Accelerating Inhibitor Discovery for Deubiquitinating Enzymes

Wai Cheung Chan ^{1,2#}, Xiaoxi Liu ^{1,2#}, Robert S. Magin ^{1,2}, Nicholas M. Girardi ^{1,2}, Scott B. Ficarro ^{1,3,4}, Wanyi Hu ^{1,2}, Maria I. Tarazona Guzman ^{1,2}, Cara A. Starnbach ^{1,2}, Alejandra Felix ^{1,2}, Guillaume Adelmant^{1,3}, Anthony C. Varca^{1,2}, Bin Hu ^{1,2}, Ariana S. Bratt ^{1,2}, Ethan DaSilva ^{1,2}, Nathan J. Schauer ^{1,2}, Isabella Jaen Maisonet ^{1,2}, Emma K. Dolen ^{1,2}, Anthony X. Ayala ^{1,2}, Jarrod A. Marto ^{1,3,4,5*}, Sara J. Buhrlage ^{1,2,4,5*}.

¹ Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

² Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,

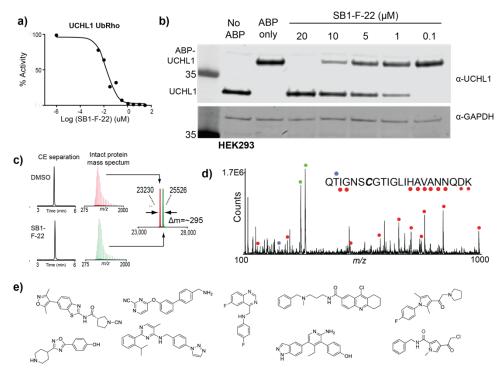
Boston, MA, USA.

³ Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.

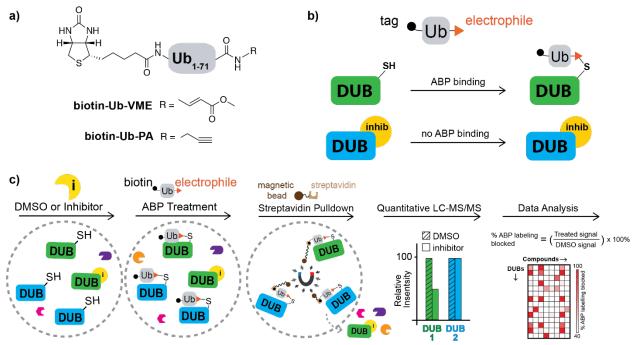
⁴ Center for Emergent Drug Targets

⁵ Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

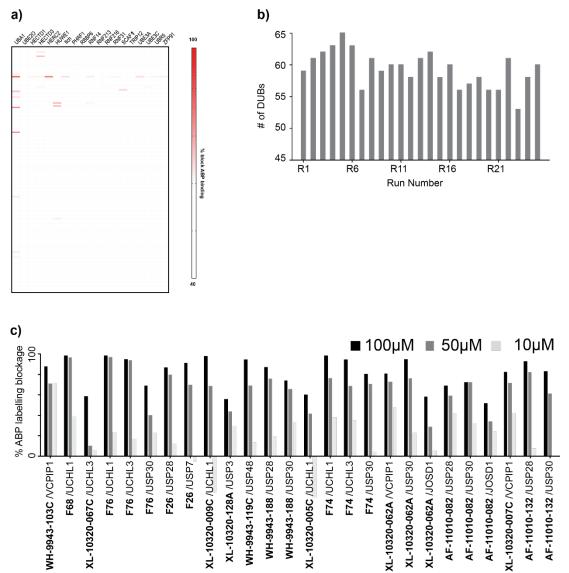
* These authors jointly supervised this work


These authors contributed equally

*Correspondence: jarrod marto@dfci.harvard.edu; saraj_buhrlage@dfci.harvard.edu


Content

- (A) Supplementary Figures
- (B) Supplementary Methods
- (C) References

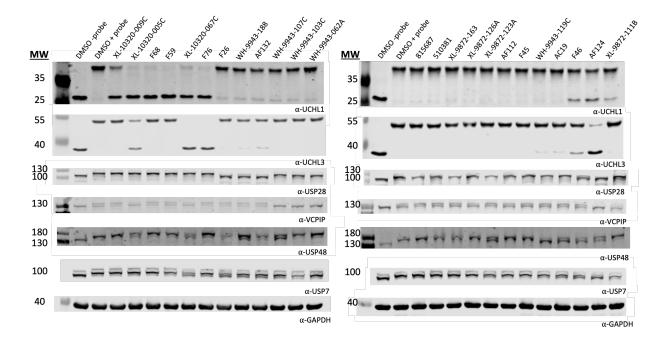

Supplementary Figures

Supplementary Figure 1. Designing the DUB-targeted covalent small molecule library. a) F22 inhibits UCHL1 in a fluorescent Ub-Rho DUB activity assay with an IC₅₀ of 100nM. (n=1) b) F22 blocks DUB ABP labelling of UCHL1 in KMS11 cell lysates. c) F22 labels purified UCHL1 with 1:1 stoichiometry. d) F22 labels UCHL1 at the catalytic cysteine residue. Red and blue glyphs adjacent to the peptide sequence indicate y- and b-type fragment ions, respectively, detected in the MS/MS spectrum. The y-ion series along with inhibitor structure-specific fragment ions (green glyphs) confirms catalytic cysteine modification (*C*). e) Structures of existing DUB inhibitors which are taken into consideration in the design of the DUB-targeted covalent small molecule library. Source data are provided as a source data file.

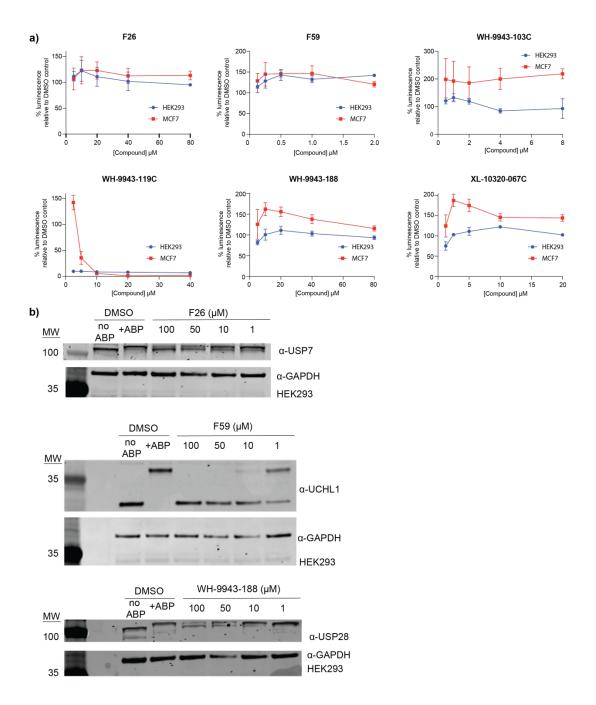
Supplementary Figure 2. Primary Screening assay. a) The ABPs used in this study are a 1:1 mix of biotin-ubiquitin-vinyl methyl ester (biotin-Ub-VME) and biotin-ubiquitin-propargyl amide (biotin-Ub-PA), with structures shown. b) ABPs only react with catalytic cysteine residues on active DUBs, thereby ligating the biotin enrichment tag onto the DUB. Inhibitor-bound DUBs do not react with the ABP and cannot be enriched through streptavidin pulldown. c) Schematic for the MS-ABPP primary screening assay.

Supplementary Figure 3. Additional Primary Screening data analysis. a) Library compounds showed little activity against E1, E2, E3 enzymes. b) The number of DUBs detected in each 11-plex MS-ABPP run in the primary screening assay. c) Inhibitors were successfully validated over a three-point dose curve in the MS-ABPP primary screening assay.

DUB	Frequency	DUB	Frequency		
CYLD	25	USP5	25		
USP10	25	USP51	1		
USP11	25	USP53	1		
USP12	15	USP54	18		
USP13	2	USP7	25		
USP14	25	USP8	25		
USP15	25	USP9X	25		
USP16	25	USP9Y	1		
USP19	25	BAP1	25		
USP2	24	UCHL1	25		
USP20	25	UCHL3	25		
USP21	25	UCHL5	25		
USP22	25	OTUB1	25		
USP24	25	OTUB2	25		
USP25	25	OTUD1	25		
USP27X	21	OTUD3	25		
USP28	25	OTUD4	25		
USP3	22	OTUD5	25		
USP30	25	OTUD6B	25		
USP31	25	OTUD7A	25		
USP32	25	OTUD7B	25		
USP33	25	OTULIN	12		
USP34	25	VCPIP1	25		
USP35	22	YOD1	25		
USP36	25	ZRANB1	25		
USP37	25	ZUP1	15		
USP38	25	ATXN3	25		
USP4	25	JOSD1	25		
USP40	25	JOSD2	25		
USP42	25	FAM188A	25		
USP43	24	FAM188B	25		
USP46	23				
USP47	25				
USP48	25				

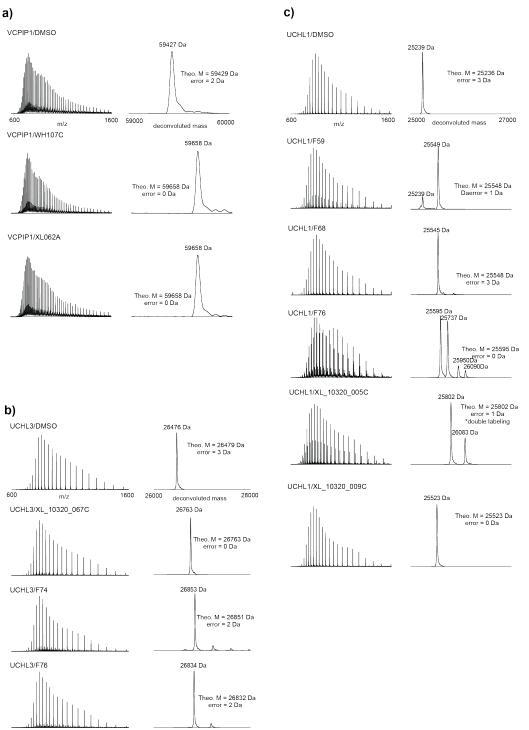

Supplementary Table 1. Frequency of detection across 25 acquisitions for each DUB detected in primary screening

Supplementary Table 2. Biochemical validation of most potent and selective screen hits, IC50 values shown for biochemistry heatmap in figure 4b in blue. Source data are provided as a Source Data file.


		Biochemistry IC50 (μM)						
Hit	ABPP Target	VCPIP	UCHL1	UCHL3	USP7	USP28	USP48	JOSD1
WH_9943_107C	VCPIP1	1.2	>100	>100	>100	>100	>100	45.8
WH_9943_103C	VCPIP1	2.0	>100	>100	>100	>100	>100	44.1
XL_10320_062A	VCPIP1	3.0	>100	>100	>100	>100	>100	81.0
XL_10320_009C	UCHL1	>100	6.6	>100	>100	62.0	87.2	78.7
XL_10320_005C	UCHL1	33.7	3.5	42.6	>100	>100	>100	>100
F68	UCHL1	>100	3.4	>100	>100	69.1	78.0	38.6
F59	UCHL1/USP10	>100	0.5	>100	>100	>100	>100	>100
XL_10320_67C	UCHL3	14.9	18.1	6.3	>100	>100	>100	>100
F76	UCHL3/1	>100	0.1	1.0	>100	41.2	81.6	31.5
WH_9943_119C	USP48	>100	>100	>100	>100	>100	9.2	29.0
AC19	USP27X	>100	>100	58.4	29.5	40.1	8.6	15.2
F26	USP7/USP28	>100	>100	92.0	66.9	18.5	>100	9.2
WH_9943_188	USP28	>100	>100	>100	>100	17.5	>100	12.3
AF132	USP28	>100	>100	59.0	>100	27.9	>100	3.7
815687	USP3	>100	>100	>100	>100	59.8	>100	75.2
510381	USP3	>100	>100	>100	>100	>100	>100	>100
XL_9872_163	USP3	>100	>100	>100	>100	>100	>100	>100
XL_9872_126A	USP3	41.8	>100	>100	59.4	80.8	>100	43.5
XL_9872_123A	USP3	>100	>100	>100	>100	>100	94.5	48.4
AF_11010_112	USP21/31	>100	>100	>100	>100	>100	>100	>100
F45	USP21	>100	81.0	>100	>100	>100	>100	>100
F46	Multitargeted	>100	9.9	20.1	25.8	8.1	41.5	4.9
AF124	Multitargeted	12.3	10.0	8.6	22.5	4.4	>100	0.9
XL-9872-111B	JOSD1, USP30	14.5	0.3	7.8	5.7	5.3	21.1	2.6

Supplementary Table 3. Biochemical validation of less potent screen hits (n=1). Source data are provided as a source data file.

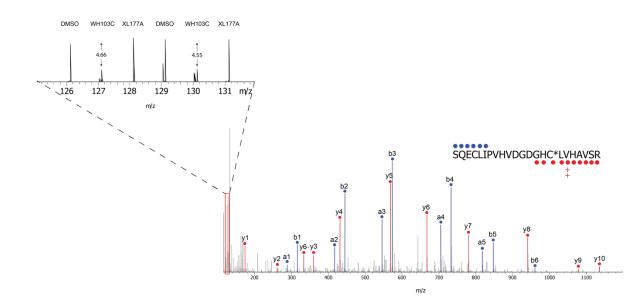
Compound ID	Target	IC50 (μM)
WH_9943_104B	USP15	>100
XL_9678_185C	USP20	>100
AF-11010-112	USP21	37.4
F45	USP21	27.8
XL_10320_009A	USP22	94.4
XL_10320_028A	USP22	86.5
AC19	USP27X	81.1
AV46	USP27X	35.9
ED27	USP27X	>100
WH_9943_107C	USP27X	>100
bin-01-25	USP9X	>100
Bin-01-36	USP9X	51.4
WH_9943_119C	USP48	7.4



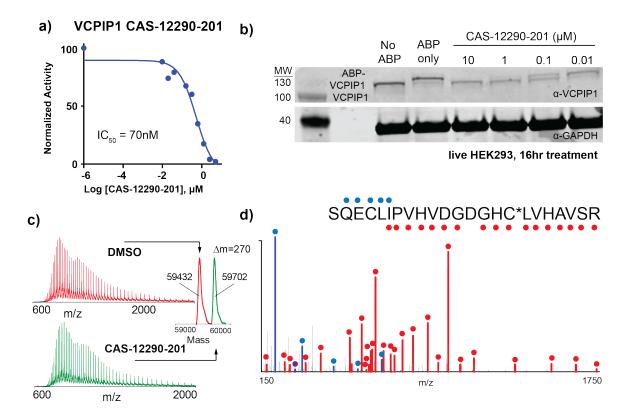
Supplementary Figure 4. Western blot target engagement. Similarly to table 1, in-lysate target engagement was examined by western blot for 24 compounds at 50μ M against a set of 6 DUBs. ABP-bound DUBs display a +10kDa shift, while compounds which block probe labelling abolish this shift. Negative and positive controls without probe and with probe only are shown in the first two columns. Loading control against GAPDH is shown in the bottom row. Source data are provided as a Source Data file.

Supplementary Figure 5. Cell viability testing and live cell target engagement. a) Minimal cellular toxicity was observed for a selected panel of six compounds, each targeting a different DUB (n=8 for DMSO controls, n=4 for compound treatment where n is the number of biologically independent experiments) in both HEK293T and MCF7 cells. 1E3 live cells/well were treated at 0.25x, 0.5x, 1x, 2x, and 4x biochemical IC50 for target DUB over 24 hours, after which viability was assessed using CellTiter-Glo. Error bars represent standard deviation. b) Live cell target engagement was confirmed by western blot for 4 compounds, each targeting a different DUB, at the concentrations shown. Data for the 4th compound, WH-9943-103C is shown in main figure 5c. ABP-bound DUBs display a +10kDa shift, while compounds which block probe

labelling abolish this shift. Negative and positive controls without probe and with probe only are shown in the first two columns. Loading control against GAPDH is shown in the bottom row. Source data are provided as a Source Data file.


Supplementary Figure 6. Intact protein mass spectrometry validation for selected

DUB/compound pairs. The indicated DUBs were incubated with most potent and selective hits at 5-10 fold molar excess, then analyzed by LC-MS. Raw mass spectra shown on the left of deconvoluted mass. Compounds which displayed hyperlabelling were dropped from further consideration. Observed protein masses were consistent with theoretical masses within instrument error.


Supplementary Table 4. Peptide-level CE-MS for selected DUB/compound pairs. DUB-

compound complexes were digested with trypsin then analyzed by CE-MS. Cysteines labelled are listed, with catalytic cysteine residues in bold.

DUB	Compound	Cysteine(s) labelled
UCHL1	F59	C90
	F68	C90
	F76	C90 , C132
	XL-10320-005C	C90 , in addition to 5 other
		Cys sites
	XL-10320-009C	C90
UCHL3	XL-10320-067C	C95 , C209
	F74	C95 , C209
	F76	C95 , C209
VCPIP1	WH-9943-107C	C219 in addition to 9 other
		Cys sites
	XL-10320-062A	C219 in addition to 7 other
		Cys sites
USP28	AF-11010-124	C171
	AF-11010-132	C171 in addition to 2 other
		Cys sites
	WH-9943-188	C171 in addition to 3 other
		Cys sites
USP48	WH-9943-119C	C98 in addition to 15 other
		Cys sites

Supplementary Figure 7. Targeted PRM-LIVE experiment for VCPIP1 catalytic cysteinecontaining peptide. MS/MS spectrum of the VCPIP1 catalytic cysteine containing peptide. Red and blue glyphs adjacent to the peptide sequence indicate y- and b-type fragment ions, respectively. y-ion series confirms catalytic cysteine modification (C*). *inset:* TMT reporter ion intensities for each condition shown.

Supplementary Figure 8. Characterization of CAS-12290-201. a) CAS-12290-201 inhibits VCPIP1 catalytic activity at IC₅₀ = 70 nM in a ubiquitin-rhodamine fluorescent activity assay. b) CAS-12290-201 displaces ABP binding to VCPIP1 in live 293T cells (16 hours treatment) in a dose-dependent fashion as read out by Western blot. c) CAS-12290-201 labels purified VCPIP1 protein 1:1. d) CAS-12290-201 labels VCPIP1 at the catalytic cysteine residue, C219. Red and blue glyphs adjacent to the peptide sequence indicate y- and b-type fragment ions, respectively, detected in the MS/MS spectrum. The y-ion series confirms catalytic cysteine modification (C*). Source data are provided as a Source Data file.

Category	Parameter	Description
Assay	Type of assay	Lysate activity-based protein profiling
	Target	Deubiquitinating enzymes
	Primary measurement	TMT reporter ion intensity, summed across peptides
	Key reagents	for each DUB Activity-based probes Biotin-Ub-PA (UbiQ-076) Biotin-Ub-VME (UbiQ-054) were obtained from UbiC Bio
	Assay protocol	Please see methods section, titled "DUB Activity Based Protein Profiling Primary Screening Assay"
	Additional comments	
Library	Library size	178 compounds
	Library composition	DUB active-site cysteine directed covalent small molecules
	Source	In-house synthesis, a small number of reporter DUE inhibitors
	Additional comments	Please see supplementary methods in supplementary information 1 for synthetic procedure
Screen	Format	1.5mL microcentrifuge tubes, 11-plex TMT experiment
	Concentration(s) tested	$50 \mu M$ for primary screening
	Plate controls	$50 \mu M$ XL177A (USP7 covalent inhibitor) used as a positive control
	Reagent/ compound dispensing system	Manual
	Detection instrument and software	Thermo Q Exactive HF mass spectrometer, Thermo Scientific
	Assay validation/QC	See Figure 2a
	Correction factors	
	Normalization	Signal for each TMT channel normalized by total summed protein signal
	Additional comments	
Post-HTS analysis	Hit criteria	>50% blockage of ABP labelling, as read out by reduction in MS signal from DMSO control to compound-treated condition
	Hit rate	60%
	Additional assay(s)	Dose response MS-ABPP for initial validation, Ub- AMC biochemical DUB fluorescent activity assay, intact protein mass spectrometry for covalent labelling, peptide CE-MS to identify site of modification, Western blot ABPP to confirm target engagement, live cell treatment to eliminate compound toxicity
	Confirmation of hit purity and atructure	Please see supplementary methods in
	Confirmation of hit purity and structure	supplementary information 1

Supplementary Table 5. Small molecule screening data

Supplementary Methods

Abbreviation

Et₃N: Triethylamine HATU: 1-[Bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5-*b*]pyridinium 3-oxid hexafluorophosphate EtOAc: Ethyl acetate DMF: Dimethylformamide MeOH: Methanol TFA: Trifluoroacetic acid HPLC: High performance liquid chromatography Pd₂(dba)₃: Tri(dibenzylideneacetone)dipalladium (0) Xantphos: 4,5-Bis(diphenylphosphino)9,9-dimethylxanthene DIAD: Diisopropyl azodicarboxylate Pd(dppf)Cl₂: [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)

General Procedure 1:

Step 1: Amines (1.0 eq.), carboxylic acids (1.2 eq.) Et_3N (5.0 eq.) and HATU (1.5 eq.) were added into DMF (3-5mL). The mixture was stirred at room temperature overnight. If necessary, the mixture was diluted with EtOAc (50mL), and washed with brine (30mL×2) to remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH).

Step 2: Products from last step were dissolved in DCM (2-3mL) and treated with TFA (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 3: Products from last step were dissolved in DCM (2-3mL) with Et₃N (2 eq.) at 0°C. Chloroacetyl chloride (1.2 eq.), or acryloyl chloride (1.2 eq.), or cyanogen bromide (1.2eq) was added dropwisely. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

General Procedure 2:

Step 1: amines (1.0 eq.), epoxides (1.0 eq.) and cesium carbonate (3.0 eq.) were added into anhydrous DMF (10-15mL). The mixture was heated at 60-80 °C overnight, then cooled down to room temperature before dilution with EtOAc (~50mL). The organic layer was washed with brine (~30mL×2). Combined organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH).

Step 2: Products from last step were dissolved in DCM (2-3mL) and treated with TFA (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 3: Products from the last step (1.0 eq.) were dissolved in DCM (2-3mL) with Et₃N (2.0-5.0 eq.) at 0°C. Chloroacetyl chloride (1.2 eq.), or acryloyl chloride (1.2 eq.), or cyanogen bromide (1.2 eq) was added dropwisely. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH_3CN/H_2O with 0.0425% TFA) to afford the target products.

General Procedure 3:

Step 1: bromo-substituted benzo[d]thiazol-2-amine (1.0 eq.) carboxylic acids (1.2 eq.), Et3N (5.0-10.0 eq.) and HATU (1.5-2.0 eq.) were added sequentially in anhydrous DMF (5-10mL). The mixture was stirred at room temperature overnight. If necessary, the mixture was diluted with EtOAc (50mL), and washed with brine (30mL×2) to remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH).

Step 2: The isolated products from step 1 (1.0 eq.) was dissolved in 1,4-dioxane and H₂O (3:1). Into the solution were added boronic acids or boronate ester (3.0 eq.), potassium carbonate (3.0 eq.) and Pd(PPh₃)₄ (0.2 eq.). The mixture was degassed by bubbling through N2 for 10min before heating up to 95°C and stirred at this temperature for 2-8 hours. The reaction was then cooled down to room temperature and diluted with EtOAc (50mL). The organic phase was washed with saturated ammonium chloride (30mL×2). Aqueous layer was then extracted with more EtOAc (50mL). Combined organic layers were washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH).

Step 3: Products from last step were dissolved in DCM (2-3mL) and treated with TFA (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 4: Products from the last step (1.0 eq.) were dissolved in DCM (2-3mL) with Et_3N (2.0-5.0 eq.) at 0°C. Cyanogen bromide (1.2eq) was then added. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH_3CN/H_2O with 0.0425% TFA) to afford the target products.

General Procedure 4:

Step 1: The mixture of bromobenzo[d]thiazol-2-amine (1.0 eq.), 3,5-dimethylisoxazole-4-boronic acid (1.3 eq.), sodium carbonate (2.0 eq.) were mixed in 1,4-dioxane, EtOH and H₂O (8:2:1). N₂ was bubbled through the suspension for 10 to 15min, followed by addition of tetrakis(triphenylphosphine palladium (0) (0.1 eq.) The mixture was purged with N₂ for another 5 min before stirring at 95°C overnight under N₂. Then the mixture was concentrated under reduced pressure, diluted with EtOAc, and washed with saturated NH₄Cl. Combined aqueous layer was extracted with EtOAc. Combined organic layer was washed once with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH).

