6		5	1
Arachidonic acid	C20 H32	0.30289	-1.7231	0.00021	1.81143
	O2	3	2	6	9
FAHFA (18:2/20:4)	C38 H62	0.11006	-3.1835	0.00019	3.57878
	O4	5	7	3	5
(+/-)12(13)-DiHOME	C18 H34	0.31926	-1.6471	0.00017	1.87584
	O4	7	7	8	6
11(Z),14(Z)-Eicosadienoic acid	C20 H36	0.39260	-1.3488	0.00012	1.46567
	O2	5	5	9	
Lauric acid ethyl ester	C14 H28	0.35603	-1.4899	0.00011	1.60944
	O2	7		6	7
all-cis-4,7,10,13,16-Docosapentaenoic	C22 H34	0.34098	-1.5522	8.80E-0	1.65517
acid	O2	9		5	7
(+/-)-epi CP 47, 497	C21 H34	0.49538	-1.0133	8.31E-0	1.11762
	O2	4	8	5	
Lauric acid	C12 H24	0.27122	-1.8824	8.25E-0	2.05958
	O2	4	5	5	5

Decanoic acid	C10 H20	0.2722	-1.8772	6.27E-0	2.04857
	O2		6	5	8
FAHFA (18:2/17:2)	C35 H60	0.19295	-2.3736	2.42E-0	2.60920
	O4	8	4	5	6
8Z,11Z,14Z-Eicosatrienoic acid	C20 H34	0.34926	-1.5176	6.78E-0	1.65542
	O2	6		6	7

71 Supplementary Table 4. The oligonucleotides used in this study.

Gene	Primer	Sequence(5' to 3')
TNE	sense	5'- CCCTCACACTCAGATCATCTTCT-3'
ΠΝΕ-α	antisense	5'- GCTACGACGTGGGCTACAG-3'
II 10	sense	5'- GCAACTGTTCCTGAACTCAACT-3'
IL-IP	antisense	5'-ATCTTTTGGGGTCCGTCAACT-3'
ПС	sense	5'- TAGTCCTTCCTACCCCAATTTCC-3'
IL-6	antisense	5'-TTGGTCCTTAGCCACTCCTTC-3'
TGR5	sense	5'- CCTGGCAAGCCTCATCGTC-3'
	antisense	5'- AGCAGCCCGGCTAGTAGTAG-3'
CAR	sense	5'- CCCTGACAGACCCGGAGTTA-3'
	antisense	5'- GCCGAGACTGTTGTTCCATAAT-3'
VDD	sense	5'- ACCCTGGTGACTTTGACCG-3'
VDR	antisense	5'- GGCAATCTCCATTGAAGGGG-3'
CD	sense	5'- AGCTCCCCTGGTAGAGAC-3'
GR	antisense	5'- GGTGAAGACGCAGAAACCTTG-3
EVD	sense	5'-GCTTGATGTGCTACAAAAGCTG-3'
ГАК	antisense	5'- CGTGGTGATGGTTGAATGTCC-3
DVD	sense	5'- GATGGAGGTCTTCAAATCTGCC-3'
РАК	antisense	5'- GGCCCTTCTGAAAAACCCCT-3
	sense	5'-ATGCCAAATCTTGCGGAGAAT-3'
ασρι	antisense	5'- TTTGCTGCGATTGGTGACATT-3
CADDU	sense	5'-AACTTTGGCATTGTGGAAGG-3'
UAPDH	antisense	5'-ACACATTGGGGGGTAGGAACA-3'

Original blots presented in the manuscript 84

85

Fig 2N ZO-1 86

Fig 2N Claudin-3

92 Fig 2N actin

91

95 Fig 4A NLRP3

104 Fig 4A p-p65

115 Fig 4H NLRP3

117 Fig 4H ASC

119 Fig 4H Caspase-1

.

Fig 4H p65

129 Fig 4H ΙκΒ

131 Fig 4H actin

133Fig 4O NLRP3

Fig 4O p-IκB

149 Fig 4O actin

153 Fig 5A ASC

159 Fig 5A p-p65

167 Fig 5A actin

169 Fig 5H NLRP3

185 Fig 5H actin

187 Fig 6M ZO-1

189 Fig 6M Occludin

193 Fig 6M actin

Fig 6Q actin

207 Fig 7I ZO-1

209 Fig 7I Occludin

213 Fig 7I actin

217 Fig 7M p65

219 Fig 7M NLRP3

Fig 7M ASC

Fig 7M IL-1β

Fig 7M actin