Step 2: The products isolated from last step (1.0 eq.) and (S)-1-Boc-pyrrolidine-3-carboxylic acid (1.2 eq.), Et₃N (5.0 eq.) and HATU (1.5 eq.) were added into DCM/DMF. The solution was stirred at room temperature overnight. The crude was then directly purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product.

Step 3: Products from last step were dissolved in DCM (2-3mL) and treated with TFA or 4M HCl in 1,4-dioxane (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 4: Products from the last step (1.0 eq.) were dissolved in DCM (2-3mL) with Et_3N (2.0-5.0 eq.) at 0°C. Cyanogen bromide (1.2eq) was then added. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH_3CN/H_2O with 0.0425% TFA) to afford the target products.

General Procedure 5:

Step 1: 5-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-amine, which was synthesized in step 1 of General Procedure 4 (0.075g, 0.3mmol) was added in 3mL anhydrous MeCN. Into the solution was added CuBr₂ (0.065g, 0.45mmol) and t-butyl nitrite (0.046g, 0.45mmol) at 0°C. The mixture was then warmed up to room temperature then 65°C, and stirred for 4 hours. The reaction was cooled to room temperature, and diluted with water (30mL). The mixture was acidified with 12M HCl to pH=2 and extracted with EtOAc (30mL×2). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude material. The material was purified by flash chromatography (hexanes/EtOAc/MeOH) to afford a mixture of desired product and chloride-substituted analogue, which did not undergo further purification and used directly in the next step. LC/MS (ESI) m/z 264.77; [M+H]⁺; calcd for C₁₂H₁₀ClN₂OS⁺: 265.02

Step 2: Products from the last step (0.14g, 0.5mmol), 1-Boc-3-oxopiperazine (0.2g, 1.0mmol), cesium carbonate (0.65g, 2.0mmol), $Pd_2(dba)_3$ (0.046g, 0.05mmol), and Xantphos (0.058g, 0.1mmol) were added into 5mL 1,4-dioxane. The mixture was degassed by bubbling in N₂ for 10-15min before heated at 95°C overnight. Then the mixture was cooled to room temperature

before diluted with EtOAc (30mL). Organic layer was washed with 20% citric acid (20mL×2). Combined aqueous layer was extracted with EtOAc (30mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford crude material. The crude material was purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product (0.12g,) LC/MS (ESI) *m/z* 428.87; [M+H]⁺; calcd for $C_{21}H_{25}N_4O_4S^+$: 429.16

Step 3: Products from last step were dissolved in DCM (2-3mL) and treated with TFA (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 4: Products from the last step (0.04g, 0.1mmol, 1.0 eq.) were dissolved in DCM (3mL) with Et_3N (0.07mL, 0.5mmol, 5.0 eq.) at 0°C. 2-chloroethane-1-sulfonyl chloride (16µL, 0.15mmol, 1.5 eq.), or acryloyl chloride (13µL, 0.15mmol, 1.5 eq.), or cyanogen bromide (3M) (50µL, 0.15mmol, 1.5 eq) was added dropwisely. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

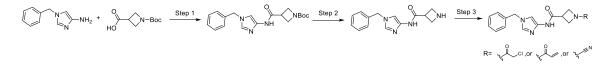
General Procedure 6:

Step 1: 6-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-amine, which was synthesized in step 1 of General Procedure 4 (0.25g, 1.0mmol) was added in 10mL anhydrous MeCN. Into the solution was added CuBr₂ (0.22g, 1.5mmol) and t-butyl nitrite (0.16g, 1.5mmol) at 0°C. The mixture was then warmed up to room temperature then 65°C, and stirred for 4 hours. The reaction was cooled to room temperature, and diluted with water (30mL). The mixture was acidified with 12M HCl to pH=2 and extracted with EtOAc (30mL×2). The combined organic layer was washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the crude material. The material was purified by flash chromatography (hexanes/EtOAc/MeOH) to afford 0.26g mixture of desired product and chloride-substituted analogue, which did not

undergo further purification and used directly in the next step. LC/MS (ESI) m/z 308.87; [M+H]⁺; calcd for C₁₂H₁₀BrN₂OS⁺: 308.97

Step 2: The product isolated from last step (0.08g, 0.26mmol), 3 or 4-aminophenylboronic acid (0.05g, 0.4mmol), potassium carbonate (0.07g, 0.52mmol), and Pd(dppf)Cl₂ (0.022g, 0.03mmol) were added into 1,4-dioxane/H₂O (4mL, 3:1). The mixture was degassed by bubbling in N₂ for 10-15min before heated at 95°C overnight. Then the mixture was cooled to room temperature before diluted with EtOAc (30mL). Organic layer was washed with saturated ammonium chloride. Combined aqueous layer was extracted with EtOAc (30mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford crude material. The crude material was purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired products (4-amino: 0.084g, LC/MS (ESI) *m/z* 322.04; [M+H]⁺; calcd for C₁₈H₁₆N₃OS⁺: 322.10; 3-amino:0.073g LC/MS (ESI) *m/z* 322.04; [M+H]⁺; calcd for C₁₈H₁₆N₃OS⁺: 322.10)

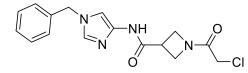
Step 3a: Products from the last step (4-(6-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)aniline (0.042g, 0.13mmol, 1.0 eq.)) were dissolved in DCM (3mL) with Et₃N (0.056mL, 0.4mmol, 3.0 eq.) at 0°C. 2-chloroethane-1-sulfonyl chloride (22 μ L, 0.2mmol, 1.5 eq.), or acryloyl chloride (16 μ L, 0.2mmol, 1.5 eq) was added dropwisely. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

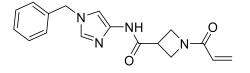

Step 3b: Products from the last step (3-(6-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)aniline (0.036g, 0.11mmol, 1.0 eq.)) were dissolved in DCM (3mL) with Et₃N (0.07mL, 0.55mmol, 5.0 eq.) at 0°C. 2-chloroethane-1-sulfonyl chloride (14 μ L, 0.12mmol, 1.1 eq.), or acryloyl chloride (11 μ L, 0.12mmol, 1.1 eq) was added dropwisely. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

General Procedure 7:

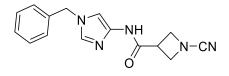
Step 1: bromo-substituted heterocyclic carboxylic acids (1.0 eq.) were added into 5mL anhydrous DCM under N₂. Into the mixture was added benzylamine (1.0 eq.), Et₃N (10.0 eq.) and T3P (5.0

eq.). The reaction mixture was stirred at room temperature overnight, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

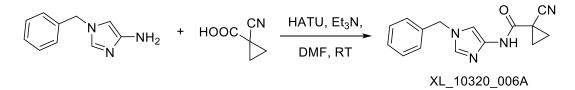

Synthesis of XL 10320 005A, 005B, 005C:


Step 1: The synthesis was preformed according to General Procedure 1 with 1-benzyl-1Himidazol-4-amine (0.25g, 1.5mmol) and 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (0.36g, 1.8mmol). 0.13g desired compound (tert-butyl 3-((1-benzyl-1H-imidazol-4yl)carbamoyl)azetidine-1-carboxylate) was obtained (24%). LC/MS (ESI) *m/z* 357.07; [M+H]⁺ calcd for $C_{19}H_{25}N_4O_3^+$: 357.19.

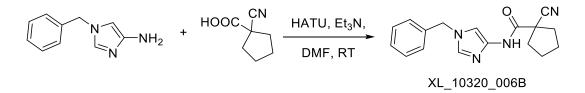
Step 2: The synthesis was performed according to the General Procedure 1 tert-butyl 3-((1-benzyl-1H-imidazol-4-yl)carbamoyl)azetidine-1-carboxylate (0.13g, 0.37mmol). 0.08g N-(1-benzyl-1H-imidazol-4-yl)azetidine-3-carboxamide (84%)


Step 3: The synthesis was performed according to the General Procedure 1 with N-(1-benzyl-1Himidazol-4-yl)azetidine-3-carboxamide (0.016g, 0.06mmol) and chloroacetyl chloride (10.0 μ L, 0.12mmol), or acryloyl chloride (10.0 μ L, 0.12mmol), or cyanogen bromide (0.013g, 0.12mmol).

XL_10320_005A (5mg,25%) ¹H NMR (500 MHz, DMSO) δ 10.70 (s, 1H), 8.09 (s, 1H), 7.54 – 7.08 (m, 6H), 5.22 (s, 2H), 4.34 (t, *J* = 8.7 Hz, 1H), 4.25 (dd, *J* = 8.5, 5.9 Hz, 1H), 4.17 – 4.08 (d, *J* = 2.4 Hz, 2H), 4.03 (t, *J* = 9.3 Hz, 1H), 3.95 (dd, *J* = 9.6, 5.9 Hz, 1H). (3-H on the azetidine ring may overlap with water peak) LC/MS (ESI) *m/z* 332.87; [M+H]⁺ calcd for C₁₆H₁₈ClN₄O₂⁺: 333.11

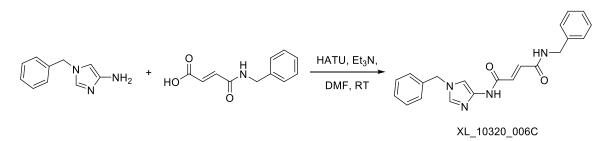


XL_10320_005B (4mg,22%) ¹H NMR (500 MHz, DMSO) δ 10.70 (s, 1H), 8.05 (s, 1H), 7.46 – 7.24 (m, 6H), 6.30 (dd, *J* = 17.0, 10.3 Hz, 1H), 6.10 (dd, *J* = 17.0, 2.2 Hz, 1H), 5.67 (dd, *J* = 10.3, 2.2 Hz, 1H), 5.22 (s, 2H), 4.35 (t, *J* = 8.7 Hz, 1H), 4.24 (dd, *J* = 8.4, 5.8 Hz, 1H), 4.05 (t, *J* = 9.4 Hz, 1H), 3.95 (dd, *J* = 9.8, 5.9 Hz, 1H). (3-H on the azetidine ring may overlap with water peak) LC/MS (ESI) *m/z* 310.97; [M+H]⁺ calcd for C₁₇H₁₉N₄O₂⁺: 311.15

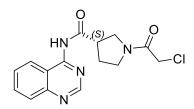


XL_10320_005C (8mg, 47%) 1H NMR (500 MHz, DMSO) δ 10.46 (s, 1H), 7.60 (s, 1H), 7.41 – 7.34 (m, 2H), 7.34 – 7.23 (m, 4H), 5.16 (s, 2H), 4.24 (t, J = 8.1 Hz, 2H), 4.18 (t, J = 6.9 Hz, 2H), 3.62 (ddd, J = 15.2, 8.6, 6.6 Hz, 1H). LC/MS (ESI) m/z 282.08; [M+H]⁺ calcd for C₁₅H₁₆N₅O⁺: 282.13

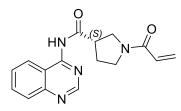
Synthesis of XL 10320 006A, 006B, 006C:



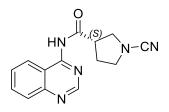
1-benzyl-1H-imidazol-4-amine (0.06g, 0.3mmol), 1-cyanocyclopropane-1-carboxylic acid (0.05g, 0.5mmol) Et₃N (0.48mL, 3.0mmol), and HATU (0.24g, 0.64mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford XL_10320_006A (53mg, 67%) ¹H NMR (500 MHz, DMSO) δ 10.59 (s, 1H), 8.17 (s, 1H), 7.39 (m, 2H), 7.36 – 7.30 (m, 4H), 5.25 (s, 2H), 1.73 – 1.59 (m, 4H). LC/MS (ESI) *m/z* 266.97; [M+H]⁺ calcd for C₁₅H₁₅N₄O⁺: 267.12


1-benzyl-1H-imidazol-4-amine (0.06g, 0.3mmol), 1-cyanocyclopentane-1-carboxylic acid (0.07g, 0.5mmol) Et₃N (0.48mL, 3.0mmol), and HATU (0.24g, 0.64mmol) were added sequentially to 3mL

anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford XL_10320_006B (61mg, 69%) ¹H NMR (500 MHz, DMSO) δ 10.79 (s, 1H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.38 (dd, *J* = 9.9, 4.5 Hz, 2H), 7.31 (ddd, *J* = 13.2, 6.7, 4.1 Hz, 3H), 7.23 (d, *J* = 1.5 Hz, 1H), 5.16 (s, 2H), 2.33 – 2.13 (m, 4H), 1.81 – 1.60 (m, 4H). LC/MS (ESI) *m/z* 295.07 [M+H]⁺; calcd for C₁₇H₁₉N₄O⁺: 295.15

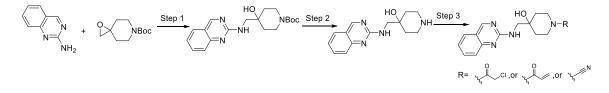

1-benzyl-1H-imidazol-4-amine (0.06g, 0.3mmol), (E)-4-(benzylamino)-4-oxobut-2-enoic acid (0.10g, 0.5mmol) Et₃N (0.48mL, 3.0mmol), and HATU (0.24g, 0.64mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford XL_10320_006C (6mg, 6%) ¹H NMR (500 MHz, DMSO) δ 10.88 (s, 1H), 8.93 (t, *J* = 6.0 Hz, 1H), 7.65 (d, *J* = 1.4 Hz, 1H), 7.45 – 7.18 (m, 11H), 7.08 (d, *J* = 15.1 Hz, 1H), 6.95 (d, *J* = 15.1 Hz, 1H), 5.18 (s, 2H), 4.38 (d, *J* = 6.0 Hz, 2H). LC/MS (ESI) *m/z* 360.97; [M+H]⁺ calcd for C₂₁H₂₁N₄O₂⁺: 361.17

Synthesis of XL 10320 007A, 007B, 007C:



XL_10320_007A (10mg, 11%) 1H NMR (500 MHz, DMSO, mixture of rotamers) δ 8.94 (d, J = 4.8 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.01 – 7.89 (m, 2H), 7.73 – 7.64 (m, 1H), 4.34 (d, J = 2.2 Hz, 1H), 3.86 (dd, J = 10.0, 7.7 Hz, 0.6H), 3.79 – 3.63 (m, 2H), 3.63 – 3.50 (m, 2H), 3.40 (dt, J = 11.8, 7.6 Hz,

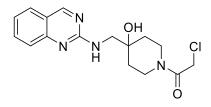
0.7H), 2.35 – 2.28 (m, 0.6H), 2.28 – 2.18 (m, 1H), 2.17 – 2.06 (m, 0.7H). LC/MS (ESI) m/z 318.97; [M+H]+ calcd for C₁₅H₁₆ClN₄O₂⁺: 319.10



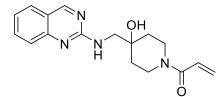
XL_10320_007B (3mg, 3%) 1H NMR (500 MHz, DMSO, mixture of rotamers) δ 8.94 (d, J = 6.0 Hz, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.94 (m, 2H), 7.69 (m, 1H), 6.62 (ddd, J = 16.8, 12.0, 10.3 Hz, 1H), 6.22 – 6.07 (m, 1H), 5.68 (dt, J = 10.3, 2.4 Hz, 1H), 3.91 (dd, J = 10.3, 7.8 Hz, 0.6H), 3.86 – 3.77 (m, 0.6H), 3.77 – 3.52 (m, 3H), 3.47 – 3.39 (m, 0.6H), 2.26 (m, 1.6H), 2.12 (m, 0.8H) LC/MS (ESI) m/z 296.87; [M+H]+ calcd for C₁₆H₁₇N₄O₂⁺: 297.13

XL_10320_007C (4mg, 5%) 1H NMR (500 MHz, DMSO, mixture of rotamers) δ 8.91 (s, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.00 – 7.88 (m, 2H), 7.72 – 7.62 (m, 1H), 3.68 (dd, J = 11.2, 10.0 Hz, 1H), 3.65 – 3.59 (m, 2H), 3.53 – 3.40 (m, 2H), 2.30 – 2.12 (m, 2H). LC/MS (ESI) m/z 267.97; [M+H]+ calcd for C₁₄H₁₄N₅O⁺: 268.12

Synthesis of XL 10320 009A, 009B, 009C:

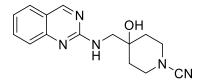


Step 1: The synthesis was performed according to General Procedure 2 with quinazolin-2-amine (0.1g, 0.7mmol) and tert-butyl 1-oxa-6-azaspiro[2.5]octane-6-carboxylate (0.15g, 0.7mmol) with exception of using NaH (60% in mineral oil) (0.03g, 0.75mmol) as base instead of cesium carbonate. 0.16g desired product (tert-butyl 4-hydroxy-4-((quinazolin-2-

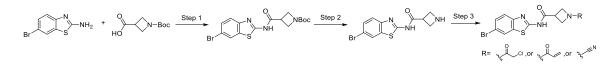

ylamino)methyl)piperidine-1-carboxylate) was obtained (64%). LC/MS (ESI) m/z 358.97; [M+H]⁺ calcd for C₁₉H₂₇N₄O₃⁺: 359.21

Step 2: The synthesis was performed according to the General Procedure 2 tert-butyl 4-hydroxy-4-((quinazolin-2-ylamino)methyl)piperidine-1-carboxylate (0.16g, 0.45mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.12g 4-((quinazolin-2-ylamino)methyl)piperidin-4-ol was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 2 with 4-((quinazolin-2-ylamino)methyl)piperidin-4-ol (0.04g, 0.16mmol), Et₃N (0.13mL, 0.9mmol) and chloroacetyl chloride (14.0 μ L, 0.18mmol), or acryloyl chloride (15.0 μ L, 0.18mmol), or cyanogen bromide (0.019g, 0.18mmol).

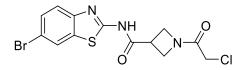


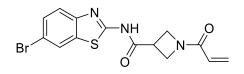
XL_10320_009A (5mg, 9%)¹H NMR (500 MHz, DMSO) δ 9.38 (m, 1H), 8.53 (d, *J* = 234.4 Hz, 1H), 7.88 (d, *J* = 51.8 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.39 (s, 1H), 4.44 – 4.27 (m, 2H), 4.06 (d, *J* = 13.0 Hz, 1H), 3.63 (d, *J* = 13.5 Hz, 2H), 3.35 (dd, *J* = 18.4, 9.4 Hz, 1H), 3.02 (t, *J* = 11.5 Hz, 1H), 1.55 (dd, *J* = 45.8, 17.5 Hz, 4H). LC/MS (ESI) *m/z* 334.87; [M+H]⁺ calcd for C₁₆H₂₀ClN₄O₂⁺: 335.13


XL_10320_009B (2mg, 1%) 1H NMR (500 MHz, DMSO) δ 9.12 (s, 1H), 7.80 (m, 1H), 7.75 – 7.58 (m, 1H), 7.44 (m, 1H), 7.31 – 7.09 (m, 2H), 6.92 – 6.69 (m, 1H), 6.06 (dd, J = 16.6, 6.3 Hz, 1H), 5.77 – 5.50 (m, 1H), 5.10 (br, 1H), 4.12 (m, 1H), 3.82 (d, J = 11.4 Hz, 1H), 3.45 (m, 2H), 3.04 (m, 1H), 1.53 (m, 4H). LC/MS (ESI) m/z 312.87; [M+H]⁺ calcd for C₁₅H₁₈N₅O⁺: 313.17

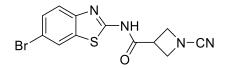
26

XL_10320_009C (10mg, 8%). 1H NMR (500 MHz, DMSO) δ 9.23 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.77 (dd, J = 20.4, 12.9 Hz, 1H), 7.53 (t, J = 10.9 Hz, 1H), 7.33 (dd, J = 17.2, 9.7 Hz, 1H), 3.54 (s, 2H), 3.34 – 3.24 (m, 2H), 3.21 (dt, J = 12.7, 4.1 Hz, 2H), 1.77 – 1.64 (m, 2H), 1.60 (d, J = 13.2 Hz, 2H). LC/MS (ESI) m/z 283.87; [M+H]⁺ calcd for C₁₅H₁₈N₅O⁺: 284.15

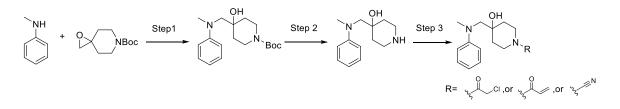

Synthesis of XI_10320_027A, 027B, 027C


Step 1: The synthesis was preformed according to General Procedure 1 with 6-bromobenzo[d]thiazol-2-amine (0.39g, 1.7mmol) and 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (0.42g, 2.1mmol). 0.21g desired compound (tert-butyl 3-((6-bromobenzo[d]thiazol-2-yl)carbamoyl)azetidine-1-carboxylate) was obtained (30%). LC/MS (ESI) m/z 356.07 (M+H-t-butyl); [M+H]⁺ calcd for C₁₆H₁₉BrN₃O₃S⁺: 412.03

Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl 3-((6-bromobenzo[d]thiazol-2-yl)carbamoyl)azetidine-1-carboxylate (0.21g, 0.5mmol). 0.18g N-(6-bromobenzo[d]thiazol-2-yl)azetidine-3-carboxamide was obtained (quant.)

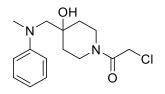

Step 3: The synthesis was performed according to the General Procedure 1 with N-(4-phenylthiazol-2-yl)azetidine-3-carboxamide (0.06g, 0.17mmol) and chloroacetyl chloride (0.017mL, 0.2mmol), or acryloyl chloride (0.017mL, 0.2mmol), or cyanogen bromide (0.02g, 0.2mmol).

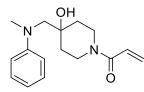
XL_10320_027A (43mg, 65%) ¹H NMR (500 MHz, DMSO) δ 12.62 (s, 1H), 8.28 (d, *J* = 1.9 Hz, 1H), 7.69 (d, *J* = 8.6 Hz, 1H), 7.58 (dd, *J* = 8.6, 2.0 Hz, 1H), 4.47 – 4.33 (m, 2H), 4.17 (s, 2H), 4.15 – 4.03 (m, 2H), 3.77 (tt, *J* = 8.9, 5.9 Hz, 1H), 3.18 (d, *J* = 4.7 Hz, 1H). LC/MS (ESI) *m/z* 387.77; [M+H]⁺ calcd for C₁₃H₁₂BrClN₃O₂S⁺: 387.95



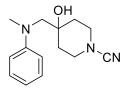
XL_10320_027B (31mg, 50%) ¹H NMR (500 MHz, DMSO) δ 12.62 (s, 1H), 8.28 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 8.6 Hz, 1H), 7.58 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.33 (dd, *J* = 17.0, 10.3 Hz, 1H), 6.12 (dd, *J* = 17.0, 2.2 Hz, 1H), 5.69 (dd, *J* = 10.3, 2.2 Hz, 1H), 4.48 – 4.33 (m, 2H), 4.17 – 4.03 (m, 2H), 3.76 (tt, *J* = 8.9, 5.8 Hz, 1H). LC/MS (ESI) *m/z* 365.77; [M+H]⁺ calcd for C₁₄H₁₃BrN₃O₂S⁺: 365.99

XL_10320_027C (36mg, 63%) ¹H NMR (500 MHz, DMSO) δ 12.56 (s, 1H), 8.27 (t, *J* = 4.2 Hz, 1H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.58 (dd, *J* = 8.6, 2.1 Hz, 1H), 4.34 (dt, *J* = 14.0, 7.8 Hz, 4H), 3.82 (tt, *J* = 8.9, 6.3 Hz, 1H). LC/MS (ESI) *m/z* 336.77; [M+H]⁺; calcd for C₁₂H₁₀BrN₄OS⁺: 336.98

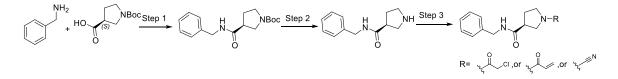

Synthesis of XL 10320 028A, 028B, 028C:


Step 1: The synthesis was performed according to General Procedure 2 with *N*-methylaniline (0.086mL, 0.8mmol) and tert-butyl 1-oxa-6-azaspiro[2.5]octane-6-carboxylate (0.17g, 0.8mmol). LiHMDS (1M) (0.8mL, 0.8mmol) was used instead of cesium carbonate. LiHMDS was dropwisely added to the solution of *N*-Methylaniline in 3mL anhydrous THF at 0°C. The mixture was stirred for 0.5h at 0°C before introducing solution of tert-butyl 1-oxa-6-azaspiro[2.5]octane-6-carboxylate in 2mL THF. The reaction was stirred at room temperature overnight before the general work-up procedure was followed. 0.25g desired product (tert-butyl 4-hydroxy-4-((methyl(phenyl)amino)methyl)piperidine-1-carboxylate) was obtained (96%). LC/MS (ESI) *m/z* 320.97; [M+H]⁺; calcd for $C_{18}H_{29}N_2O_3^+$: 321.22

Step 2: The synthesis was performed according to the General Procedure 2 tert-butyl 4-hydroxy-4-((methyl(phenyl)amino)methyl)piperidine-1-carboxylate (0.25g, 0.78mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.15g 4-((methyl(phenyl)amino)methyl)piperidin-4ol was obtained (quant.)

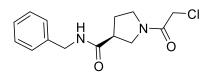

Step 3: The synthesis was performed according to the General Procedure 2 with 4- ((methyl(phenyl)amino)methyl)piperidin-4-ol (0.05g, 0.2mmol), Et₃N (0.14mL, 1.0mmol) and chloroacetyl chloride (19.0 μ L, 0.24mmol), or acryloyl chloride (20.0 μ L, 0.24mmol), or cyanogen bromide (0.025g, 0.24mmol).

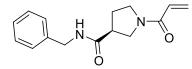
XL_10320_028A (33mg, 55%) ¹H NMR (500 MHz, DMSO) δ 7.13 (dd, *J* = 8.7, 7.3 Hz, 2H), 6.78 (d, *J* = 8.2 Hz, 2H), 6.58 (t, *J* = 7.2 Hz, 1H), 4.61 (s, 1H), 4.35 (s, 2H), 4.16 (t, *J* = 15.8 Hz, 1H), 3.63 (d, *J* = 13.3 Hz, 1H), 3.27 (m, 2H), 2.96 (s, 3H), 2.92 – 2.83 (m, 1H), 1.58 (m, 3H), 1.43 (td, *J* = 12.9, 4.6 Hz, 1H). LC/MS (ESI) *m/z* 296.97; [M+H]⁺ calcd for C₁₅H₂₂ClN₂O₂⁺: 297.14



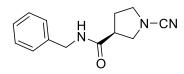
XL_10320_028B (24mg, 44%) ¹H NMR (500 MHz, DMSO) δ 7.12 (t, *J* = 7.9 Hz, 2H), 6.80 (m, 3H), 6.57 (t, *J* = 7.2 Hz, 1H), 6.07 (dd, *J* = 16.7, 2.4 Hz, 1H), 5.63 (dd, *J* = 10.4, 2.4 Hz, 1H), 4.23 (d, *J* = 11.0 Hz, 1H), 3.85 (d, *J* = 13.5 Hz, 1H), 3.30 (m, 3H), 2.94 (s, 3H), 2.93 – 2.83 (m, 1H), 1.46 (m, 4H). LC/MS (ESI) *m/z* 274.97; [M+H]⁺ calcd for C₁₆H₂₃N₂O₂⁺: 275.18

XL_10320_028C (32mg, 65%) ¹H NMR (500 MHz, DMSO) δ 7.14 (t, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 6.64 – 6.48 (m, 1H), 3.68 (d, *J* = 12.7 Hz, 1H), 3.30 (s, 1H), 3.27 (s, 1H), 3.23 (dd, *J* = 12.3, 2.7 Hz, 1H), 3.17 (dd, *J* = 12.4, 2.8 Hz, 1H), 2.99 – 2.91 (m, 4H), 1.64 (td, *J* = 13.0, 5.1 Hz, 1H), 1.57 – 1.45 (m, 1H), 1.45 – 1.32 (m, 2H). LC/MS (ESI) *m/z* 245.88; [M+H]⁺ calcd for C₁₄H₂₀N₃O⁺: 246.16

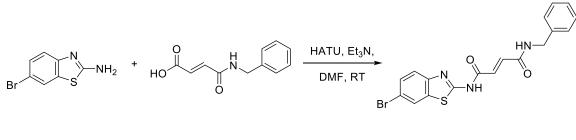

Synthesis of 029A, 029B, 029C:


Step 1: The synthesis was preformed according to General Procedure 1 with benzylamine (0.18mL, 1.64mmol) and (*S*)-1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (0.43g, 1.9mmol). 0.38g desired compound (tert-butyl (*S*)-3-(benzylcarbamoyl)pyrrolidine-1-carboxylate) was obtained (76%). LC/MS (ESI) m/z 249.17 (M+H–t-butyl); [M+H]⁺; calcd for C₁₇H₂₅N₂O₃⁺: 305.19

Step 2: The synthesis was performed according to the General Procedure 1 tert-butyl (*S*)-3- (benzylcarbamoyl)pyrrolidine-1-carboxylate (0.38g, 1.2mmol). 0.30g (*S*)-N-benzylpyrrolidine-3- carboxamide (quant.)

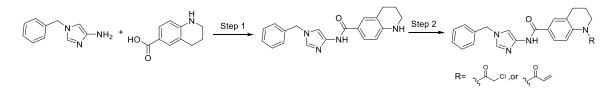

Step 3: The synthesis was performed according to the General Procedure 1 with (S)-N-benzylpyrrolidine-3-carboxamide (0.1g, 0.4mmol) and chloroacetyl chloride (40.0 μ L, 0.5mmol), or acryloyl chloride (40.0 μ L, 0.5mmol), or cyanogen bromide (0.53g, 0.5mmol).

XL_10320_029A (45mg, 40%) ¹H NMR (500 MHz, DMSO) δ 8.55 (dt, *J* = 11.8, 5.8 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.25 (m, Hz, 3H), 4.32 – 4.28 (m, 4H), 3.71 (dd, *J* = 10.1, 7.9 Hz, 0.5H), 3.67 – 3.53 (m, 1.5H), 3.54 – 3.40 (m, 1H), 3.42 – 3.36 (m, 0.5H), 3.32 – 3.25 (m, 0.5H), 3.15 – 3.03 (m, 0.5H), 2.99 (p, *J* = 7.7 Hz, 0.5H), 2.22 – 1.85 (m, 2H). (mixture of rotamers) LC/MS (ESI) *m/z* 280.87; [M+H]⁺ calcd for C₁₄H₁₈ClN₂O₂⁺: 281.11

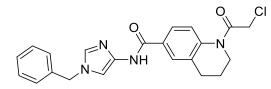


XL_10320_029B (61mg, 59%) ¹H NMR (500 MHz, DMSO) δ 8.54 (d, *J* = 5.2 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.25 (d, *J* = 6.8 Hz, 3H), 6.57 (ddd, *J* = 16.7, 10.3, 6.4 Hz, 1H), 6.13 (dt, *J* = 16.8, 2.0 Hz, 1H), 5.78 – 5.52 (m, 1H), 4.29 (d, *J* = 7.3 Hz, 2H), 3.72 – 3.65 (m, 0.5H), 3.65 – 3.57 (m, 1H), 3.53 (m, 1H), 3.43 (dd, *J* = 12.1, 7.2 Hz, 0.5H), 3.38 – 3.30 (m, 0.5H), 3.09 (dt, *J* = 15.3, 7.6 Hz, 0.5H), 2.17 – 2.02 (m, 1.5H), 1.94 (m, 0.5H). (mixture of rotamers) LC/MS (ESI) *m/z* 258.87; [M+H]⁺ calcd for C₁₅H₁₉N₂O₂⁺: 259.14

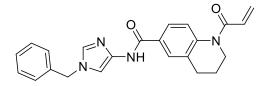
XL_10320_029C (88mg, 96%) ¹H NMR (500 MHz, DMSO) δ 8.52 (dt, *J* = 32.7, 5.7 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.29 – 7.21 (m, 3H), 4.39 – 4.19 (m, 2H), 3.55 (dd, *J* = 9.2, 7.9 Hz, 2H), 3.47 – 3.39 (m, 2H), 3.39 – 3.32 (m, 1H), 3.10 – 2.98 (m, 1H), 2.17 – 2.02 (m, 1H), 2.03 – 1.92 (m, 1H). LC/MS (ESI) *m/z* 230.08; [M+H]⁺ calcd for C₁₃H₁₆N₃O⁺: 230.13


Synthesis of XL 10320 061A:

XL_10320_061

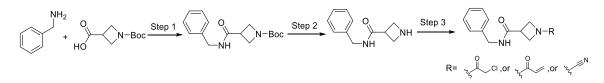

6-bromobenzo[d]thiazol-2-amine (0.046g, 0.2mmol), (E)-4-(benzylamino)-4-oxobut-2-enoic acid (0.05g, 0.24mmol) Et₃N (0.28mL, 2.0mmol), and HATU (0.15g, 0.4mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford XL_10320_061A (14mg, 17%): ¹H NMR (500 MHz, DMSO) δ 12.91 (s, 1H), 9.10 (t, J = 5.9 Hz, 1H), 8.30 (d, J = 2.0 Hz, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.60 (dd, J = 8.6, 2.1 Hz, 1H), 7.35 (dd, J = 10.1, 4.6 Hz, 1H), 7.28 (dd, J = 16.4, 7.7 Hz, 2H), 7.25 - 7.15 (m, 2H), 6.54 (s, 2H), 4.42 (d, J = 5.9 Hz, 2H). LC/MS (ESI) *m/z* 415.77; [M+H]⁺ calcd for C₁₈H₁₅BrN₃O₂S⁺: 416.01

Synthesis of XL 10320 054A, 054B:



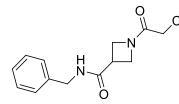
Step 1: The synthesis was preformed according to General Procedure 1 with 1-benzyl-1Himidazol-4-amine (0.25g, 1.5mmol) and 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.38g, 1.8mmol). 0.17g desired compound (*N*-(1-benzyl-1H-imidazol-4-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide) was obtained (34%). LC/MS (ESI) *m/z* 332.87; $[M+H]^+$ calcd for C₂₀H₂₁N₄O⁺: 333.17

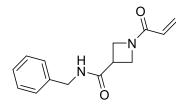
Step 2: The synthesis was performed according to the General Procedure 1 with N-(1-benzyl-1Himidazol-4-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide (0.087g, 0.26mmol) and chloroacetyl chloride (25.0 μL, 0.32mmol), or acryloyl chloride (25.0 μL, 0.32mmol).


XL_10320_054A (42mg, 39%) ¹H NMR (500 MHz, DMSO) δ 10.98 (s, 1H), 8.33 (s, 1H), 7.83 (s, 1H), 7.80 (d, *J* = 8.5 Hz, 1H), 7.75 (s, 1H), 7.51 (s, 1H), 7.45 – 7.33 (m, 5H), 5.30 (s, 2H), 4.62 (s, 2H), 3.74 (dd, *J* = 14.8, 8.6 Hz, 2H), 2.78 (dd, *J* = 22.6, 16.0 Hz, 2H), 2.01 – 1.87 (m, 2H). LC/MS (ESI) *m/z* 409.37; [M+H]⁺ calcd for C₂₂H₂₂ClN₄O₂⁺: 409.14

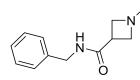
XL_10320_054B (41mg, 41%) ¹H NMR (500 MHz, DMSO) δ 10.95 (s, 1H), 8.30 (s, 1H), 7.85 (d, *J* = 1.7 Hz, 1H), 7.80 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.50 (d, *J* = 1.3 Hz, 1H), 7.46 – 7.26 (m, 6H), 6.59 (dd, J = 1.3 Hz, 1H), 7.46 – 7.26 (m, 6H), 6.59 (dd, J = 1.3 Hz, 1H), 7.46 – 7.26 (m, 6H), 6.59 (dd, J = 1.3 Hz, 1H), 7.46 – 7.26 (m, 6H), 7.48 (m, 7), 8.48 (m, 7), 8.4

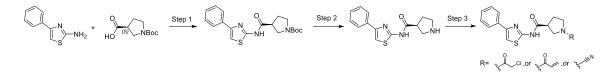
= 16.7, 10.3 Hz, 1H), 6.26 (dd, J = 16.8, 2.1 Hz, 1H), 5.77 (dd, J = 10.3, 2.1 Hz, 1H), 5.30 (s, 2H), 3.77 (t, J = 6.4 Hz, 2H), 2.79 (t, J = 6.5 Hz, 2H), 1.91 (p, J = 6.5 Hz, 2H). LC/MS (ESI) m/z 387.37; [M+H]⁺ calcd for C₂₃H₂₃N₄O₂⁺: 387.18


Synthesis of XL 10320 062A, 062B, 062C:

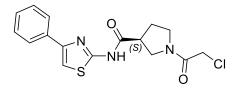

Step 1: The synthesis was preformed according to General Procedure 1 with benzylamine (0.22mL, 2.0mmol) and 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (0.6g, 3.0mmol). 0.37g desired compound (tert-butyl 3-(benzylcarbamoyl)azetidine-1-carboxylate) was obtained (64%). LC/MS (ESI) m/z 291.17; [M+H]⁺ calcd for C₁₆H₂₃N₂O₃⁺: 291.17

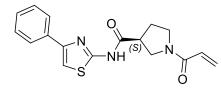
Step 2: The synthesis was performed according to the General Procedure 1 tert-butyl 3-(benzylcarbamoyl)azetidine-1-carboxylate (0.37g, 1.2mmol). 0.23g *N*-benzylazetidine-3carboxamide (quant.)


Step 3: The synthesis was performed according to the General Procedure 1 *N*-benzylazetidine-3-carboxamide (0.08g, 0.4mmol) and chloroacetyl chloride (40.0 μ L, 0.5mmol), or acryloyl chloride (40.0 μ L, 0.5mmol), or cyanogen bromide (0.53g, 0.5mmol).

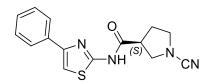

XL_10320_062A (31mg, 29%) ¹H NMR (500 MHz, DMSO) δ 8.54 (t, *J* = 5.4 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.29 – 7.20 (m, 3H), 4.32 (dd, *J* = 10.5, 7.3 Hz, 3H), 4.27 – 4.21 (m, 1H), 4.18 – 4.09 (m, 2H), 4.03 (t, *J* = 9.2 Hz, 1H), 3.93 (dd, *J* = 9.4, 6.0 Hz, 1H), 3.45 – 3.38 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 171.55, 166.08, 139.60, 128.81, 127.75, 127.35, 53.14, 51.22, 42.76, 40.36, 32.66. LC/MS (ESI) *m/z* 267.17; [M+H]⁺ calcd for C₁₃H₁₆ClN₂O₂⁺: 267.09

XL_10320_062B (36mg, 37%) ¹H NMR (500 MHz, DMSO) δ 8.55 (t, *J* = 5.7 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.29 – 7.20 (m, 3H), 6.31 (dd, *J* = 17.0, 10.3 Hz, 1H), 6.10 (dd, *J* = 17.0, 2.2 Hz, 1H), 5.67 (dd, *J* = 10.3, 2.2 Hz, 1H), 4.39 – 4.28 (m, 3H), 4.23 (dd, *J* = 8.3, 5.9 Hz, 1H), 4.04 (t, *J* = 9.3 Hz, 1H), 3.93 (dd, *J* = 9.7, 5.9 Hz, 1H). (one proton overlaps with HDO peak) LC/MS (ESI) *m/z* 245.28; [M+H]⁺ calcd for C₁₄H₁₇N₂O₂⁺: 245.13

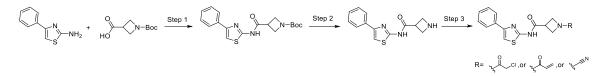

XL_10320_062C (51mg, 56%) ¹H NMR (500 MHz, DMSO) δ 8.50 (t, *J* = 5.4 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.29 – 7.21 (m, 3H), 4.30 (d, *J* = 5.9 Hz, 2H), 4.26 (dd, *J* = 8.8, 7.5 Hz, 2H), 4.21 – 4.16 (m, 2H), 3.49 (tt, *J* = 8.9, 6.4 Hz, 1H). LC/MS (ESI) *m/z* 216.18; [M+H]⁺ calcd for C₁₂H₁₄N₃O⁺: 216.11 Synthesis of XL 10320 064A, 064B, 064C:


Step 1: The synthesis was preformed according to General Procedure 1 with 4-phenylthiazol-2amine (0.26g, 1.5mmol) and (S)-1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (0.38g, 1.8mmol). 0.6g desired compound (tert-butyl (*S*)-3-((4-phenylthiazol-2-yl)carbamoyl)pyrrolidine-1-carboxylate) was obtained (quant.). LC/MS (ESI) m/z 274.17 (M+H–Boc); [M+H]⁺ calcd for $C_{19}H_{24}N_3O_3S^+$: 374.15

Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl (*S*)-3- ((4-phenylthiazol-2-yl)carbamoyl)pyrrolidine-1-carboxylate (0.6g, 1.5mmol). 0.40g (*S*)-N-(4-phenylthiazol-2-yl)pyrrolidine-3-carboxamide (quant.)

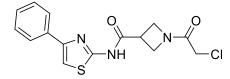

Step 3: The synthesis was performed according to the General Procedure 1 with (*S*)-N-(4-phenylthiazol-2-yl)pyrrolidine-3-carboxamide (0.13g, 0.5mmol) and chloroacetyl chloride (0.08mL, 1.0mmol), or acryloyl chloride (0.08mL, 1.0mmol), or cyanogen bromide (0.11g, 1.0mmol).

XL_10320_064A (12mg, 7%) ¹H NMR (500 MHz, DMSO) δ 12.48 (d, *J* = 7.6 Hz, 1H), 7.90 (d, *J* = 7.4 Hz, 2H), 7.65 (d, *J* = 2.5 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 4.33 (d, *J* = 2.2 Hz, 2H), 3.80 (dd, *J* = 10.4, 7.8 Hz, 1H), 3.74 – 3.60 (m, 2H), 3.53 (ddd, *J* = 17.8, 11.3, 6.5 Hz, 3H), 2.33 – 2.00 (m, 3H).(Conformational isomers were observed. Protons overlaps with HDO peak) LC/MS (ESI) *m/z* 350.17; [M+H]⁺ calcd for C₁₆H₁₇ClN₃O₂S⁺: 350.07

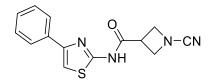

XL_10320_064B (8mg, 5%) ¹H NMR (500 MHz, DMSO) δ 12.47 (s, 1H), 7.95 – 7.85 (m, 2H), 7.65 (d, *J* = 1.8 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 6.60 (ddd, *J* = 16.8, 10.3, 3.5 Hz, 1H), 6.15 (dd, *J* = 16.8, 2.4 Hz, 1H), 5.69 (dd, *J* = 10.3, 2.4 Hz, 1H), 3.87 (dd, *J* = 10.3, 7.8 Hz, 1H), 3.72 (ddd, *J* = 12.2, 9.2, 5.4 Hz, 2H), 3.41 (dd, *J* = 13.4, 6.4 Hz, 2H), 3.32 (dt, *J* = 14.0, 7.1 Hz, 1H), 2.33 – 1.99 (m, 3H). (Conformational isomvers were observed) LC/MS (ESI) *m/z* 328.17; [M+H]⁺ calcd for C₁₇H₁₈N₃O₂S⁺: 328.11

XL_10320_064C (15mg, 10%) ¹H NMR (500 MHz, DMSO) δ 12.45 (d, *J* = 25.3 Hz, 1H), 7.97 – 7.84 (m, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 3.64 (dd, *J* = 9.6, 7.8 Hz, 1H), 3.61 – 3.52 (m, 1H), 3.52 – 3.40 (m, 2H), 3.40 – 3.31 (m, 1H), 2.22 (td, *J* = 13.2, 7.4

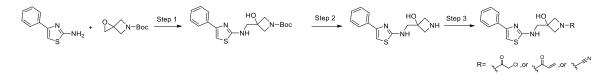
Hz, 1H), 2.10 (dt, *J* = 19.7, 7.0 Hz, 1H). LC/MS (ESI) *m/z* 298.97; [M+H]⁺ calcd for C₁₅H₁₅N₄OS⁺: 299.10


Synthesis of XL 10320 065A, 065B, and 065C:

Step 1: The synthesis was preformed according to General Procedure 1 with 4-phenylthiazol-2amine (0.26g, 1.5mmol) and 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (0.36g, 1.8mmol). 0.52g desired compound (tert-butyl 3-((4-phenylthiazol-2-yl)carbamoyl)azetidine-1-carboxylate) was obtained (96%). LC/MS (ESI) *m/z* 260.17 (M+H–Boc); $[M+H]^+$ calcd for C₁₈H₂₂N₃O₃S⁺: 360.14 Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl 3-((4phenylthiazol-2-yl)carbamoyl)azetidine-1-carboxylate (0.52g, 1.5mmol). 0.46g N-(4-


phenylthiazol-2-yl)azetidine-3-carboxamide was obtained (quant.)

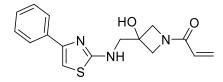
Step 3: The synthesis was performed according to the General Procedure 1 with N-(4-phenylthiazol-2-yl)azetidine-3-carboxamide (0.15g, 0.6mmol) and chloroacetyl chloride (0.08mL, 1.0mmol), or acryloyl chloride (0.08mL, 1.0mmol), or cyanogen bromide (0.11g, 1.0mmol).


XL_10320_065A (33mg, 16%) ¹H NMR (500 MHz, DMSO) δ (ppm): 12.43 (s, 1H), 7.94 – 7.84 (m, 2H), 7.66 (s, 1H), 7.43 (dd, *J* = 10.6, 4.8 Hz, 2H), 7.36 – 7.27 (m, 1H), 4.45 – 4.32 (m, 2H), 4.17 (s, 2H), 4.13 – 4.00 (m, 2H), 3.76 – 3.70 (m, 1H). LC/MS (ESI) *m/z* 336.17; [M+H]⁺ calcd for C₁₅H₁₅ClN₃O₂S⁺: 336.06

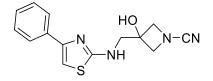
XL_10320_065B (18mg, 10%) ¹H NMR (500 MHz, DMSO) δ (ppm): 12.44 (s, 1H), 7.92 – 7.86 (m, 2H), 7.66 (s, 1H), 7.43 (t, *J* = 10.0Hz, 2H), 7.32 (t, *J* = 10.0 Hz, 1H), 6.32 (dd, *J* = 17.0, 10.3 Hz, 1H), 6.11 (dd, *J* = 17.0, 2.2 Hz, 1H), 5.68 (dd, *J* = 10.3, 2.2 Hz, 1H), 4.41 (t, *J* = 10.0 Hz, 1H), 4.35 (dd, *J* = 8.5, 5.8 Hz, 2H), 4.12 (t, *J* = 9.5 Hz, 2H), 4.04 (dd, *J* = 9.9, 5.8 Hz, 2H), 3.72 (tt, *J* = 8.9, 5.7 Hz, 1H). LC/MS (ESI) *m/z* 314.17; [M+H]⁺ calcd for C₁₆H₁₆N₃O₂S⁺: 314.10

XL_10320_065C (3mg, 2%) ¹H NMR (500 MHz, DMSO) δ (ppm): 12.38 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.66 (s, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 4.32 (dt, J = 14.0, 7.7 Hz, 5H), 3.85
- 3.70 (m, 1H). LC/MS (ESI) *m/z* 285.07; [M+H]⁺ calcd for C₁₄H₁₃N₄OS⁺: 285.08

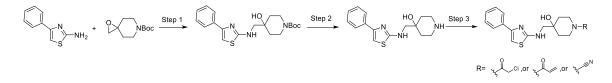
Synthesis of XL 10320 067A, 067B, 067C:


Step 1: The synthesis was performed according to General Procedure 2 with 4-phenylthiazol-2amine (0.24g, 1.4mmol) and tert-butyl 1-oxa-5-azaspiro[2.3]hexane-5-carboxylate (0.25g, 1.4mmol). 0.17g desired product (tert-butyl 3-hydroxy-3-(((4-phenylthiazol-2yl)amino)methyl)azetidine-1-carboxylate) was obtained (36%). LC/MS (ESI) *m/z* 361.97; [M+H]⁺ calcd for $C_{18}H_{24}N_3O_3S^+$: 362.15

Step 2: The synthesis was performed according to the General Procedure 2 with tert-butyl 3hydroxy-3-(((4-phenylthiazol-2-yl)amino)methyl)azetidine-1-carboxylate (0.12g, 0.3mmol). 0.084g 3-(((4-phenylthiazol-2-yl)amino)methyl)azetidin-3-ol was obtained (quant.)

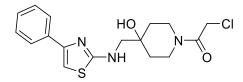

Step 3: The synthesis was performed according to the General Procedure 2 with 3-(((4-phenylthiazol-2-yl)amino)methyl)azetidin-3-ol (0.028g, 0.1mmol), Et₃N (0.077mL, 0.55mmol) and chloroacetyl chloride (9.2 μ L, 0.11mmol), or acryloyl chloride (9.2 μ L, 0.11mmol), or cyanogen bromide (0.012g, 0.11mmol).

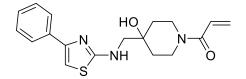
XL_10320_067A (8mg, 24%) ¹H NMR (500 MHz, DMSO) δ (ppm): 8.06 (s, 1H), 7.83 – 7.77 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.08 (s, 1H), 4.27 (d, *J* = 9.2 Hz, 1H), 4.19 – 4.08 (dd, *J* = 15.0, 5.0 Hz, 2H), 4.02 (m, 2H), 3.72 (d, *J* = 10.2 Hz, 1H), 3.61 (s, 2H). LC/MS (ESI) *m/z* 338.07; [M+H]⁺ calcd for C₁₅H₁₇ClN₃O₂S⁺: 338.07



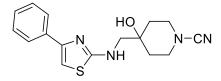
XL_10320_067B (8mg, 25%) ¹H NMR (500 MHz, DMSO) δ (ppm): 8.14 (s, 1H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.08 (s, 1H), 6.32 (dd, *J* = 16.9, 10.3 Hz, 1H), 6.10 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.65 (dd, *J* = 10.3, 1.6 Hz, 2H), 4.31 (d, *J* = 9.0 Hz, 1H), 4.01 (d, *J* = 9.8 Hz, 2H), 3.74 (d, *J* = 10.4 Hz, 1H), 3.62 (q, *J* = 13.8 Hz, 2H). LC/MS (ESI) *m/z* 315.87; [M+H]⁺ calcd for C₁₆H₁₈N₃O₂S⁺: 316.11

XL_10320_067C (15mg, 53%, mixture of rotamers) ¹H NMR (500 MHz, DMSO) δ (ppm): 7.84 – 7.77 (m, 2H), 7.43 – 7.36 (m, 2H), 7.29 (m, 1H), 7.11 – 7.04 (m, 1H), 4.19 (d, *J* = 8.5 Hz, 1H), 4.01 (d, *J* = 8.4 Hz, 1H), 3.83 (d, *J* = 9.7 Hz, 2H), 3.64-3.59 (m, 3H). LC/MS (ESI) *m/z* 286.97; [M+H]⁺ calcd for C₁₄H₁₅N₄OS⁺: 287.10

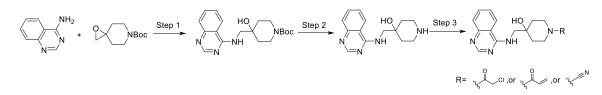

Synthesis of XL 10320 085A, 085B, 085C:


Step 1: The synthesis was performed according to General Procedure 2 with 4-phenylthiazol-2amine (0.23g, 1.3mmol) and tert-butyl 1-oxa-6-azaspiro[2.5]octane-6-carboxylate (0.28g, 1.3mmol). 0.12g desired product (tert-butyl 4-hydroxy-4-(((4-phenylthiazol-2yl)amino)methyl)piperidine-1-carboxylate) was obtained (24%). LC/MS (ESI) *m/z* 390.37; [M+H]⁺ calcd for $C_{20}H_{28}N_3O_3S^+$: 390.18

Step 2: The synthesis was performed according to the General Procedure 2 tert-butyl 4-hydroxy-4-(((4-phenylthiazol-2-yl)amino)methyl)piperidine-1-carboxylate (0.12g, 0.3mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.08g 4-(((4-phenylthiazol-2yl)amino)methyl)piperidin-4-ol was obtained (90%)


Step 3: The synthesis was performed according to the General Procedure 2 with 4-(((4-phenylthiazol-2-yl)amino)methyl)piperidin-4-ol (0.015g, 0.05mmol), Et₃N (0.077mL, 0.55mmol) and chloroacetyl chloride (5.0 μ L, 0.06mmol), or acryloyl chloride (5.0 μ L, 0.06mmol), or cyanogen bromide (0.007g, 0.06mmol).

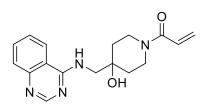
XL_10320_085A (4mg, 22%) 1H NMR (500 MHz, DMSO) δ 7.80 (m, J = 7.4 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 7.05 (s, 1H), 4.42 – 4.31 (m, 2H), 4.07 (d, J = 12.9 Hz, 1H), 3.64 (d, J = 13.3 Hz, 1H), 3.42 – 3.28 (m, 3H), 3.02 (t, J = 10.5 Hz, 1H), 1.56 (tdd, J = 31.9, 20.6, 11.0 Hz, 4H). LC/MS (ESI) m/z 365.87; [M+H]+ calcd for $C_{17}H_{21}N_3O_2S^+$: 366.10



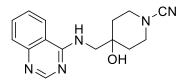
XL_10320_085B (4mg, 23%) 1H NMR (500 MHz, DMSO) δ 7.87 – 7.68 (m, 3H), 7.38 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.04 (s, 1H), 6.81 (dd, J = 16.7, 10.5 Hz, 1H), 6.08 (dd, J = 16.7, 2.5 Hz, 1H), 5.64 (dd, J = 10.4, 2.5 Hz, 1H), 4.15 (d, J = 13.3 Hz, 1H), 3.42 – 3.32 (m, 3H), 3.04 (t, J = 9.9 Hz, 1H), 1.53 (t, J = 10.7 Hz, 4H).). LC/MS (ESI) m/z 343.67; [M+H]⁺ calcd for C₁₈H₂₂N₃O₂S+: 344.14

XL_10320_085C (6mg, 38%) ¹H NMR (500 MHz, DMSO) δ (ppm): 7.80 (m, 2H), 7.39 (m, 2H), 7.29 (m, 1H), 7.05 (s, 1H), 3.37 (m, 2H), 3.32 – 3.19 (m, 4H), 1.73 – 1.62 (m, 2H), 1.61 – 1.40 (m, 2H). LC/MS (ESI) *m/z* 314.67; [M+H]⁺ calcd for C₁₆H₁₉N₄OS⁺: 315.13

Synthesis of XL 10320 086A, 086B, 086C:

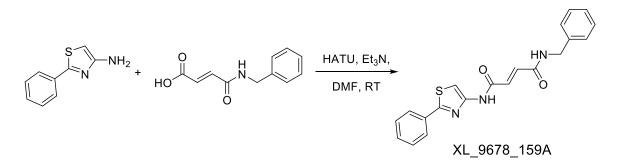

Step 1: The synthesis was performed according to General Procedure 2 with quinazolin-4-amine (0.29g, 2.0mmol) and tert-butyl 1-oxa-6-azaspiro[2.5]octane-6-carboxylate (0.42g, 2.0mmol). 0.35g desired product (tert-butyl 4-hydroxy-4-((quinazolin-4-ylamino)methyl)piperidine-1-carboxylate) was obtained (49%). LC/MS (ESI) *m/z* 359.27; $[M+H]^+$ calcd for C₁₉H₂₇N₄O₃⁺: 359.21

Step 2: The synthesis was performed according to the General Procedure 2 with tert-butyl 4hydroxy-4-((quinazolin-4-ylamino)methyl)piperidine-1-carboxylate (0.35g, 1.0mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.26g 4-((quinazolin-4ylamino)methyl)piperidin-4-ol was obtained (quant.)

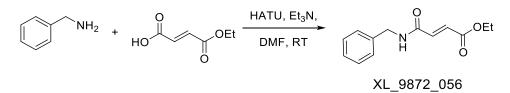

Step 3: The synthesis was performed according to the General Procedure 2 with 4-((quinazolin-4-ylamino)methyl)piperidin-4-ol (0.086g, 0.3mmol), Et₃N (0.077mL, 0.55mmol) and chloroacetyl chloride (43.0 μ L, 0.5mmol), or acryloyl chloride (43.0 μ L, 0.5mmol), or cyanogen bromide (0.57g, 0.5mmol).

Н ÓН

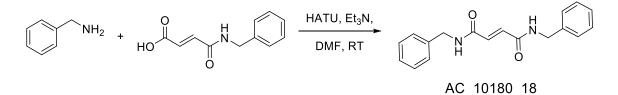
XL_10320_086A (31mg, 31%) ¹H NMR (500 MHz, DMSO) δ (ppm): 10.00 (t, *J* = 5.0 Hz, 1H), 8.89 (s, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 8.09 – 8.01 (m, 1H), 7.80 (m, 2H), 4.39 – 4.29 (d, *J* = 15.0, 20.0 Hz, 2H), 4.07 (d, *J* = 13.1 Hz, 1H), 3.81 (ddd, *J* = 30.7, 13.1, 6.2 Hz, 3H), 3.63 (d, *J* = 13.5 Hz, 1H), 3.41 – 3.26 (m, 1H), 2.99 (m, 1H), 1.72 – 1.43 (m, 4H). LC/MS (ESI) *m/z* 334.87; [M+H]⁺ calcd for $C_{16}H_{20}CIN_4O_2^+$: 335.13



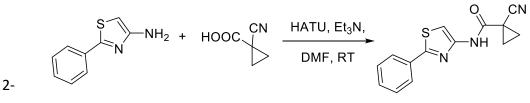
XL_10320_086B (53mg, 57%) ¹H NMR (500 MHz, DMSO) δ (ppm): 10.03 (t, *J* = 6.0 Hz, 1H), 8.89 (s, 1H), 8.59 (d, *J* = 7.9 Hz, 1H), 8.05 (t, *J* = 7.8 Hz, 1H), 7.80 (m, 2H), 6.79 (dd, *J* = 16.7, 10.5 Hz, 1H), 6.07 (dd, *J* = 16.7, 2.4 Hz, 1H), 5.64 (dd, *J* = 10.5, 2.4 Hz, 1H), 4.15 (d, *J* = 12.8 Hz, 1H), 3.89 – 3.74 (m, 3H), 3.34 (m, 1H), 3.02 (m, 1H), 1.54 (m, 4H). LC/MS (ESI) *m/z* 312.57; [M+H]⁺ calcd for $C_{17}H_{21}N_4O_2^+$: 313.17



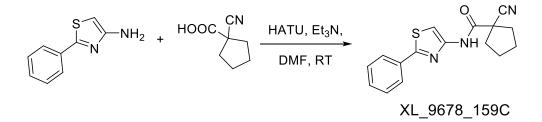
XL_10320_086C (28mg, 33%) ¹H NMR (500 MHz, DMSO) δ (ppm): 9.83 (s, 1H), 8.86 (s, 1H), 8.56 (d, *J* = 8.1 Hz, 1H), 8.03 (t, *J* = 7.3 Hz, 1H), 7.78 (m, 2H), 3.80 (d, *J* = 6.2 Hz, 2H), 3.29 – 3.19 (m, 5H), 1.77 – 1.64 (m, 2H), 1.58 (d, *J* = 13.4 Hz, 2H). LC/MS (ESI) *m/z* 283.77; [M+H]⁺ calcd for C₁₅H₁₈N₅O⁺: 284.15


Synthesis of XL 9678 159A, 159B, 159C, XL 9872 056, and AC 10180-18:

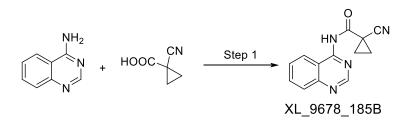
2-phenylthiazol-4-amine (0.08g, 0.5mmol), (E)-4-(benzylamino)-4-oxobut-2-enoic acid (0.12g, 0.6mmol) Et₃N (0.35mL, 2.5mmol), and HATU (0.38g, 1.0mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford **XL_9678_159A** (20mg, 11%) ¹H NMR (500 MHz, DMSO) δ 12.79 (s, 1H), 9.10 (t, *J* = 5.8 Hz, 1H), 7.92 (d, *J* = 7.4 Hz, 2H), 7.71 (s, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.31 (m, 6H), 7.19 (d, *J* = 11.0 Hz, 2H), 4.42 (d, *J* = 5.8 Hz, 2H). LC/MS (ESI) *m/z* 363.87; [M+H]⁺ calcd for C₂₀H₁₈N₃O₂S⁺: 364.11



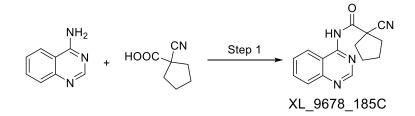
Benzylamine (0.11g, 1.0mmol), monoethyl fumarate (0.14g, 1.0mmol) Et3N (0.7mL, 5.0mmol), and HATU (0.57g, 1.5mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H2O w/ 0.0425% TFA) to afford **XL_9872_056** (0.19g, 81%) 1H NMR (500 MHz, DMSO) δ 9.03 (t, J = 5.7 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.31 – 7.24 (m, 3H), 7.07 (d, J = 15.5 Hz, 1H), 6.62 (d, J = 15.5 Hz, 1H), 4.40 (d, J = 5.9 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). LC/MS (ESI) m/z 234.08; [M+H]+ calcd for C₁₃H₁₆NO₃⁺: 234.11


Benzylamine (0.026mL, 0.24mmol), (*E*)-4-(benzylamino)-4-oxobut-2-enoic acid (0.06g, 0.29mmol) Et₃N (0.17mL, 1.2mmol), and HATU (0.14g, 0.36mmol) were added sequentially to 1mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and trituation from diethyl ether to afford **AC-10180-18** (22mg, 31%) ¹H NMR (500 MHz, DMSO) δ 8.92 (t, *J* = 5.9 Hz, 2H), 7.39 – 7.30

(m, 4H), 7.30 – 7.20 (m, 6H), 6.93 (s, 2H), 4.38 (d, J = 6.0 Hz, 4H). LC/MS (ESI) m/z 294.80; [M+H]⁺ calcd for C₁₈H₁₉N₂O₂⁺: 295.14

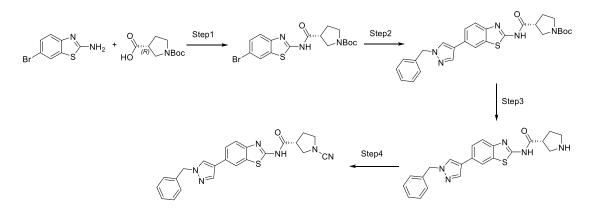

XL 9678 159B

phenylthiazol-4-amine (0.08g, 0.5mmol), 1-cyanocyclopropane-1-carboxylic acid (0.07g, 0.6mmol) Et₃N (0.35mL, 2.5mmol), and HATU (0.38g, 1.0mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford **XL_9678_159B** (40mg, 30%). ¹H NMR (500 MHz, DMSO) δ 12.43 (s, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 7.68 (s, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 1.87 (br, 2H), 1.79 (br, 2H). LC/MS (ESI) *m/z* 269.87; [M+H]⁺ calcd for C₁₄H₁₂N₃OS⁺: 270.07



2-phenylthiazol-4-amine (0.08g, 0.5mmol), 1-cyanocyclopentane-1-carboxylic acid (0.08g, 0.6mmol), Et₃N (0.35mL, 2.5mmol), and HATU (0.38g, 1.0mmol) were added sequentially to 3mL anhydrous DMF. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford **XL_9678_159C** (56mg, 38%) ¹H NMR (500 MHz, DMSO) δ 12.92 (s, 1H), 7.93 (d, *J* = 7.5 Hz, 2H), 7.73 (s, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 2.46 – 2.26 (m, 4H), 1.80 (m, 4H). LC/MS (ESI) *m/z* 297.87; [M+H]⁺ calcd for C₁₆H₁₆N₃OS⁺: 298.10

Synthesis of XL 9678 185B, 185C:

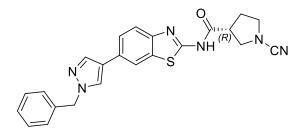


Step 1: quinazolin-4-amine (0.043g, 0.3mmol), 1-cyanocyclopropane-1-carboxylic acid (0.044g, 0.4mmol), Et₃N (0.21mL, 1.5mL), and HATU (0.23g, 0.6mmol) were added into 3mL DMF. The reaction was stirred at room temperature overnight. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford **XL_9678_185B**. ¹H NMR (500 MHz, DMSO) δ 13.60 (s, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 8.41 (s, 1H), 8.03 – 7.94 (m, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.75 – 7.64 (m, 1H), 1.78 – 1.67 (m, 4H). LC/MS (ESI) *m/z* 238.98; [M+H]⁺ calcd for C₁₃H₁₁N₄O⁺: 239.09.

Step 1: quinazolin-4-amine (0.043g, 0.3mmol), 1-cyanocyclopentane-1-carboxylic acid (0.055g, 0.4mmol), Et3N (0.21mL, 1.5mL), and HATU (0.23g, 0.6mmol) were added into 3mL DMF. The reaction was stirred at room temperature overnight. The reaction mixture was stirred overnight at room temperature, and purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H2O w/ 0.0425% TFA) to afford **XL_9678_185C** (2mg, 3%). 1H NMR (500 MHz, DMSO) δ 8.42 (br, 2H), 8.00 (t, J = 7.2 Hz, 1H), 7.85 (d, J = 6.7 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 2.37 (m, 2H), 2.25 (m, 2H), 1.92 – 1.78 (m, 4H). LC/MS (ESI) *m/z* 267.10; [M+H]⁺ calcd for C₁₅H₁₅N₄O⁺: 267.12.

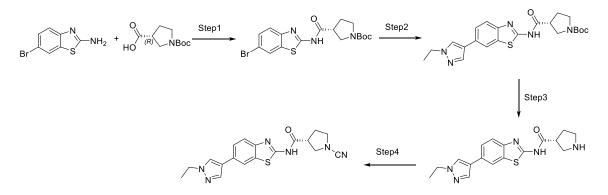
Synthesis of XL 9872 111B:

Step 1: 6-bromobenzo[d]thiazol-2-amine (0.41g, 1.8mmol), (R)-1-(tertbutoxycarbonyl)pyrrolidine-3-carboxylic acid (0.47g, 2.2mmol), Et₃N (1.2mL, 9.0mmol) and HATU (1.03g, 2.7mmol) were added sequentially in anhydrous DMF (5mL). The mixture was stirred at room temperature overnight. The mixture was then diluted with EtOAc (50mL), and washed with brine (30mL×2) to remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH) to afford 0.72g (94%) material. LC/MS (ESI) m/z 426.27; [M+H]⁺ calcd for C₁₇H₂₁BrN₃O₃S⁺: 426.05.


Step 2: The isolated product tert-butyl (R)-3-((6-bromobenzo[d]thiazol-2yl)carbamoyl)pyrrolidine-1-carboxylate from step 1 (0.064g, 0.15mmol) was dissolved in 1,4dioxane and H₂O (4mL, 3:1). Into the solution were added 1-benzyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-pyrazole (0.09g, 0.45mmol), potassium carbonate (0.062g, 0.45mmol) and Pd(PPh₃)₄ (0.035g, 0.03mmol). The mixture was degassed by bubbling through N₂ for 10min before heating up to 95°C and stirred at this temperature for 2-8 hours. The reaction was then cooled down to room temperature and diluted with EtOAc (50mL). The organic phase was washed with saturated ammonium chloride (30mL×2). Aqueous layer was then extracted with more EtOAc (50mL). Combined organic layers were washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH) to afford 0.01g product (13%) LC/MS (ESI) *m/z* 503.88; [M+H]⁺ calcd for C₂₇H₃₀N₅O₃S⁺: 504.21.

Step 3: Products from last step were dissolved in DCM (1mL) and treated with TFA (1mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was

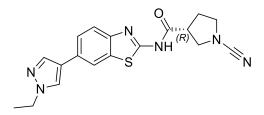
45


cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

Step 4: Products from the last step (0.008g, 0.02mmol) were dissolved in DCM (2mL) with Et₃N (14µL, 0.1mmol) at 0°C. Cyanogen bromide 3M solution in DCM (13µL, 0.04mmol) was then added. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target product.

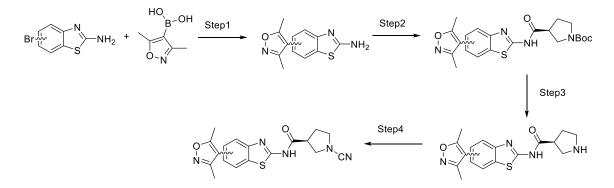
XL_9872_111B (4mg, 47%) ¹H NMR (500 MHz, DMSO) δ 12.52 (s, 1H), 8.32 (s, 1H), 8.19 (s, 1H), 7.97 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.37 (m, 2H), 7.30 (m, 3H), 5.36 (s, 2H), 3.69 – 3.62 (m, 1H), 3.58 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.46 (m, 2H), 3.41 – 3.34 (m, 1H), 2.23 (dt, *J* = 13.1, 7.3 Hz, 1H), 2.11 (dt, *J* = 19.7, 7.0 Hz, 1H). LC/MS (ESI) *m/z* 428.87; [M+H]⁺ calcd for $C_{23}H_{21}N_6OS^+$: 429.15

Synthesis of XL 9872 111F:



Step 1: 6-bromobenzo[d]thiazol-2-amine (0.41g, 1.8mmol), (R)-1-(tertbutoxycarbonyl)pyrrolidine-3-carboxylic acid (0.47g, 2.2mmol), Et3N (1.2mL, 9.0mmol) and HATU (1.03g, 2.7mmol) were added sequentially in anhydrous DMF (5mL). The mixture was stirred at room temperature overnight. The mixture was then diluted with EtOAc (50mL), and washed with brine (30mL×2) to remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH) to afford 0.72g (94%) material. LC/MS (ESI) m/z 426.27; [M+H]⁺ calcd for C₁₇H₂₁BrN₃O₃S⁺: 426.05.

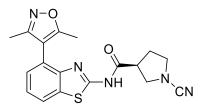
2: Step The isolated product tert-butyl (R)-3-((6-bromobenzo[d]thiazol-2yl)carbamoyl)pyrrolidine-1-carboxylate from step 1 (0.064g, 0.15mmol) was dissolved in 1,4dioxane and H₂O (4mL, 3:1). Into the solution were added 1-ethyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-pyrazole (0.1g, 0.45mmol), potassium carbonate (0.062g, 0.45mmol) and $Pd(PPh_3)_4$ (0.035g, 0.03mmol). The mixture was degassed by bubbling through N₂ for 10min before heating up to 95°C and stirred at this temperature for 2-8 hours. The reaction was then cooled down to room temperature and diluted with EtOAc (50mL). The organic phase was washed with saturated ammonium chloride (30mL×2). Aqueous layer was then extracted with more EtOAc (50mL). Combined organic layers were washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH) to afford 0.05g product (76%). LC/MS (ESI) *m/z* 441.88; [M+H]⁺ calcd for C₂₂H₂₈N₅O₃S⁺: 442.19.


Step 3: Products from last step were dissolved in DCM (1mL) and treated with TFA (1mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N).

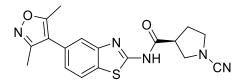
Step 4: Products from the last step (0.041g, 0.12mmol) were dissolved in DCM (2mL) with Et₃N (84µL, 0.6mmol) at 0°C. Cyanogen bromide 3M solution in DCM (60µL, 0.24mmol) was then added. The mixture was then stirred at 0°C for 1 hour, and directly purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target product.

XL_9872_111F (10mg, 23%) ¹H NMR (500 MHz, DMSO) δ 12.53 (s, 1H), 8.23 (s, 1H), 8.19 (d, *J* = 1.5 Hz, 1H), 7.92 (d, *J* = 0.6 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.64 (dd, *J* = 1.7, 8.5 Hz, 1H), 4.21 – 4.11 (q, *J* = 7.4 Hz, 2H), 3.65 (dd, *J* = 9.6, 7.7 Hz, 1H), 3.59 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.52 – 3.42 (m, 2H), 3.42 – 3.35 (m, 1H), 2.24 (dt, *J* = 13.4, 7.5 Hz, 1H), 2.11 (dt, *J* = 14.3, 6.9 Hz, 1H), 1.42 (t, *J* = 7.3 Hz, 3H). LC/MS (ESI) *m/z* 366.87; [M+H]⁺ calcd for C₁₈H₁₉N₆OS⁺: 367.13

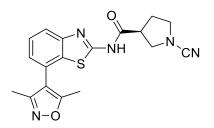
Synthesis of XL 9872 106A, 106B, 106C:


Step 1: 2-amino-4-bromobenzothiazole (0.69g, 3.0mmol), 2-amino-5-bromobenzothiazole (0.69g, 3.0mmol), or 2-amino-7-bromobenzothiazole (0.69g, 3.0mmol) were used as starting material in the synthesis described in Step 1 of General Procedure 4 to afford desired products (4-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-amine: 0.6g (82%) LC/MS (ESI) *m/z* 245.98; [M+H]⁺ calcd for $C_{12}H_{12}N_3OS^+$: 246.07; 5-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-amine: 0.58g (79%) LC/MS (ESI) *m/z* 245.98; [M+H]⁺ calcd for $C_{12}H_{12}N_3OS^+$: 246.07; 7-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-amine: 0.39g (53%) LC/MS (ESI) *m/z* 245.88; [M+H]⁺ calcd for $C_{12}H_{12}N_3OS^+$: 246.07.

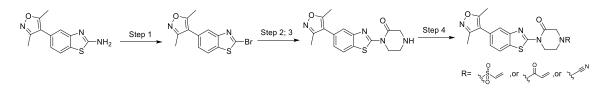
Step 2: The isolated products from Step 1 (0.05g, 0.2mmol) were used in Step 2 described in General Procedure 4 to afford desired products (tert-butyl (S)-3-((4-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)carbamoyl)pyrrolidine-1-carboxylate: 0.092g (84%); LC/MS (ESI) m/z 443.08; [M+H]+ calcd for $C_{22}H_{27}N_4O_4S^+$: 443.17; tert-butyl (S)-3-((5-(3,5-dimethylisoxazol-4-


yl)benzo[d]thiazol-2-yl)carbamoyl)pyrrolidine-1-carboxylate: 0.19g (over 100%) LC/MS (ESI) m/z 443.08; [M+H]+ calcd for C₂₂H₂₇N₄O₄S⁺: 443.17; tert-butyl (S)-3-((7-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)carbamoyl)pyrrolidine-1-carboxylate: 0.20g (over 100%) LC/MS (ESI) *m/z* 387.27 (M+H–*t*-Butyl); $[M+H]^+$ calcd for C₂₂H₂₇N₄O₄S⁺: 443.54).

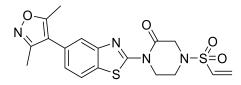
Step 3: The isolated products from Step 2 were used in Step 3 described in General Procedure 4 to afford desired products ((S)-N-(4-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)pyrrolidine-3-carboxamide: 0.08g (quant.); (S)-N-(5-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)pyrrolidine-3-carboxamide: 0.08g (quant.); (S)-N-(7-(3,5-dimethylisoxazol-4-yl)benzo[d]thiazol-2-yl)pyrrolidine-3-carboxamide: 0.07g (quant.)).


Step 4: The isolated products from Step 3 (0.072g, 0.21mmol) were used in Step 4 described in General Procedure 4 to afford desired products.

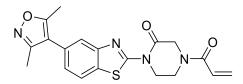
XL_9872_106A (0.026g, 34%) ¹H NMR (500 MHz, DMSO) δ 12.60 (s, 1H), 8.10 – 7.99 (m, 1H), 7.45 – 7.35 (m, 2H), 3.63 (dd, *J* = 9.6, 7.8 Hz, 1H), 3.57 (dd, *J* = 9.7, 6.0 Hz, 1H), 3.51 – 3.40 (m, 2H), 3.37 (dd, *J* = 13.8, 6.9 Hz, 1H), 2.31 (s, 3H), 2.27 – 2.16 (m, 1H), 2.16 – 2.03 (m, 4H). LC/MS (ESI) *m/z* 367.77; [M+H]⁺ calcd for C₁₈H₁₈N₅O₂S⁺: 368.12



XL_9872_106B (0.022g, 29%) ¹H NMR (500 MHz, DMSO) δ 12.59 (s, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.74 (s, 1H), 7.31 (dd, *J* = 19.8, 9.9 Hz, 1H), 3.70 – 3.63 (m, 1H), 3.60 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.52 – 3.37 (m, 3H), 2.43 (s, 3H), 2.28 – 2.21 (m, 4H), 2.12 (td, *J* = 14.1, 7.1 Hz, 1H). LC/MS (ESI) *m/z* 367.87; [M+H]⁺ calcd for C₁₈H₁₈N₅O₂S⁺: 368.12



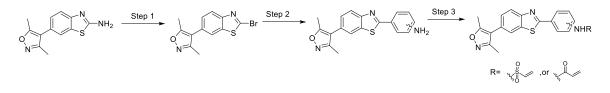
XL_9872_106C (0.029g, 40%) 1H NMR (500 MHz, DMSO) δ 7.82 (dd, J = 8.1, 0.9 Hz, 1H), 7.61 – 7.51 (m, 1H), 7.28 (dd, J = 7.4, 0.9 Hz, 1H), 3.68 – 3.60 (m, 1H), 3.56 (dd, J = 9.7, 5.9 Hz, 1H), 3.48 – 3.41 (m, 2H), 3.39 (dd, J = 13.5, 6.8 Hz, 1H), 2.31 (s, 3H), 2.21 (tt, J = 12.8, 6.4 Hz, 1H), 2.14 – 2.04 (m, 4H). LC/MS (ESI) m/z 367.97; [M+H]+ calcd for C₁₈H₁₈N₅O₂S⁺: 368.12.


Synthesis of XL 9872 123A, 123B, 123C:

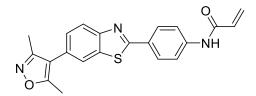
Synthesis were performed according to General Procedure 5.



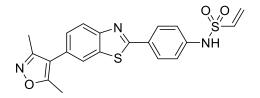
XL_9872_123A (19mg, 45%) ¹H NMR (500 MHz, DMSO) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 1.4 Hz, 1H), 7.39 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.00 (dd, *J* = 16.5, 10.0 Hz, 1H), 6.28 (dd, *J* = 13.2, 3.3 Hz, 2H), 4.38 – 4.29 (m, 2H), 4.18 (s, 2H), 3.73 – 3.61 (m, 2H), 2.44 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 165.75, 165.48, 159.16, 158.73, 148.42, 132.90, 132.27, 131.14, 128.57, 125.60, 122.66, 121.79, 116.29, 48.93, 47.24, 42.34, 11.82, 10.95. LC/MS (ESI) *m/z* 418.87; [M+H]⁺ calcd for C₁₈H₁₉N₄O₄S₂⁺: 419.08

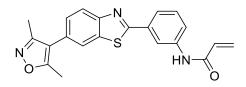

XL_9872_123B (16mg, 42%) ¹H NMR (500 MHz, DMSO) δ 8.12 (d, *J* = 8.2 Hz, 1H), 7.85 (s, 1H), 7.37 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.98 – 6.78 (m, 1H), 6.22 (d, *J* = 16.6 Hz, 1H), 5.80 (d, *J* = 11.0 Hz,

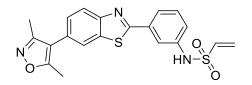
1H), 4.68 (s, 1H), 4.50 (s, 1H), 4.32 (br, 2H), 4.04 (br, 2H), 2.44 (s, 3H), 2.27 (s, 3H). LC/MS (ESI) *m/z* 382.87; [M+H]⁺ calcd for C₁₉H₁₉N₄O₃S⁺: 383.12



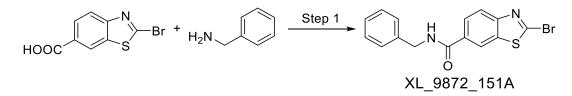
XL_9872_123C (16mg, 45%) ¹H NMR (500 MHz, DMSO) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.86 (s, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 4.36 (m, 4H), 3.85 – 3.72 (m, 2H), 2.44 (s, 3H), 2.27 (s, 3H). LC/MS (ESI) *m/z* 353.87; [M+H]⁺ calcd for C₁₇H₁₆N₅O₂S⁺: 354.10


Synthesis of XL 9872 126A, 126B, 128A, 128B:

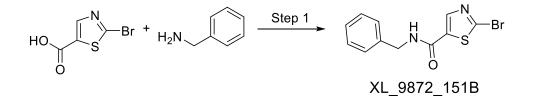

Synthesis was performed according to General Procedure 6.


XL_9872_126A (22mg, 45%) ¹H NMR (500 MHz, DMSO) δ 10.49 (s, 1H), 8.19 (d, *J* = 1.6 Hz, 1H), 8.10 (dd, *J* = 7.1, 1.7 Hz, 3H), 7.90 (d, *J* = 8.7 Hz, 2H), 7.54 (dd, *J* = 8.4, 1.7 Hz, 1H), 6.56 – 6.44 (m, 1H), 6.33 (dd, *J* = 17.0, 1.8 Hz, 1H), 5.83 (dd, *J* = 10.1, 1.8 Hz, 1H), 2.47 (s, 3H), 2.29 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 167.99, 165.88, 163.98, 158.69, 153.32, 142.42, 135.49, 132.04, 128.56, 128.23, 128.11, 128.03, 127.40, 123.17, 122.88, 120.09, 116.06, 11.87, 10.98. LC/MS (ESI) *m/z* 375.97; [M+H]⁺ calcd for C₂₁H₁₈N₃O₂S⁺: 376.11

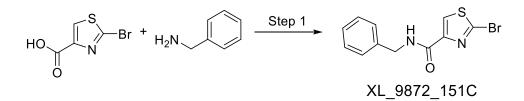
XL_9872_126B (7mg, 13%) ¹H NMR (500 MHz, DMSO) δ 10.53 (s, 1H), 8.20 (d, *J* = 1.5 Hz, 1H), 8.08 (dd, *J* = 16.1, 8.5 Hz, 3H), 7.54 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.34 (d, *J* = 8.7 Hz, 2H), 6.89 (dd, *J* = 16.4, 9.9 Hz, 1H), 6.25 (d, *J* = 16.4 Hz, 1H), 6.13 (d, *J* = 9.9 Hz, 1H), 2.46 (s, 3H), 2.29 (s, 3H). LC/MS (ESI) *m/z* 411.87; [M+H]⁺ calcd for C₂₀H₁₈N₃O₃S₂⁺: 412.08



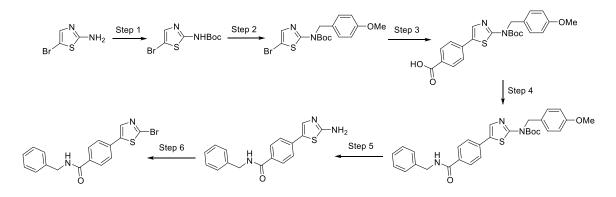
XL_9872_128A (25mg, 60%) ¹H NMR (500 MHz, DMSO) δ 10.44 (s, 1H), 8.59 (s, 1H), 8.23 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.64 – 7.49 (m, 2H), 6.48 (dd, *J* = 17.0, 10.1 Hz, 1H), 6.33 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.87 – 5.78 (m, 1H), 2.47 (s, 3H), 2.30 (s, 3H). LC/MS (ESI) *m/z* 375.97; [M+H]⁺ calcd for C₂₁H₁₈N₃O₂S⁺: 376.11



XL_9872_128B (17mg, 38%) ¹H NMR (500 MHz, DMSO) δ 10.35 (s, 1H), 8.23 (d, *J* = 1.5 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.95 (t, *J* = 1.8 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.45 (m, 2H), 7.38 (dd, *J* = 8.1, 1.6 Hz, 1H), 6.88 (dd, *J* = 16.4, 9.9 Hz, 1H), 6.20 (d, *J* = 16.4 Hz, 1H), 6.11 (d, *J* = 9.9 Hz, 1H), 2.47 (s, 3H), 2.30 (s, 3H). LC/MS (ESI) *m/z* 411.87; [M+H]⁺ calcd for C₂₀H₁₈N₃O₃S₂⁺: 412.08


Synthesis of XL 9872 151A, 151B, 151C:

XL_9872_151A (0.11g, 64%) ¹H NMR (500 MHz, DMSO) δ 9.21 (t, *J* = 5.8 Hz, 1H), 8.65 (s, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 8.04 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.39 – 7.30 (m, 4H), 7.30 – 7.20 (m, 1H), 4.52 (d, *J* = 5.9 Hz, 2H). LC/MS (ESI) *m/z* 346.77; [M+H]⁺ calcd for C₁₅H₁₂BrN₂OS⁺: 346.98



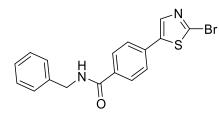
XL_9872_151B (0.075g, 51%) ¹H NMR (500 MHz, DMSO) δ 9.08 (t, *J* = 6.1 Hz, 1H), 8.31 (s, 1H), 7.37 – 7.27 (m, 4H), 7.27 – 7.19 (m, 1H), 4.43 (d, *J* = 6.3 Hz, 2H). LC/MS (ESI) *m/z* 296.77; [M+H]⁺ calcd for C₁₁H₁₀BrN₂OS⁺: 296.97

XL_9872_151C ¹H NMR (500 MHz, DMSO) δ 9.32 (t, *J* = 5.8 Hz, 1H), 8.28 (d, *J* = 5.6 Hz, 1H), 7.39 – 7.30 (m, 4H), 7.30 – 7.21 (m, 1H), 4.46 (d, *J* = 5.9 Hz, 2H). LC/MS (ESI) *m/z* 296.87; [M+H]⁺ calcd for C₁₁H₁₀BrN₂OS⁺: 296.97

Synthesis of XL 9872 159:

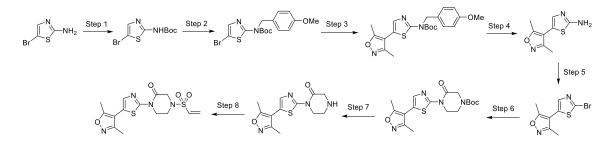
Step 1: 2-amino-5-bromothiazole hydrobromide (1.3g, 5.0mmol), di-tert-butyl decarbonate (1.3g, 6.0mmol), Et3N (1.4mL, 10.0mmol), and DMAP (0.06g, 0.5mmol) were added into 5mL THF sequentially. The mixture was stirred at room temperature overnight, and diluted with EtOAc (30mL). The solution was washed with saturated sodium bicarbonate (30mL×2). Combined aqueous layers was extracted with EtOAc (50mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford crude material. The crude was purified by flash chromatography

(hexanes/EtOAc) to afford desired product. LC/MS (ESI) m/z 222.88 (M+H–t-butyl); [M+H]⁺ calcd for C₈H₁₂BrN₂O₂S⁺: 278.98


Step 2: tert-Butyl (5-bromothiazol-2-yl)carbamate (0.57g, 2.1mmol), PPh₃ (1.18g, 4.5mmol), and p-methoxybenzyl alcohol (0.57g, 4.1mmol) were mixed up in 10mL anhydrous THF. The mixture was stirred at 0°C while DIAD (0.91g, 4.5mmol) was added dropwisely. Upon completion, the mixture was warmed to room temperature, and stirred for 2 hours. The resulting reaction mixture was diluted with EtOAc (30mL). The solution was washed with saturated sodium bicarbonate (30mL×2). Combined aqueous layers was extracted with EtOAc (50mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford crude material. The crude was purified by flash chromatography (hexanes/EtOAc) to afford desired product (0.60g, 74%). LC/MS (ESI) m/z342.24 (M+H–t-butyl); [M+H]⁺ calcd for C₁₆H₂₀BrN₂O₃S⁺: 399.04

Step 3: tert-butyl (5-bromothiazol-2-yl)(4-methoxybenzyl)carbamate (0.2g, 0.5mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.26g, 1.0mmol), potassium carbonate (0.14g, 1.0mmol) and Pd(dppf)Cl₂ (0.04g, 0.05mmol) were added into 1,4dioxane/H₂O (3mL/0.5mL). The mixture was purged with N₂ for 10min before stirring at 95°C overnight under N₂. Then the mixture was concentrated under reduced pressure, diluted with EtOAc (30mL), and washed with saturated NH₄Cl (30mL×2). Combined aqueous layer was extracted with EtOAc (50mL). Combined organic layer was washed once with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product (0.1g, 45%). LC/MS (ESI) *m/z* 384.77 (M+H–*t*-butyl); [M+H]⁺ calcd for C₂₃H₂₅N₂O₅S⁺: 441.15

Step 4: 4-(2-((tert-butoxycarbonyl)(4-methoxybenzyl)amino)thiazol-5-yl)benzoic acid (0.1g, 0.23mmol), benzylamine (0.03g, 0.28mmol), Et₃N (0.18mL, 1.25mmol), and HATU (0.13g, 0.35mmol) were added into 3mL DMF. The mixture was stirred at room temperature overnight, and purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product (0.03g, 25%). LC/MS (ESI) m/z 473.88 (M+H–t-butyl); [M+H]⁺ calcd for C₃₀H₃₂N₃O₄S⁺: 530.21


Step 5: tert-butyl (5-(4-(benzylcarbamoyl)phenyl)thiazol-2-yl)(4-methoxybenzyl)carbamate (0.03g, 0.06mmol) were dissolved in DCM (2-3mL) and treated with TFA (2-3mL). The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N). LC/MS (ESI) *m/z* 309.87; [M+H]⁺ calcd for $C_{17}H_{16}N_3OS^+$: 310.10

Step 6: 4-(2-aminothiazol-5-yl)-N-benzylbenzamide (0.028g, 0.09mmol), CuBr₂ (0.025g, 0.18mmol), and t-butyl nitrite (0.02g, 0.18mmol) were added into 2mL anhydrous MeCN at 0°C. The mixture was then warmed up to room temperature then 65°C, and stirred for 4 hours. The reaction was cooled to room temperature, and diluted with water (30mL). The mixture was acidified with HBr (48%wt in H₂O) to pH=2 and extracted with EtOAc (30mL×2). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude material. The material was purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products to afford desired product (6mg, 18%).

XL_9872_159 ¹H NMR (500 MHz, DMSO) δ 9.14 (t, *J* = 5.9 Hz, 1H), 8.23 (s, 1H), 7.98 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.34 (dd, *J* = 7.7, 5.6 Hz, 4H), 7.29 – 7.22 (m, 1H), 4.50 (d, *J* = 6.0 Hz, 2H). LC/MS (ESI) *m/z* 372.67; [M+H]⁺ calcd for C₁₇H₁₄BrN₂O₄S⁺: 373.00

Synthesis of XL 9872 163:

Step 1: 2-amino-5-bromothiazole hydrobromide (1.3g, 5.0mmol), di-tert-butyl decarbonate (1.3g, 6.0mmol), Et₃N (1.4mL, 10.0mmol), and DMAP (0.06g, 0.5mmol) were added into 5mL THF sequentially. The mixture was stirred at room temperature overnight, and diluted with EtOAc (30mL). The solution was washed with saturated sodium bicarbonate (30mL×2). Combined aqueous layers was extracted with EtOAc (50mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford crude material. The crude was purified by flash chromatography (hexanes/EtOAc) to afford desired product. LC/MS (ESI) m/z 222.88 (M+H–*t*-butyl); [M+H]⁺ calcd for C₈H₁₂BrN₂O₂S⁺: 278.98

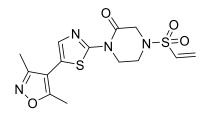
Step 2: tert-Butyl (5-bromothiazol-2-yl)carbamate (0.57g, 2.1mmol), PPh₃ (1.18g, 4.5mmol), and p-methoxybenzyl alcohol (0.57g, 4.1mmol) were mixed up in 10mL anhydrous THF. The mixture was stirred at 0°C while DIAD (0.91g, 4.5mmol) was added dropwisely. Upon completion, the mixture was warmed to room temperature, and stirred for 2 hours. The resulting reaction mixture was diluted with EtOAc (30mL). The solution was washed with saturated sodium bicarbonate (30mL×2). Combined aqueous layers was extracted with EtOAc (50mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford crude material. The crude was purified by flash chromatography (hexanes/EtOAc) to afford desired product (0.60g, 74%). LC/MS (ESI) m/z 342.24 (M+H–t-butyl); [M+H]⁺ calcd for C₁₆H₂₀BrN₂O₃S⁺: 399.04

Step 3: tert-butyl (5-bromothiazol-2-yl)(4-methoxybenzyl)carbamate (0.2g, 0.5mmol), (3,5dimethylisoxazol-4-yl)boronic acid (0.14g, 1.0mmol), potassium carbonate (0.14g, 1.0mmol) and Pd(dppf)Cl₂ (0.04g, 0.05mmol) were added into 1,4-dioxane/H₂O (3mL/0.5mL). The mixture was purged with N₂ for 10min before stirring at 95°C overnight under N₂. Then the mixture was concentrated under reduced pressure, diluted with EtOAc (30mL), and washed with saturated NH₄Cl (30mL×2). Combined aqueous layer was extracted with EtOAc (50mL). Combined organic layer was washed once with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure to afford crude material, which was then purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product (0.19g, 91%). LC/MS (ESI) *m/z* 359.77 (M+H–*t*butyl); [M+H]⁺ calcd for C₂₁H₂₆N₃O₄S⁺: 416.16

56

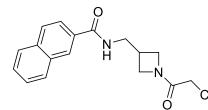
Step 4: tert-butyl (5-(3,5-dimethylisoxazol-4-yl)thiazol-2-yl)(4-methoxybenzyl)carbamate (0.19g, 0.45mmol) was dissolved in 3mL DCM. Into the solution was added 3mL TFA. The mixture was stirred at 80°C for 5 hours, then concentrated under reduced pressure, and re-dissolved in DCM (50mL). The organic solution was basified using saturated NaHCO₃ (50mL×2). Combined aqueous layer was extracted with DCM (50mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford crude material (0.13g, quant.) which was used directly in the following step without further purification. LC/MS (ESI) m/z 195.98; [M+H]⁺ calcd for C₈H₁₀N₃OS⁺: 196.05

Step 5: Step 6: 4-(2-aminothiazol-5-yl)-N-benzylbenzamide (0.078g, 0.4mmol), CuBr₂ (0.115g, 0.8mmol), and t-butyl nitrite (0.082g, 0.8mmol) were added into 3mL anhydrous MeCN at 0°C. The mixture was then warmed up to room temperature then 65°C, and stirred for 4 hours. The reaction was cooled to room temperature, and diluted with water (30mL). The mixture was acidified with HBr (48%wt in H₂O) to pH=2 and extracted with EtOAc (30mL×2). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude material. The material was purified by flash chromatography (hexanes/EtOAc) to afford the target product (0.076g, 75%). LC/MS (ESI) m/z 258.77; [M+H]⁺ calcd for C₈H₈BrN₂OS⁺: 258.95

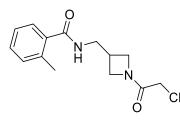

Step 6: 4-(2-bromothiazol-5-yl)-3,5-dimethylisoxazole (0.076g, 0.3mmol), 1-Boc-3-oxopiperazine (0.12g, 0.6mmol), cesium carbonate (0.39g, 1.2mmol), Pd₂(dba)₃ (0.028g, 0.03mmol), and Xantphos (0.035g, 0.06mmol) were added into 4mL 1,4-dioxane. The mixture was degassed by bubbling in N₂ for 10-15min before heated at 95°C overnight. Then the mixture was cooled to room temperature before diluted with EtOAc (30mL). Organic layer was washed with 20% citric acid (20mL×2). Combined aqueous layer was extracted with EtOAc (30mL). Combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford crude material. The crude material was purified by flash chromatography (hexanes/EtOAc/MeOH) to afford desired product (0.035g, 31%). LC/MS (ESI) m/z 378.87; [M+H]⁺ calcd for C₁₇H₂₃N₄O₄S⁺: 379.14

Step 7: tert-butyl 4-(5-(3,5-dimethylisoxazol-4-yl)thiazol-2-yl)-3-oxopiperazine-1-carboxylate (0.035g, 0.09mmol) were dissolved in DCM (1mL) and treated with 4M HCl in 1,4-dioxane (1mL).

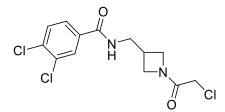
57

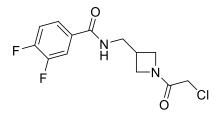

The mixtures were stirred at room temperature until the tert-butyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixture was concentrated and flushed by flash column chromatography (EtOAc/MeOH/0.5%Et₃N) to afford desired product (0.025g, 97%).

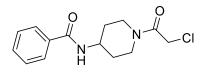
Step 8: 1-(5-(3,5-dimethylisoxazol-4-yl)thiazol-2-yl)piperazin-2-one (0.025g, 0.087mmol), Et₃N (0.1mL, 0.7mmol) were added in to 2mL DCM at 0°C. Into the solution was added 2-chloroethane sulfonyl chloride (0.023g, 0.14mmol). The mixture was stirred at 0°C for 1 hour before purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products to afford desired product (7mg, 22%).

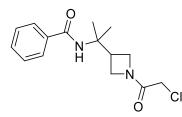


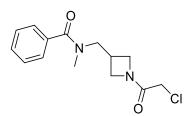
XL_9872_163 ¹H NMR (500 MHz, DMSO) δ 7.69 (s, 1H), 6.99 (dd, *J* = 16.5, 10.0 Hz, 1H), 6.41 – 6.12 (m, 2H), 4.28 – 4.18 (m, 2H), 4.12 (s, 2H), 3.68 – 3.59 (m, 2H), 2.48 (s, 3H), 2.29 (s, 3H). LC/MS (ESI) *m/z* 368.87; [M+H]⁺ calcd for C₁₄H₁₇N₄O₄S₂⁺: 369.07

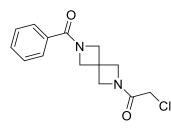

Synthesis of XL_11478_092A, 092B, 092C, 092D, 092E, 093A, 093B, 093C, 093D, 093E, 093F:

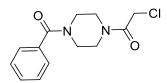

Synthesis of XL_11478_092A followed the General Procedure 1 by using 2-naphthoic acid (0.10g, 0.6mmol) and t-butyl-3-(aminoethyl)acetidine-1-carboxylate (0.09g, 0.5mmol) to afford XL_11478_092A (0.027g, 17%) ¹H NMR (500 MHz, DMSO) δ 8.82 (t, *J* = 5.6 Hz, 1H), 8.44 (s, 1H), 8.01 (m,3H), 7.93 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.68 – 7.54 (m, 2H), 4.28 (t, *J* = 8.6 Hz, 1H), 4.16 – 4.05 (s, 2H), 4.00 (dd, *J* = 16.6, 7.8 Hz, 2H), 3.74 (dd, *J* = 9.8, 5.4 Hz, 1H), 3.59 – 3.49 (m, 2H), 3.00 – 2.80 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 167.31, 166.18, 134.62, 132.60, 132.19, 129.28, 128.36, 128.09, 128.07, 127.93, 127.22, 124.64, 53.93, 51.94, 42.67, 40.44, 29.04. LC/MS (ESI) *m/z* 316.67; [M+H]⁺ calcd for C₁₇H₁₈ClN₂O₂⁺: 317.11

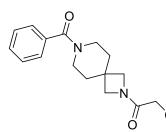

Synthesis of XL_11478_092B followed the General Procedure 1 by using 2-methylbenzoic acid (0.08g, 0.6mmol) and t-butyl-3-(aminoethyl)acetidine-1-carboxylate (0.09g, 0.5mmol) to afford XL_11478_092B (0.042g, 30%) ¹H NMR (500 MHz, DMSO) δ 8.44 (m, 1H), 7.41 – 7.28 (m, 2H), 7.28 – 7.18 (m, 2H), 4.32 – 4.21 (m, 1H), 4.15 – 4.05 (m, 2H), 4.02 – 3.91 (m, 2H), 3.76 – 3.63 (m, 1H), 3.44 (m, 2H), 2.91 – 2.77 (m, 1H), 2.33 (s, 3H). LC/MS (ESI) *m/z* 280.77; [M+H]⁺ calcd for C₁₄H₁₈ClN₂O₂⁺: 281.11


Synthesis of XL_11478_092C followed the General Procedure 1 by using 3,4-dichlorobenzoic acid (0.12g, 0.6mmol) and t-butyl-3-(aminoethyl)acetidine-1-carboxylate (0.09g, 0.5mmol) to afford XL_11478_092C (0.058g, 35%) ¹H NMR (500 MHz, DMSO) δ 8.80 (t, *J* = 5.6 Hz, 1H), 8.07 (d, *J* = 2.0 Hz, 1H), 7.82 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.80 – 7.69 (m, 1H), 4.32 – 4.20 (m, 1H), 4.16 – 4.04 (s, 2H), 3.99 – 3.89 (m, 2H), 3.68 (dd, *J* = 9.9, 5.4 Hz, 1H), 3.49 (dd, *J* = 6.8, 5.9 Hz, 2H), 2.91 – 2.78 (m, 1H). LC/MS (ESI) *m/z* 334.87; [M+H]⁺ calcd for C₁₃H₁₄Cl₃N₂O₂⁺: 335.01

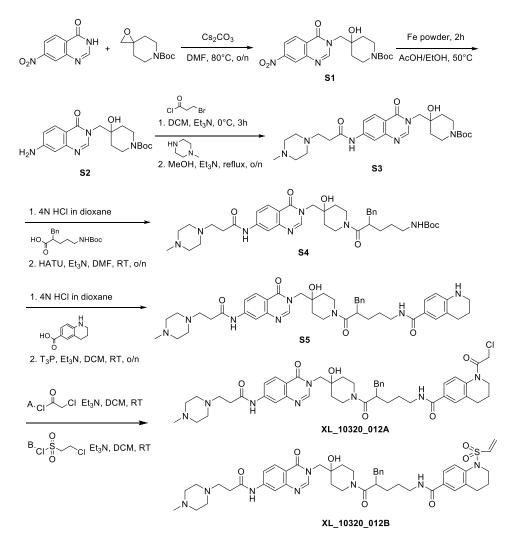

Synthesis of XL_11478_092D followed the General Procedure 1 by using 3,4-difluorobenzoic acid (0.095g, 0.6mmol) and t-butyl-3-(aminoethyl)acetidine-1-carboxylate (0.09g, 0.5mmol) to afford XL_11478_092D (0.037g, 25%) ¹H NMR (500 MHz, DMSO) δ 8.77 (m, 1H), 8.00 – 7.85 (m, 1H), 7.80 – 7.68 (m, 1H), 7.61 – 7.49 (m, 1H), 4.29 – 4.22 (m, 1H), 4.14 – 4.04 (m, 2H), 3.99 – 3.91 (m, 2H), 3.73 – 3.64 (m, 1H), 3.48 (dd, *J* = 11.7, 5.4 Hz, 2H), 2.92 – 2.77 (m, 1H). LC/MS (ESI) *m/z* 302.97; [M+H]⁺ calcd for C₁₃H₁₄ClF₂N₂O₂⁺: 303.07


Synthesis of XL_11478_093A followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butyl-4-amino piperidine-1-carboxylate (0.10g, 0.5mmol) to afford XL_11478_093A (0.07g, 52%) ¹H NMR (500 MHz, DMSO) δ 8.32 (d, *J* = 7.7 Hz, 1H), 7.85 (d, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 4.44 (d, *J* = 12.8 Hz, 1H), 4.35 (d, *J* = 12.9 Hz, 1H), 4.30 (d, *J* = 13.2 Hz, 1H), 4.14 – 4.00 (m, 1H), 3.87 (d, *J* = 13.6 Hz, 1H), 3.19 (t, *J* = 11.8 Hz, 1H), 2.81 (t, *J* = 11.5 Hz, 1H), 1.96 – 1.74 (m, 2H), 1.57 (qd, *J* = 12.2, 4.0 Hz, 1H), 1.42 (qd, *J* = 12.3, 4.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 166.25, 164.92, 135.05, 131.56, 128.63, 127.77, 46.83, 45.00, 42.38, 41.32, 32.24, 31.45. LC/MS (ESI) *m/z* 280.77; [M+H]⁺ calcd for C₁₄H₁₈ClN₂O₂⁺: 281.11


Synthesis of XL_11478_093B followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butyl-3-(2-aminopropan-2-yl)azetidine-1-carboxylate (0.10g, 0.5mmol) to afford XL_11478_093B (5mg, 3.4%) LC/MS (ESI) m/z 295.18; [M+H]⁺ calcd for C₁₅H₂₀ClN₂O₂⁺: 295.12


Synthesis of XL_11478_093C followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butyl-ethylaminoazetidine-1-carboxylate (0.10g, 0.5mmol) to afford XL_11478_093C (0.032g, 23%) 1H NMR (500 MHz, CDCl3) δ 7.49 – 7.35 (m, 5H), 4.42 (br, 1H), 4.27 (br, 2H), 4.08 (br, 1H), 3.91 (br, 3H), 3.60 (dd, J = 13.5, 6.6 Hz, 1H), 3.02 (s, 4H). LC/MS (ESI) m/z 281.08; [M+H]+ calcd for C14H18CIN2O2+: 281.11

Synthesis of XL_11478_093D followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butyl-2,6-diazaspiro[3,3]heptane-2-carboxylate (0.10g, 0.5mmol) to afford XL_11478_093D (0.054g, 39%) ¹H NMR (500 MHz, DMSO) δ 7.67 – 7.56 (m, 2H), 7.50 (m, 3H), 4.46 (br, 2H), 4.39 – 4.29 (m, 2H), 4.18 (m, 2H), 4.15 – 4.00 (m, 4H). LC/MS (ESI) *m/z* 278.67; [M+H]⁺ calcd for C₁₄H₁₆ClN₂O₂⁺: 279.09


Synthesis of XL_11478_093E followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butylpiperazine-1-carboxylate (0.093g, 0.5mmol) to afford XL_11478_093E (0.11g, 83%) ¹H NMR (500 MHz, DMSO) δ 7.51 – 7.45 (m, 3H), 7.45 – 7.40 (m, 2H), 4.37 (s, 2H), 3.54 (br, 8H). LC/MS (ESI) *m/z* 266.77; [M+H]⁺ calcd for C₁₃H₁₆ClN₂O₂⁺: 267.09

Synthesis of XL_11478_093F followed the General Procedure 1 by using benzoic acid (0.07g, 0.6mmol), t-butyl-2,7-diazaspiro[3,5]nonane-2-carboxylate (0.11g, 0.5mmol) to afford

XL_11478_093F (0.053g, 35%) 1H NMR (500 MHz, CDCl3) δ 7.51 – 7.35 (m, 5H), 4.05 (br, 2H), 3.93 (s, 2H), 3.86 (br, 2H), 3.68 (br, 1H), 3.41 (br, 2H), 1.85 (br, 4H). LC/MS (ESI) m/z 307.08; [M+H]+ calcd for C₁₆H₂₀ClN₂O₂⁺: 307.12.

Synthesis of XL 10320 012A, 012B:

Step 1 (Synthesis of **S1**): 7-nitroquinazolin-4(*3H*)-one (1.55g, 8.1mmol) and *tert*-butyl-1-oxa-6-azaspiro[2.5]octane-6-carboxylate (1.90g, 8.9mmol) were added into 20mL DMF. Cesium carbonate (7.82g, 24.0mmol) was added in one portion. The mixture was heated at 80°C overnight. The mixture was diluted with EtOAc, then washed with sat. NaCl. Combined organic layer was concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc: hexanes: 50%-70%) to afford 2.42g **S1** (75%). ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, *J* = 2.1 Hz, 1H), 8.44 (t, *J* = 8.6 Hz, 1H), 8.26 (dd, *J* = 8.8, 2.2 Hz, 1H), 8.20 (s, 1H), 4.10 (s,

2H), 3.88 (s, 2H), 3.14 (t, *J* = 11.6 Hz, 2H), 1.73 – 1.48 (m, 5H), 1.44 (s, 9H). LCMS (ESI) *m/z* 304.97 (M + H - Boc) [(M+H)⁺ C₁₉H₂₅N₄O₆⁺ calcd for 405.18]

Step 2 (Synthesis of **S2**): Compound **S1**(2.4g, 6.0mmol) was suspended in 20mL solvent (EtOH/AcOH=1:1). 4 eq. of Fe powder was added in portions. The mixture was stirred for 1 hour at 55°C. Then the reaction was cooled down to room temperature, and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to afford the crude product, which was then purified by flash chromatography (10%MeOH in EtOAc) to afford 2.1g product **S2** (93%) ¹H NMR (500 MHz, DMSO) δ 8.04 (s, 1H), 7.79 (d, *J* = 8.7 Hz, 1H), 6.72 (dd, *J* = 8.7, 1.9 Hz, 1H), 6.61 (d, *J* = 2.0 Hz, 1H), 6.09 (s, 2H), 4.87 (s, 1H), 3.89 (s, 2H), 3.64 (d, *J* = 12.0 Hz, 2H), 3.05 (s, 2H), 1.54 – 1.24 (m, 13H).LCMS (ESI) *m/z* 374.97 [(M+H)⁺ C₁₉H₂₇N₄O₄⁺ calcd for 375.20]

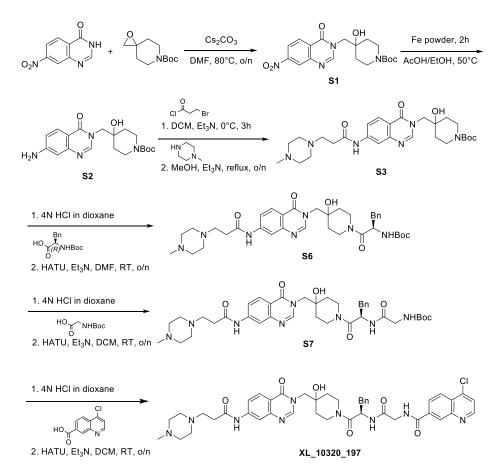
Step 3 (Synthesis of **S3**): Compound **S2** (2.1g, 5.6mmol) was dissolved in anhydrous 10mL dichloromethane under N₂ at 0°C. 3.0 eq. of Et₃N was added. Then 3-bromopropionyl chloride (1.15g, 6.7mmol) was added dropwisely. The mixture was stirred at 0°C for 1 hour, then quenched with MeOH, and concentrated under reduced pressure. The solid residue was directly used for the following step without further purification. The crude product from last step was dissolved in 10mL MeOH, then 3.0eq of Et₃N was added. Into the stirred mixture was added 1-methylpiperazine (0.67g, 6.7mmol) dropwisely. After the addition completed, the mixture was stirred for 1 hour at 50°C. Then the reaction mixture was cooled down to room temperature and concentrated under reduced pressure, then directly subjected to HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 2.1g product **S3** (73% in two steps) ¹H NMR (500 MHz, CD₃OD) δ 8.28 (s, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.12 (d, *J* = 1.9 Hz, 1H), 7.69 (dd, *J* = 8.7, 2.0 Hz, 1H), 4.11 (s, 2H), 3.82 (d, *J* = 13.4 Hz, 2H), 3.23 (m, 2H), 2.85 (t, *J* = 7.0 Hz, 2H), 2.79 – 2.50 (m, 10H), 2.37 (s, 3H), 1.72 – 1.62 (m, 2H), 1.50 (d, *J* = 17.4 Hz, 11H). LCMS (ESI) *m/z* 529.08 [(M+H)⁺ C₂₇H₄₁N₆O₅⁺ calcd for 529.31].

Step 4 (Synthesis of **S4**): **S3** (0.53g, 1.0mmol) was dissolved in 3mL DCM, then 5mL 4M HCl in 1,4dioxane was added in portions. The solution was stirred for 1 hour at room temperature. Then the mixture was concentrated under reduced pressure, and left on high vacuum overnight to remove residual acid. Then the product (0.11g, 0.25mmol) was dissolved in 3mL DMF, and basified by adding 10 eq of Et₃N. Into the solution 2-benzyl-5-((tert-

63

butoxycarbonyl)amino)pentanoic acid (0.11g, 0.35mmol) and HATU (0.16g, 0.4mmol) sequentially The resultant solution was stirred overnight. Then the mixture was directly subjected to HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 183mg **S4** (quantitative) ¹H NMR (500 MHz, DMSO) δ 10.51 (s, 1H), 8.16-8.04 (m, 2H, conformer), 8.01 (dd, J = 5.0, 1.9 Hz, 1H), 7.61 (ddd, J = 9.8, 8.3, 2.0 Hz, 1H), 7.29 – 7.19 (m, 2H), 7.19 – 7.07 (m, 3H), 6.76 (m, 1H), 4.84 (s, 1H), 4.11 (m, 1H), 4.05 – 3.87 (m, 2H), 3.80 (d, J = 13.7 Hz, 1H), 3.67 – 3.49 (m, 3H), 3.16 – 3.03 (m, 2H), 2.98 (s, 1H), 2.85 (m, 3H), 2.77 – 2.58 (m, 5H), 2.55 (m, 3H), 2.22 (s, 3H), 1.61 – 1.44 (m, 1H), 1.43 – 1.33 (m, 9H, conformer), 1.33 – 1.22 (m, 3H), 1.22 – 1.02 (m, 4H), 0.39 (m, 1H). LCMS (ESI) m/z 718.00 [(M+H)⁺718.43 calcd for C₃₉H₅₆N₇O₆⁺]

Step 5 (Synthesis of S5): **S4** (0.15g, 0.2mmol) was dissolved in 2mL DCM, then 2mL 4M HCl in 1,4dioxane was added in portions. The solution was stirred for 1 hour at room temperature. Then the mixture was concentrated under reduced pressure, and left on high vacuum overnight to remove residual acid. Then the product (0.12g, 0.2mmol) was dissolved in 3mL DMF, and basified by adding 10 eq of Et₃N. Into the solution 1,2,3,4-tetrahydroquinoline carboxylic acid (0.064g, 0.3mmol) and HATU (0.12g, 0.3mmol) sequentially. The resultant solution was stirred overnight. Then the mixture was directly subjected to HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 108mg **S5** (56%). LCMS (ESI) *m/z* 776.91 [(M+H)⁺ 777.44 calcd for C₄₄H₅₇N₈O₅⁺]

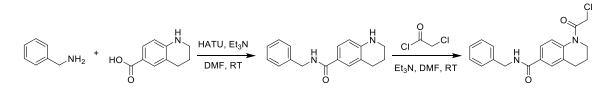

Step 6 (Synthesis of XL_10320_012A, 012B): S5 (0.054g, 0.07mmol) was dissolved in anhydrous DCM/DMF co-solvent (2mL, v/v=1:1). Et₃N (0.05mL, 0.34mmol) was added into the solution, followed by addition of 2-chloroacetyl chloride (9.4mg, 0.08mmol) or 2-chloroethane-1-sulfonyl chloride (22mg, 0.14mmol). The mixture was stirred at 0°C for 1 hour before purified by flash chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products.

XL_10320_012A (31mg, 53%, mixture of rotamers) ¹H NMR (500 MHz, DMSO) δ 10.66 (s, 1H), 8.41 (dt, *J* = 10.9, 5.4 Hz, 1H), 8.22 – 8.00 (m, 3H), 7.66 (m, 4H), 7.30 – 7.17 (m, 2H), 7.17 – 7.05 (m, 3H), 4.57 (s, 2H), 4.12 (d, *J* = 12.4 Hz, 0.5H), 3.94 (m, 1H), 3.81 (d, *J* = 13.6 Hz, 0.5H), 3.71 (t, *J* = 6.2 Hz, 2H), 3.66 – 3.54 (m, 2H), 3.36 (m, 3H), 3.32 – 3.15 (m, 5.5H), 3.05 (m, 3H), 2.80 (m, 5.5H), 2.78 – 2.57 (m, 5.5H), 1.98 – 1.81 (m, 2H), 1.59 (m, 1H), 1.51 – 1.25 (m, 5H), 1.13 (m, 3H), 0.39 (m, 1H). LCMS (ESI) *m/z* 853.02 [(M+H)⁺ 853.42 calcd for C₄₆H₅₈ClN₈O₆⁺] XL_10320_012B (34mg, 57%, mixture of rotamers) ¹H NMR (500 MHz, DMSO) δ 10.67 (s, 1H), 8.37 (dt, *J* = 11.0, 5.5 Hz, 1H), 8.24 – 8.00 (m, 3H), 7.59 (m, 4H), 7.21 (m, 2H), 7.16 – 7.04 (m, 3H), 6.90 (dd, *J* = 16.3, 9.9 Hz,

64

1H), 6.14 (d, *J* = 15.0 Hz, 1H), 6.10 (d, *J* = 10.0 Hz, 1H), 4.12 (d, *J* = 12.1 Hz, 0.5H), 4.05 – 3.86 (m, 1H), 3.81 (d, *J* = 13.6 Hz, 0.5H), 3.75 – 3.59 (m, 3.5H), 3.48 (m, 3.5H), 3.28 (m, 4H), 3.19 (m, 2.5H), 3.10 (m, 2.5H), 2.93 – 2.76 (m, 7H), 2.67 (m, 3H), 1.99 – 1.82 (m, 2H), 1.56 (m, 1H), 1.51 – 1.23 (m, 5H), 1.23 – 0.99 (m, 3H), 0.39 (t, *J* = 10.5 Hz, 1H). LCMS (ESI) *m/z* 866.82 [(M+H)⁺ 867.42 calcd for C₄₆H₅₉N₈O₇S⁺]

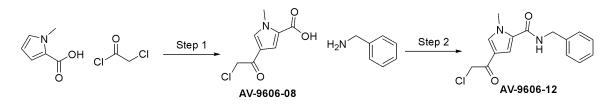
Synthesis of XL 10320 197:


Step 1-3 (Synthesis of S1-S3): the same as the steps in synthetic routes toward XL_10320_012A, B.

Step 4: (Synthesis of **S6**): **S3** (0.20g, 0.4mmol) was dissolved in 2mL DCM, then 2mL 4M HCl in 1,4dioxane was added in portions. The solution was stirred for 1 hour at room temperature. Then the mixture was concentrated under reduced pressure, and left on high vacuum overnight to remove residual acid. Then the product (0.16g, 0.4mmol) was dissolved in 5mL DMF, and basified by adding 10 eq of Et₃N. Into the solution (tert-butoxycarbonyl)-D-phenylalanine (0.15g, 0.56mmol) and HATU (0.29g, 0.76mmol) sequentially. The resultant solution was stirred overnight. Then the mixture was directly subjected to HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 110mg **S6** (43%). LCMS (ESI) m/z 676.00 [(M+H)⁺ 676.38 calcd for C₃₆H₅₀N₇O₆⁺]

Step 5: (Synthesis of **S7**): **S6** (0.11g, 0.16mmol) was dissolved in 2mL DCM, then 2mL 4M HCl in 1,4-dioxane was added in portions. The solution was stirred for 1 hour at room temperature. Then the mixture was concentrated under reduced pressure, and left on high vacuum overnight to remove residual acid. Then the product (0.092g, 0.16mmol) was dissolved in 3mL DMF, and basified by adding 10 eq of Et₃N. Into the solution *N*-Boc glycine (0.053g, 0.3mmol) and HATU (0.15g, 0.4mmol) sequentially. The resultant solution was stirred overnight. Then the mixture was directly subjected to HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 87mg **S7** (63%). LCMS (ESI) *m/z* 732.81 [(M+H)⁺ 733.40 calcd for C₃₈H₅₃N₈O₇⁺]

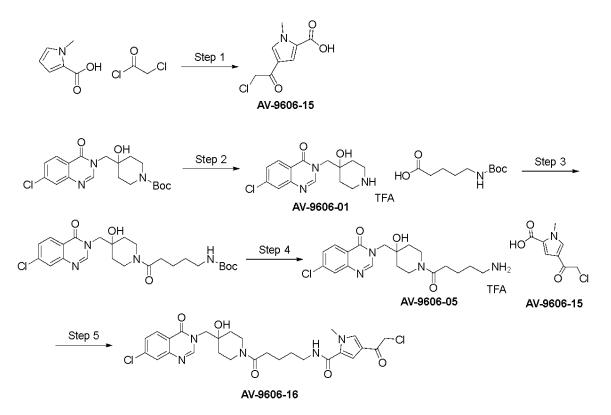
Step 6 (Synthesis of XL_10320_197): **S7** (0.087g, 0.12mmol) was dissolved in 2mL DCM, then 2mL 4M HCl in 1,4-dioxane was added in portions. The solution was stirred for 1 hour at room temperature. Then the mixture was concentrated under reduced pressure, and left on high vacuum overnight to remove residual acid. Then the product (0.076g, 0.12mmol) was dissolved in 3mL anhydrous DCM, and basified by adding 10 eq of Et₃N. Into the solution 4-chloroquinoline-7-carboxylic acid (0.03g, 0.14mmol) and T3P (0.23g, 0.7mmol) sequentially. The resultant solution was stirred overnight. Then the mixture was directly subjected to flash chromatography (EtOAc/MeOH) and HPLC purification (MeOH/H₂O with 4‰ TFA) to afford 25mg **XL_10320_197** (25%). ¹H NMR (500 MHz, MeOD) δ 8.87 (dd, *J* = 4.7, 2.5 Hz, 1H), 8.60 (dd, *J* = 4.1, 1.6 Hz, 1H), 8.38 (dd, *J* = 8.7, 6.7 Hz, 1H), 8.27 – 8.14 (m, 3H), 8.14 – 8.03 (m, 1H), 7.78 (dd, *J* = 4.8, 2.4 Hz, 1H), 7.65 (ddd, *J* = 34.7, 8.7, 2.0 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.32 – 7.16 (m, 4H), 5.25 – 5.08 (m, 1H), 4.27 – 4.06 (m, 3H), 4.00 (dd, *J* = 19.8, 13.9 Hz, 1H), 3.74 (m, 2H), 3.15 – 2.91 (m, 4H), 2.86 – 2.77 (m, 2H), 2.74 – 2.40 (m, 7H), 2.32 (s, 3H), 1.83 – 1.55 (m, 2H), 1.54 – 1.21 (m, 3H), 0.71 – 0.49 (m, 1H). LCMS (ESI) *m/z* 821.69 [(M+H)⁺ 822.35 calcd for C₄₃H₄₉ClN₉O₆⁺]


Synthesis of AC-10180-19:

Synthesis of AC-10180-19 followed the General Procedure 1 by using benzylamine (0.29mL, 2.7mmol), 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.52g, 2.9mmol), HATU (1.12g,

2.9mmol), and Et₃N (1.88mL, 13.4mmol). AC-10180-19 (53mg, 75%) 1H NMR (500 MHz, DMSO) δ 8.99 (t, J = 6.0 Hz, 1H), 7.76 (s, 1H), 7.71 (m, 2H), 7.36 – 7.29 (m, 4H), 7.26 – 7.22 (m, 1H), 4.59 (s, 2H), 4.48 (d, J = 6.0 Hz, 2H), 3.78 – 3.69 (t, J = 10.0 Hz, 2H), 2.78 (t, J = 10.0 Hz, 2H), 1.98 – 1.87 (m, 2H). LC/MS (ESI) m/z 342.79; [M+H]⁺ calcd for C₁₉H₂₀ClN₂O₂⁺: 343.12

Synthesis of AV-9606-12:



Step 1: 1-methyl-1H-pyrrole-2-carboxylic acid (125.1 mg, 1.0 mmol) was added to a heat dried pressure vial flushed with nitrogen and dissolved in DCM (5 mL). The vial was then placed in an ice bath and AlCl₃ (288.0 mg, 2.5 mmol) was then added as a solid to the reaction and the reaction was stirred for 30 minutes on ice. After 30 minutes, chloroacetyl chloride (87.6 μ L, 1.1 mmol) was then added and the reaction was heated to 45°C for 18 hours. The reaction was quenched with saturated sodium bicarbonate solution until pH was greater than 7. The reaction was washed with DCM. The aqueous layer was then acidified with concentrated hydrochloric acid until pH 0-2 at which point the desired product as a white precipitate crashed out. The reaction was filtered to isolate the desired product (126.7 mg, 63% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.90 (d, *J* = 2.0 Hz, 1H), 7.24 (d, *J* = 2.0 Hz, 1H), 4.81 (s, 2H), 3.89 (s, 3H). LC/MS (ESI) *m/z* 202.08 [M+H]+; calcd for C₈H₉CINO₃⁺: 202.03.

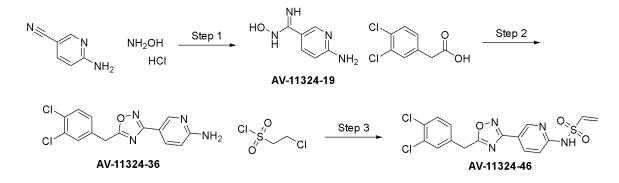
Step 2: AV-9606-08 (60.4 mg, 0.30 mmol) and HATU (137.2 mg, 0.36 mmol) were combined and suspended in THF (2 mL). Et₃N (83.5 μ L, 0.6 mmol) was then added and the reaction was stirred under nitrogen. To the reaction was then added a solution of benzylamine (39.2 μ L, 0.36 mmol) in THF (1 mL). The reaction was stirred at room temperature for 2 hours. The reaction was diluted with EtOAc and washed with water, saturated sodium bicarbonate, and brine. The organics were collected, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude material was purified flash chromatography (DCM/MeOH) to afford the desired product (56.6 mg, 65% yield). ¹H NMR (500 MHz, DMSO-d6) δ 8.84 (t, J = 6.1 Hz, 1H), 7.86 (d, J = 1.9 Hz, 1H), 7.36 –

7.28 (m, 5H), 7.27 – 7.21 (m, 1H), 4.76 (s, 2H), 4.40 (d, J = 6.0 Hz, 2H), 3.89 (s, 3H). LC/MS (ESI) m/z 291.18 [M+H]+; calcd for C₁₅H₁₆ClN₂O₂+: 291.09.

Synthesis of AV-9606-16:

Step 1: 1-methyl-1H-pyrrole-2-carboxylic acid (376.7 mg, 3.0 mmol) was dissolved in DCM (15 mL) and the reaction was placed in an ice bath. To the reaction was then added AlCl₃ (822.6 mg, 6.2 mmol) and the reaction was stirred for 30 minutes on ice. After 30 minutes, chloroacetyl chloride (263.0 μ L, 3.3 mmol) was then added and the reaction was heated to 45°C for 22 hours. The reaction was quenched with saturated sodium bicarbonate solution until pH was greater than 7. The reaction was washed with DCM. The aqueous layer was then acidified with concentrated hydrochloric acid until pH 0-2 at which point the desired product as a white precipitate crashed out. Filter to isolate the desired product (371.5 mg, 61% yield). LC/MS (ESI) *m/z* 202.18 [M+H]+; calcd for C₈H₉CINO₃⁺: 202.03.

Step 2: tert-butyl 4-((7-chloro-4-oxoquinazolin-3(4H)-yl)methyl)-4-hydroxypiperidine-1carboxylate (1004.3 mg, 2.55 mmol) was suspended in TFA. The reaction was stirred under nitrogen gas at room temperature for 2 hours. The reaction was concentrated under reduced pressure and used in the subsequent step without further purification. LC/MS (ESI) m/z 294.08 [M+H]+; calcd for C₁₄H₁₇ClN₃O₂⁺: 294.10.

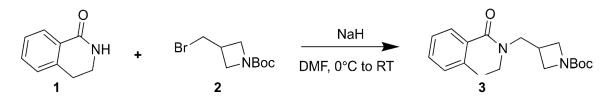

Step 3: 5-(Boc-amino)pentanoic acid (223.7 mg, 1.03 mmol) and HATU (653.2 mg, 2.0 mmol) were combined and suspended in DMF (1 mL). Et₃N (829.2 uL, 5.95 mmol) was added and the reaction was stirred at room temperature for 10 minutes. A solution of AV-9606-01 (249.7 mg, 0.85 mmol) in DMF (1 mL) was then added to the reaction. The reaction was stirred at room temperature under nitrogen for 3 hours. The reaction was diluted with EtOAc and washed with water and brine. The organics were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified via flash chromatography (hexanes/EtOAc/MeOH) to afford the desired product (370 mg, 88%). LC/MS (ESI) m/z 493.20 [M+H]+; calcd for C₂₄H₃₄ClN₄O₅⁺: 493.22.

Step 4: AV-9606-02 (370.0 mg, 0.75 mmol) was dissolved in TFA (3 mL). The reaction was stirred at room temperature for 2 hours. The reaction was concentrated under reduced pressure and the crude material was purified via flash chromatography (EtOAc/MeOH/20%NH₄OH) to afford the desired product (261.3 mg, 89%). LC/MS (ESI) *m/z* 393.29 [M+H]⁺; calcd for $C_{19}H_{26}CIN_4O_3^+$: 393.17.

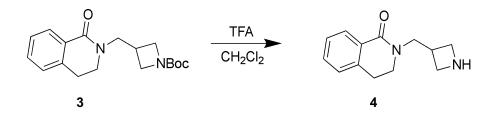
Step 5: AV-9606-15 (65.2 mg, 0.32 mmol) was suspended in DCM (1 mL). Thionyl chloride (1 mL) was added and the reaction was stirred at room temperature for 1 hour. The reaction was concentrated under reduced pressure. The crude material was suspended in DCM (1 mL) and the reaction was placed in an ice bath. To the reaction was then added Et₃N (198.7 μ L, 1.43 mmol) followed by a solution of AV-9606-05 in DCM (1 mL). The reaction was warmed to room temperature and stirred for 1 hour. The reaction was quenched with water (0.5 mL). The crude material was purified via silica gel chromatography (DCM/MeOH) and fractions containing desired product were collected and concentrated under reduced pressure. The material was washed with hexanes, sonicated, and then filtered and dried under vacuum to afford the desired product (8.4 mg, 4.6%). ¹H NMR (500 MHz, Methanol-*d*₄) δ 8.81 (s, 1H), 8.35 – 8.23 (m, 1H), 7.76

(d, J = 2.0 Hz, 1H), 7.73 – 7.62 (m, 2H), 7.21 (d, J = 1.9 Hz, 1H), 4.62 (s, 2H), 4.25 – 4.10 (m, 3H), 3.78 (d, J = 13.8 Hz, 1H), 3.49 – 3.39 (m, 1H), 3.34 (d, J = 6.2 Hz, 2H), 3.21 (q, J = 7.3 Hz, 1H), 3.17 – 3.08 (m, 1H), 2.47 (q, J = 7.0 Hz, 2H), 2.01 (s, 8H), 1.75 – 1.61 (m, 6H), 1.61 – 1.51 (m, 2H), 1.35 – 1.27 (m, 2H). LC/MS (ESI) m/z 576.22 [M+H]⁺; calcd for C₂₇H₃₂Cl₂N₅O₅⁺: 576.18.

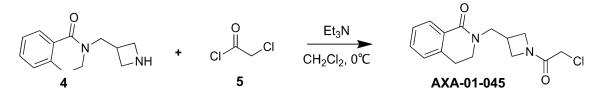
Synthesis of AV-11324-46:


Step 1: 2-amino-5-cyanopyridine (503.7 mg, 4.20 mmol) and hydroxylamine HCl (354.1 mg, 5.10 mmol) were combined and suspended in EtOH (8 mL). Et₃N (2926 μ L, 21.0 mmol) was added and the reaction was stirred at 65°C for 6 hours. The reaction was then removed from heat and stirred at room temperature for 12 hours. The desired product precipitated out of the reaction and was isolated via filtration (316.4 mg, 49.5%). The material was used in the next step without further purification. LC/MS (ESI) *m/z* 153.00 [M+H]⁺; calcd for C₆H₉N₄O⁺: 153.08.

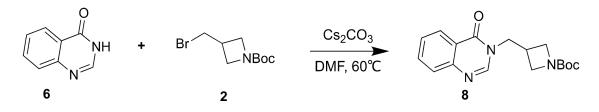
Step 2: 3,4-dichlorophenylacetic acid (390.6 mg, 1.90 mmol) and CDI (462.1 mg, 2.85 mmol) were combined and suspended in MeCN (5 mL). The reaction was stirred at room temperature for 2 hours, at which point AV-11324-19 (316.4 mg, 2.08 mmol) was added to the reaction. The reaction was stirred at room temperature for 30 minutes. DBU was then added (568.3 µL, 3.80 mmol) and the reaction was heated to 60°C for 40 minutes. The reaction was diluted with EtOAc ad washed with water, saturated sodium bicarbonate solution, and brine. The organics were collected, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified via flash chromatography (DCM/MeOH) followed by preparative HPLC


(MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the desired product (32.5 mg, 5.3%). LC/MS (ESI) m/z 320.77 [M+H]⁺; calcd for C₁₄H₁₁Cl₂N₄O⁺: 321.03.

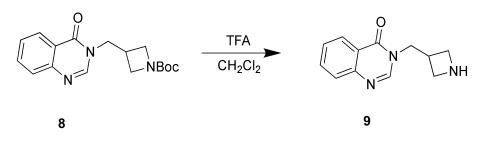
Step 3: AV-11324-36 (32.5 mg, 0.10 mmol) was suspended in DCM (2 mL) and placed in an ice bath. To the reaction was then added 2-chloroethanesulfonyl chloride (26.4 μ L, 0.25 mmol) followed by Et₃N (69.7 μ L, 0.50 mmol). The reaction was stirred at 0°C for 3 hours. The reaction was quenched with water, extracted with DCM, and then washed with brine. The organics were collected, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified via flash chromatography (DCM/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the desired product (0.6 mg, 1.5%) LC/MS (ESI) *m/z* 410.87 [M+H]+; calcd for C₁₆H₁₂Cl₂N₄O₃S⁺: 410.00. ¹H NMR (500 MHz, DMSO-d6) δ 8.38 (d, J = 2.2 Hz, 1H), 7.96 (dd, J = 9.3, 2.1 Hz, 1H), 7.72 (d, J = 2.1 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.41 (dd, J = 8.3, 2.1 Hz, 1H), 6.72 (d, J = 9.4 Hz, 1H), 4.76 – 4.65 (m, 2H), 4.49 (s, 2H), 3.55 – 3.43 (m, 2H).


Synthetic Procedure for AXA-01-045:

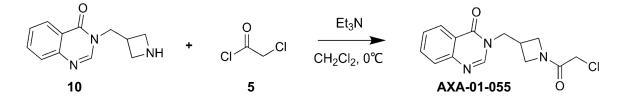
3,4-dihydroisoquinolin-1(2H)-one (1, 73.6 mg, 0.5 mmol) was taken up in DMF (2mL) and cooled to 0°C and NaH (22 mg, 0.55 mmol) was added. The mixture was stirred at 0°C for 30 minutes. Tert-butyl 3-(bromomethyl)azetidine-1-carboxylate (2,149.5 mg, 0.60 mmol) was added to the mixture, and the reaction was warmed to RT and stirred for 2.5 hrs. The reaction was diluted with water (25mL) and extracted with ethyl acetate (25mL x 2). The combined organics were washed with brine (1 x 50mL), dried over anhydrous Na₂SO₄, filtered, concentrated and purified by column chromatography on silica gel (0% to 100% Hexanes/ EtOAc) to afford 3 as a pale-yellow solid (89.9 mg, yield 56.7%). LCMS (m/z): 317.80 [M + H]⁺; calcd for C₁₈H₂₅N₂O₃⁺: 317.19.



A mixture of 3 (89.9 mg, 0.284 mmol), CH_2CI_2 (1.8 mL), and TFA (0.2 mL) was stirred at rt for 3 hrs, the reaction was concentrated in vacuum to leave the crude 4 as a white solid (quantitative yield). LCMS (m/z): 217.80 [M + H]⁺; calcd for $C_{13}H_{17}N_2O^+$: 217.13.

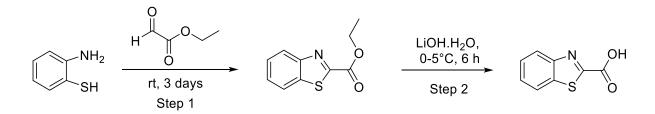

A mixture of 4 (50.0 mg, 0.151 mmol) and Et₃N (46.4 μ L, 0.333 mmol) was taken up in CH₂Cl₂ (4 mL) and cooled to 0°C. 2-chloroacetyl chloride (5, 24 μ L, 0.303 mmol) was added to the reaction mixture. The reaction was warmed to rt and stirred overnight. The reaction was concentrated in vacuum. The mixture was purified by preparative HPLC (MeCN/H2O with 0.0425% TFA) to afford AXA-01-045 as a white solid (17.3 mg, yield 28.1%). LCMS ESI (m/z): 292.67 [M + H]⁺; calcd for C₁₅H₁₇Cl₂N₂O₂⁺: 292.76. ¹H NMR (500 MHz, DMSO-d6) δ 7.92 (dd, J = 8.1, 1.2 Hz, 1H), 7.68 (td, J = 7.5, 1.2 Hz, 1H), 7.58 – 7.25 (m, 2H), 4.45 (s, 2H), 4.36 – 4.15 (m, 2H), 3.76 (ddd, J = 13.7, 4.8, 1.9 Hz, 1H), 3.56 (dd, J = 13.7, 8.0 Hz, 1H), 3.40 – 3.29 (m, 2H), 3.07 (t, J = 6.8 Hz, 2H), 2.69 – 2.55 (m, 1H).

Synthetic Procedure for AXA-01-055:



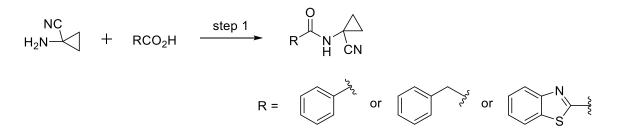
Quinazolin-4(3H)-one (6, 73.1 mg, 0.5 mmol), tert-butyl 3-(bromomethyl)azetidine-1-carboxylate (2, 150.0 mg, 0.6 mmol), and Cs_2CO_3 (325.82 mg, 1.0 mmol) were taken up in DMF (2 mL) and stirred at 60°C for 3 hours. The reaction was diluted with water (25 mL) and extracted with ethyl

acetate (25 mL x 2). The combined organics were washed with brine (50 mL x 1), dried over anhydrous Na₂SO₄, filtered, concentrated and purified by flash chromatography (50% to 100% EtOAc /hexanes) to afford 152.6 mg product 8 (96.8%). LCMS (m/z): 316.37 [M + H]⁺; calcd for $C_{17}H_{22}N_3O_3^+$: 316.17.



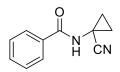
A mixture of tert-butyl-3-((4-oxoquinazolin-3(4H)-yl)methyl)azetidine-1-carboxylate (8, 152.6 mg, 0.484 mmol), CH_2Cl_2 (1.8 mL), and TFA (0.2 mL) was stirred at rt for 3 hours. The reaction was concentrated in vacuum to leave the crude 9 as a white solid (quantitative yield). LCMS (m/z): 216.37 [M + H]⁺. calcd for $C_{12}H_{14}N_3O^+$: 216.11.

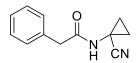
A mixture of 10 (25.0 mg, 0.116 mmol) and Et₃N (81.0 μ L, 0.580 mmol) was taken up in CH₂Cl₂ (2 mL) and cooled to 0°C. 2-chloroacetyl chloride (5, 18.5 μ L, 0.232 mmol) was added to the reaction mixture. The reaction was warmed to rt and stirred for 2 hours. The mixture was purified by flash chromatography (5% to 20% MeOH/EtOAc), followed by preparative HPLC (MeCN/H2O with 0.0425% TFA) to afford 12.6 mg product (37.8%). LCMS ESI (m/z): 292.74 [M + H]⁺. ; calcd for C₁₅H₁₇Cl₂N₃O₂⁺: 292.76. ¹H NMR (500 MHz, DMSO-d6) δ 8.48 (s, 1H), 8.17 (dd, J = 8.1, 1.5 Hz, 1H), 7.85 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.69 (dd, J = 8.2, 1.1 Hz, 1H), 7.57 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 4.32 – 4.21 (m, 3H), 4.07 (dd, J = 8.9, 5.6 Hz, 2H), 3.97 (t, J = 9.2 Hz, 1H), 3.80 (dd, J = 9.9, 5.7 Hz, 1H), 3.17 – 3.07 (m, 1H).


Synthesis of the scaffold: benzo[d]thiazole-2-carboxylic acid

Step 1: A mixture of 2-aminobenzenethiol (2.76mL, 25.6mmol) and ethyl 2-oxoacetate (50% in toluene) (6.28mL, 30.7mmol) was stirred at room temperature for 3 days. The mixture was diluted with EtOAc, and washed with H₂O three times. The organic layer was then washed with brine and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (EtOAc in hexanes, 20% to 60%) and preparative HPLC (MeCN/H₂O with 0.0425% TFA) to afford desired product (1.8g, 34%). LCMS ESI (*m/z*): 208.18; [M+H]⁺ calcd for C₁₀H₁₀NO₂S⁺: 208.04

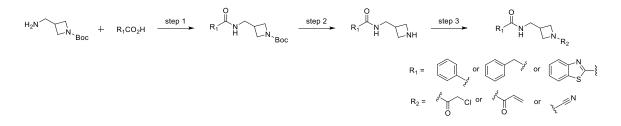
Step 2: To a solution of ethyl benzo[d]thiazole-2-carboxylate (0.80g, 3.8mmol) in H₂O (16mL) and THF (12mL) was added a solution of lithium hydroxide monohydrate (0.16g, 3.8mmol) in water at 0~5°C, then stirred at 0~5°C for 6 hours. The mixture was diluted with H2O (~50mL), and adjusted to pH=4~5 with 2N HCl. The precipitate was collected by filtration, washed with water, and dried in vacuo to afford off-white solid product (0.52g). The filtrate was extracted with DCM 3 times. Combined organic layers were washed with brine and dried over Na₂SO₄, filtered and concentrated to afford desired product as yellowish solid (0.13g). LCMS ESI (*m/z*): 180.01; [M+H]⁺ calcd for C₈H₆NO₂S⁺: 180.01


Synthesis of WH-9943-094, 098A, 098B:


1-aminocyclopropane-1-carbonitrile (1.0 eq.), carboxylic acids (1.2 eq.) Et₃N (5.0 eq.) and HATU (1.5 eq.) were added into DMF (3-5mL). The mixture was stirred at room temperature overnight. If necessary, the mixture was diluted with EtOAc (50mL), and washed with brine (30mL×2) to

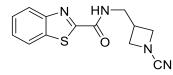
remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeCN/H₂O with 0.0425% TFA) to afford desired products.

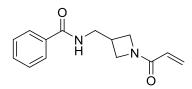
WH-9943-094 (N-(1-cyanocyclopropyl)benzo[d]thiazole-2-carboxamide (0.03g, 55%)). 1H NMR (500 MHz, DMSO-d6) δ 10.20 (s, 1H), 8.27 (dd, J = 8.2, 1.4 Hz, 1H), 8.16 (dd, J = 8.0, 1.6 Hz, 1H), 7.75 – 7.55 (m, 2H), 1.60 (q, 2H), 1.42 (q, 2H). LCMS ESI (*m/z*): 243.98; [M+H]⁺ calcd for $C_{12}H_{10}N_3OS^+$: 244.05



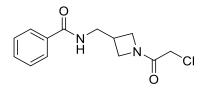
WH9943-098A (N-(1-cyanocyclopropyl)benzamide (0.067g, 85%)). 1H NMR (500 MHz, DMSO-d6) δ 9.32 (s, 1H), 7.89 – 7.80 (m, 2H), 7.63 – 7.54 (m, 1H), 7.54 – 7.45 (m, 2H), 1.57 (q, 2H), 1.29 (q, 2H). LCMS ESI (*m/z*): 187.19; [M+H]⁺ calcd for C₁₁H₁₁N₂O⁺: 187.09

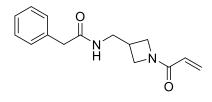
WH-9943-098B (N-(1-cyanocyclopropyl)-2-phenylacetamide (0.087g, 100%)). 1H NMR (500 MHz, DMSO-d6) δ 9.00 (s, 1H), 7.37 – 7.28 (m, 2H), 7.28 – 7.20 (m, 3H), 3.42 (s, 2H), 1.47 (q, 2H), 1.12 (q, 2H). LCMS ESI (*m/z*): 201.08; [M+H]⁺ calcd for C₁₂H₁₃N₂O⁺: 201.09


Synthesis of WH-9943-102A, 103B, 103C, 104B:


Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl 3-(aminomethyl)azetidine-1-carboxylate (1.2eq.), carboxylic acids (1.0eq.), Et₃N (3.0eq.), HATU (1.5eq.). Desired compounds were obtained (when R=phenyl, 0.34g (71%), LCMS ESI (*m/z*): 235.21 (m–*t*-butyl); [M+H]⁺ calcd for C₁₆H₂₃N₂O₃⁺: 291.17, when R=benzyl, 0.44g (98%), LCMS ESI (*m/z*): 249.08 (m–*t*-butyl); [M+H]⁺ calcd for C₁₇H₂₅N₂O₃⁺: 305.19, when R=benzylthiazol, 0.27g (42%) LCMS ESI (*m/z*): 292.02 (m–*t*-butyl); [M+H]⁺ calcd for C₁₇H₂₂N₃O₃S⁺: 348.14

Step 2: The synthesis was performed according to the General Procedure 1 with Boc-protected azetidine derivatives using 4N HCl in dioxane. Reaction mixtures were concentrated under reduced pressure to afford crude material which were used directly without any further purification.

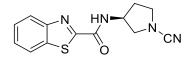

Step 3: The synthesis was performed according to the General Procedure 2 with those azetidines (1.0eq.) and chloroacetyl chloride (1.5eq.), or acryloyl chloride (1.5eq.), or cyanogen bromide (1.5eq.)


WH-9943-102A (N-((1-cyanoazetidin-3-yl)methyl)benzo[d]thiazole-2-carboxamide (3mg, 8%)). 1H NMR (500 MHz, DMSO-d6) δ 9.44 (t, J = 6.1 Hz, 1H), 8.24 (d, J = 7.9, 1.2 Hz, 1H), 8.15 (d, 1H), 7.71 – 7.54 (m, 2H), 4.22 (t, J = 8.0 Hz, 2H), 3.97 (dd, J = 7.7, 5.7 Hz, 2H), 3.55 (t, J = 6.5 Hz, 2H), 3.02 – 2.89 (m, 1H). LCMS ESI (*m/z*): 272.97; [M+H]⁺ calcd for C₁₃H₁₃N₄OS⁺: 273.08

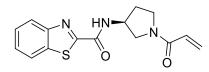
WH-9943-103B (N-((1-acryloylazetidin-3-yl)methyl)benzamide (6mg, 9%)). 1H NMR (500 MHz, DMSO-d6) δ 8.31 (t, J = 5.7 Hz, 1H), 7.93 – 7.80 (m, 2H), 7.52 – 7.46 (m, 1H), 7.46 – 7.40 (m, 2H), 6.28 (dd, J = 17.1, 10.1 Hz, 1H), 6.14 (dd, J = 17.1, 2.2 Hz, 1H), 5.64 (dd, J = 10.1, 2.2 Hz, 1H), 4.49 – 4.34 (m, 1H), 4.11 – 4.04 (m, 1H), 3.66 – 3.57 (m, 1H), 3.30 (dd, J = 16.7, 7.4 Hz, 1H), 3.25 – 3.19 (m, 2H), 2.24 – 2.08 (m, 1H). LCMS ESI (*m/z*): 245.28; [M+H]⁺ calcd for C₁₄H₁₇N₂O₂⁺: 245.13



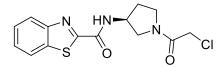
WH-9943-103C (N-((1-(2-chloroacetyl)azetidin-3-yl)methyl)benzamide (18mg, 26%)). 1H NMR (500 MHz, DMSO-d6) δ 8.42 (t, J = 5.9 Hz, 1H), 7.91 – 7.78 (m, 2H), 7.49 – 7.44 (m, 1H), 7.44 – 7.37 (m, 2H), 4.40 – 4.32 (m, 1H), 4.09 (s, 2H), 4.03 (dd, J = 10.6, 8.2 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.26 (dd, J = 16.7, 7.8 Hz, 1H), 3.16 (t, J = 6.7 Hz, 2H), 2.21 – 2.01 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 167.20, 166.14, 134.82, 131.69, 128.74, 127.68, 53.86, 51.86, 42.48, 40.42, 28.98. LCMS ESI (*m/z*): 267.27; [M+H]⁺ calcd for C₁₃H₁₆ClN₂O₂⁺: 267.09


WH-9943-104B N-((1-acryloylazetidin-3-yl)methyl)-2-phenylacetamide (20mg, 27%). 1H NMR (500 MHz, DMSO-d6) δ 8.25 (t, J = 5.9 Hz, 1H), 7.37 – 7.16 (m, 5H), 6.26 (dd, J = 16.9, 10.3 Hz, 1H), 6.08 (dd, J = 16.9, 2.3 Hz, 1H), 5.65 (dd, J = 10.3, 2.3 Hz, 1H), 4.20 (t, J = 8.5 Hz, 1H), 3.90 (t, J = 10.1, 8.5 Hz, 1H), 3.84 (dd, J = 8.7, 5.4 Hz, 1H), 3.61 (dd, J = 10.1, 5.5 Hz, 1H), 3.42 (s, 2H), 3.32 – 3.22 (m, 2H), 2.80 – 2.64 (m, 1H). LCMS ESI (*m/z*): 259.27; [M+H]⁺ calcd for C₁₅H₁₉N₂O₂⁺: 259.14

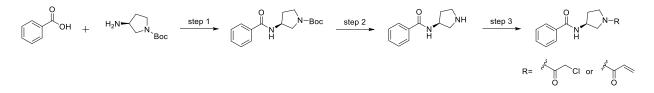
Synthesis of WH-9943-105A, 105B, 105C:



Step 1: The synthesis was preformed according to General Procedure 1 with benzo[d]thiazole-2carboxylic acid (0.2g, 1.1mmol) and tert-butyl (S)-3-aminopyrrolidine-1-carboxylate (0.25g, 1.3mmol). 0.3g desired compound tert-butyl (S)-3-(benzo[d]thiazole-2-carboxamido)pyrrolidine-1-carboxylate was obtained (77%). LCMS ESI (m/z): 292.12 (m-t-butyl); [M+H]⁺ calcd for C₁₇H₂₂N₃O₃S⁺: 348.14 *Step 2*: The synthesis was performed according to the General Procedure 1 with tert-butyl (S)-3-(benzo[d]thiazole-2-carboxamido)pyrrolidine-1-carboxylate (0.3g, mmol). 0.29g (S)-N-(pyrrolidin-3-yl)benzo[d]thiazole-2-carboxamide (quant.). LCMS ESI (m/z): 247.88; [M+H]⁺ calcd for C₁₂H₁₄N₃OS⁺: 248.09

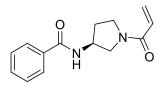

Step 3: The synthesis was performed according to the General Procedure 1 with (S)-N-(pyrrolidin-3-yl)benzo[d]thiazole-2-carboxamide (0.05g, 0.2mmol) and cyanogen bromide (35mg, 0.3mmol), or acryloyl chloride (30mg, 0.3mmol), or chloroacetyl chloride (37mg, 0.3mmol).

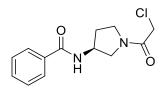
WH-9943-105A ((*S*)-N-(1-cyanopyrrolidin-3-yl)benzo[d]thiazole-2-carboxamide (34mg, 57%)). 1H NMR (500 MHz, DMSO-d6) δ 9.52 (s, 1H), 8.24 (d, J = 8.3, 1.3 Hz, 1H), 8.16 (d, J = 8.1, 1.2 Hz, 1H), 7.73 – 7.51 (m, 2H), 4.60 – 4.49 (m, 1H), 3.65 (dd, J = 9.7, 6.7 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.49 – 3.42 (m, 2H), 2.22 – 2.11 (m, 1H), 2.11 – 2.02 (m, 1H). LCMS ESI (*m/z*): 273.27; [M+H]⁺ calcd for C₁₃H₁₃N₄OS⁺: 273.08


WH-9943-105B ((S)-N-(1-acryloylpyrrolidin-3-yl)benzo[d]thiazole-2-carboxamide (12mg, 18%)). 1H NMR (500 MHz, DMSO-d6) δ 8.42 (t, J = 5.9 Hz, 1H), 7.91 – 7.78 (m, 2H), 7.49 – 7.44 (m, 1H), 7.44 – 7.37 (m, 2H), 4.40 – 4.32 (m, 1H), 4.09 (s, 2H), 4.03 (dd, J = 10.6, 8.2 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.26 (dd, J = 16.7, 7.8 Hz, 1H), 3.16 (t, J = 6.7 Hz, 2H), 2.21 – 2.01 (m, 1H). LCMS ESI (*m/z*): 302.27; [M+H]⁺ calcd for C₁₅H₁₆N₃O₂S⁺: 302.10

WH-9943-105C ((S)-N-(1-(2-chloroacetyl)pyrrolidin-3-yl)benzo[d]thiazole-2-carboxamide (26mg, 36%)) 1H NMR (500 MHz, DMSO-d6) δ 9.48 (dd, J = 14.3, 7.1 Hz, 1H), 8.24 (d, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.63 (t, 1H), 7.59 (t, 1H), 4.63 – 4.48 (m, 1H), 4.39 – 4.28 (m, 2H), 3.80 (dd, J = 10.6, 6.5

Hz, 0.5H), 3.75 – 3.61 (m, 1H), 3.61 – 3.49 (m, 1.5H), 3.50 – 3.37 (m, 1H), 2.33 – 2.03 (m, 2H). LCMS ESI (*m/z*): 324.17; [M+H]⁺ calcd for C₁₄H₁₅ClN₃O₂S⁺: 324.06

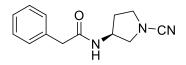

Synthesis of WH-9943-107B, 107C:


Step 1: The synthesis was preformed according to General Procedure 1 with benzoic acid (0.2g, 1.6mmol) and tert-butyl (S)-3-aminopyrrolidine-1-carboxylate (0.37g, 2.0mmol). 0.45g desired compound tert-butyl tert-butyl (S)-3-benzamidopyrrolidine-1-carboxylate was obtained (95%). LCMS ESI (m/z): 235.21 (m-t-butyl); [M+H]⁺ calcd for C₁₆H₂₃N₂O₃⁺: 291.17

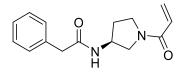
Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl (S)-3benzamidopyrrolidine-1-carboxylate (0.45g, 1.5mmol). 0.34g (S)-N-(pyrrolidin-3-yl)benzamide (quant.). LCMS ESI (m/z): 191.09; [M+H]⁺ calcd for C₁₁H₁₅N₂O⁺: 191.12

Step 3: The synthesis was performed according to the General Procedure 1 with (S)-N-(pyrrolidin-3-yl)benzamide (50mg, 0.2mmol) and chloroacetyl chloride (37mg, 0.3mmol), or acryloyl chloride (30mg, 0.3mmol).

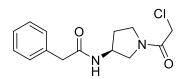
WH-9943-107B ((S)-N-(1-acryloylpyrrolidin-3-yl)benzamide (29mg, 54%). 1H NMR (500 MHz, DMSO-d6) δ 8.66 (dd, J = 18.9, 6.7 Hz, 1H), 8.05 – 7.88 (m, 2H), 7.68 – 7.58 (m, 1H), 7.55 (td, J = 7.5, 2.2 Hz, 2H), 6.78 – 6.54 (m, 1H), 6.32 – 6.13 (m, 1H), 5.75 (td, J = 10.7, 2.4 Hz, 1H), 4.71 – 4.46 (m, 1H), 3.95 (dd, J = 10.6, 6.6 Hz, 0.5H), 3.85 – 3.47 (m, 3.5H), 2.37 – 2.14 (m, 1H), 2.15 – 1.95 (m, 1H). LCMS ESI (*m/z*): 245.28; [M+H]⁺ calcd for C₁₄H₁₇N₂O₂⁺: 245.13



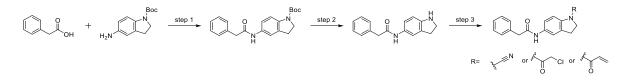
WH-9943-107C ((S)-N-(1-(2-chloroacetyl)pyrrolidin-3-yl)benzamide (30mg, 51%)). 1H NMR (500 MHz, DMSO-d6) δ 8.56 (dd, J = 20.4, 6.6 Hz, 1H), 7.91 – 7.80 (m, 2H), 7.58 – 7.51 (m, 1H), 7.50 – 7.42 (m, 2H), 4.60 – 4.40 (m, 1H), 4.38 – 4.24 (m, 2H), 3.81 (dd, J = 10.6, 6.5 Hz, 0.5H), 3.72 – 3.49 (m, 2H), 3.48 – 3.35 (m, 1.5H), 2.26 – 2.06 (m, 1H), 2.07 – 1.88 (m, 1H). LCMS ESI (*m/z*): 267.17; [M+H]⁺ calcd for C₁₃H₁₆ClN₂O₂⁺: 267.09


Synthesis of WH-9943-108A, 108B, 108C:

Step 1: The synthesis was preformed according to General Procedure 1 with 2-phenylacetic acid (0.20g, 1.5mmol) and tert-butyl (S)-3-aminopyrrolidine-1-carboxylate (0.33g, 1.8mmol). 0.42g desired compound tert-butyl (S)-3-(2-phenylacetamido)pyrrolidine-1-carboxylate was obtained (94%). LCMS ESI (m/z): 249.08 (m–t-butyl); [M+H]⁺ calcd for C₁₇H₂₅N₂O₃⁺: 305.19

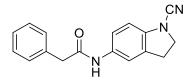

Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl (S)-3-(2-phenylacetamido)pyrrolidine-1-carboxylate (0.42g, 1.4mmol). 0.39g (S)-2-phenyl-N-(pyrrolidin-3-yl)acetamide (quant.). LCMS ESI (m/z): 204.98; [M+H]⁺ calcd for C₁₂H₁₇N₂O⁺: 205.13 *Step 3*: The synthesis was performed according to the General Procedure 1 (S)-2-phenyl-N-(pyrrolidin-3-yl)acetamide (0.06g, 0.25mmol) and cyanogen bromide (0.04g, 0.37mmol), or chloroacetyl chloride (0.04g, 0.37mmol), or acryloyl chloride (0.03g, 0.37 mmol).

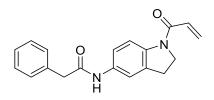
WH-9943-108A ((S)-N-(1-cyanopyrrolidin-3-yl)-2-phenylacetamide (31mg, 54%)). 1H NMR (500 MHz, DMSO-d6) δ 8.41 (d, J = 6.7 Hz, 1H), 7.40 – 7.04 (m, 5H), 4.27 – 4.16 (m, 1H), 3.54 (dd, J = 9.7, 6.1 Hz, 1H), 3.51 – 3.46 (m, 1H), 3.46 – 3.39 (m, 3H), 3.14 (dd, J = 9.7, 3.9 Hz, 1H), 2.11 – 1.97 (m, 1H), 1.84 – 1.70 (m, 1H). LCMS ESI (*m/z*): 230.38; [M+H]⁺ calcd for C₁₃H₁₆N₃O⁺: 230.13



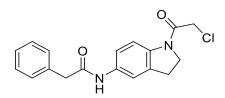
WH-9943-108B ((S)-N-(1-acryloylpyrrolidin-3-yl)-2-phenylacetamide (36mg, 56%)) 1H NMR (500 MHz, DMSO-d6) δ 8.38 (dd, J = 17.3, 6.7 Hz, 1H), 7.41 – 7.02 (m, 5H), 6.73 – 6.41 (m, 1H), 6.14 (ddd, J = 16.7, 10.6, 2.4 Hz, 1H), 5.67 (ddd, J = 15.8, 10.3, 2.4 Hz, 1H), 4.40 – 4.11 (m, 1H), 3.75 (dd, J = 10.6, 6.1 Hz, 0.5H), 3.68 – 3.15 (m, 3.5H), 2.20 – 1.93 (m, 1H), 1.92 – 1.63 (m, 1H). LCMS ESI (*m/z*): 259.27; [M+H]⁺ calcd for C₁₅H₁₉N₂O₂⁺: 259.14

WH-9943-108C ((S)-N-(1-(2-chloroacetyl)pyrrolidin-3-yl)-2-phenylacetamide (26mg, 37%)) 1H NMR (500 MHz, DMSO-d6) δ 8.37 (dd, J = 13.4, 6.7 Hz, 1H), 7.42 – 7.11 (m, 5H), 4.36 – 4.14 (m, 3H), 3.70 (dd, J = 10.5, 6.2 Hz, 0.5H), 3.61 – 3.34 (m, 4.5H), 3.31 – 3.18 (m, 1H), 2.19 – 1.92 (m, 1H), 1.92 – 1.65 (m, 1H). LCMS ESI (*m/z*): 281.27; [M+H]⁺ calcd for C₁₄H₁₈ClN₂O₂⁺: 281.11

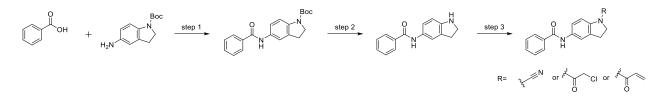

Synthesis of WH-9943-118A, 118B,118C:


Step 1: The synthesis was preformed according to General Procedure 1 with 2-phenylacetic acid (0.20g, 1.5mmol) and tert-butyl 5-aminoindoline-1-carboxylate (0.42g, 1.7mmol). 0.52g desired compound tert-butyl 5-(2-phenylacetamido)indoline-1-carboxylate was obtained (quant.). LCMS ESI (m/z): 296.87 (m–t-butyl); [M+H]⁺ calcd for C₂₁H₂₅N₂O₃⁺: 353.19

Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl 5-(2-phenylacetamido)indoline-1-carboxylate (0.52g, 1.47mmol). 0.37g N-(indolin-5-yl)-2-phenylacetamide (quant.). LCMS ESI (m/z): 252.87; [M+H]⁺ calcd for C₁₆H₁₇N₂O⁺: 253.13

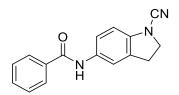

Step 3: The synthesis was performed according to the General Procedure 1 N-(indolin-5-yl)-2-phenylacetamide (0.07g, 0.24mmol) and cyanogen bromide (0.04g, 0.37mmol), or chloroacetyl chloride (0.033g, 0.37mmol), or acryloyl chloride (0.04g, 0.37mmol).

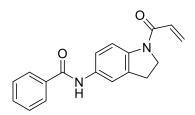
WH-9943-118A (N-(1-cyanoindolin-5-yl)-2-phenylacetamide (36mg, 53%)) 1H NMR (500 MHz, DMSO-d6) δ 10.14 (s, 1H), 7.58 (d, J = 1.9 Hz, 1H), 7.42 (dd, J = 8.5, 2.1 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 6.87 (d, J = 8.5 Hz, 1H), 4.08 (t, J = 8.5 Hz, 2H), 3.63 (s, 2H), 3.15 (t, J = 8.5 Hz, 2H). LCMS ESI (*m/z*): 277.87; [M+H]⁺ calcd for C₁₇H₁₆N₃O⁺: 278.13



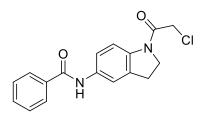
WH-9943-118B (N-(1-acryloylindolin-5-yl)-2-phenylacetamide (49mg, 66%)) 1H NMR (500 MHz, DMSO-d6) δ 10.12 (s, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.38 – 7.28 (m, 5H), 7.28 – 7.21 (m, 1H), 6.72 (dd, J = 16.7, 10.3 Hz, 1H), 6.28 (dd, J = 16.7, 2.3 Hz, 1H), 5.79 (dd, J = 10.4, 2.2 Hz, 1H), 4.19 (t, J = 8.4 Hz, 2H), 3.62 (s, 2H), 3.13 (t, J = 8.4 Hz, 2H). LCMS ESI (*m/z*): 306.87; [M+H]⁺ calcd for C₁₉H₁₉N₂O₂⁺: 307.14

WH-9943-118C (N-(1-(2-chloroacetyl)indolin-5-yl)-2-phenylacetamide (33mg, 41%)) 1H NMR (500 MHz, DMSO-d6) δ 10.14 (s, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.61 (d, J = 2.0 Hz, 1H), 7.38 – 7.29 (m, 5H), 7.28 – 7.20 (m, 1H), 4.50 (s, 2H), 4.12 (t, J = 8.4 Hz, 2H), 3.62 (s, 2H), 3.14 (t, J = 8.4 Hz, 2H). LCMS ESI (*m/z*): 328.87; [M+H]⁺ calcd for C₁₈H₁₈ClN₂O₂⁺: 329.11

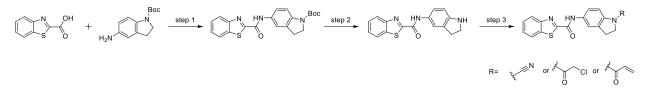

Synthesis of WH-9943-119A, 119B, 119C:


Step 1: The synthesis was preformed according to General Procedure 1 with benzoic acid (0.20g, 1.6mmol) and tert-butyl 5-aminoindoline-1-carboxylate (0.38g, 1.6mmol). 0.36g desired compound tert-butyl 5-benzamidoindoline-1-carboxylate was obtained (67%). LCMS ESI (m/z): 241.11 (m–t-butyl); [M+H]⁺ calcd for C₂₀H₂₃N₂O⁺: 339.17

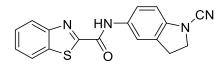
Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl 5benzamidoindoline-1-carboxylate (0.34g, 1.0mmol). 0.24g N-(indolin-5-yl)benzamide (quant.). LCMS ESI (m/z): 238.98; [M+H]⁺ calcd for C₁₅H₁₅N₂O⁺: 239.12


Step 3: The synthesis was performed according to the General Procedure 1 N-(indolin-5-yl)benzamide (0.05g, 0.18mmol) and cyanogen bromide (0.058g, 0.5mmol), or chloroacetyl chloride (0.031g, 0.27mmol), or acryloyl chloride (0.025g, 0.27mmol).

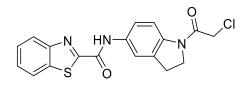
WH-9943-119A (N-(1-cyanoindolin-5-yl)benzamide (34mg, 71%) 1H NMR (500 MHz, DMSO-d6) δ 10.22 (s, 1H), 8.01 – 7.87 (m, 2H), 7.73 (d, J = 1.9 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.57 – 7.48 (m, 2H), 6.92 (d, J = 8.5 Hz, 1H), 4.11 (t, J = 8.5 Hz, 2H), 3.19 (t, J = 8.5 Hz, 2H). LCMS ESI (*m/z*): 263.87; [M+H]⁺ calcd for C₁₆H₁₄N₃O⁺: 264.11



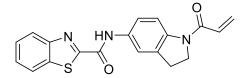
WH-9943-119B (N-(1-acryloylindolin-5-yl)benzamide (39mg, 73%)) 1H NMR (500 MHz, DMSO-d6) δ 10.22 (s, 1H), 8.13 (d, J = 8.7 Hz, 1H), 8.03 – 7.87 (m, 2H), 7.76 (d, J = 2.1 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.56 – 7.48 (m, 3H), 6.75 (dd, J = 16.6, 10.3 Hz, 1H), 6.31 (dd, J = 16.6, 2.4 Hz, 1H), 5.81 (dd, J = 10.2, 2.3 Hz, 1H), 4.23 (t, J = 8.4 Hz, 2H), 3.19 (t, J = 9.4, 7.0 Hz, 2H). LCMS ESI (*m/z*): 292.97; [M+H]⁺ calcd for C₁₈H₁₇N₂O₂⁺: 293.13


WH-9943-119C (N-(1-(2-chloroacetyl)indolin-5-yl)benzamide (43mg, 75%)) 1H NMR (500 MHz, DMSO-d6) δ 10.23 (s, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.98 – 7.91 (m, 2H), 7.78 (d, J = 2.1 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.53 (dd, J = 8.2, 6.6 Hz, 3H), 4.53 (s, 2H), 4.16 (t, J = 8.4 Hz, 2H), 3.20 (t, J = 8.5 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 165.79, 164.12, 138.99, 135.77, 135.43, 132.68, 131.94, 128.83, 128.06, 119.60, 117.82, 116.30, 47.64, 44.20, 28.14. LCMS ESI (*m/z*): 314.87; [M+H]⁺ calcd for C₁₇H₁₆ClN₂O₂⁺: 315.09

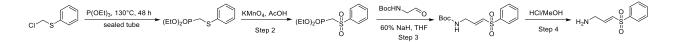
Synthesis of WH-9943-120A, 120B, 120C:



Step 1: The synthesis was preformed according to General Procedure 1 with benzo[d]thiazole-2carboxylic acid (0.20g, 1.1mmol) and tert-butyl 5-aminoindoline-1-carboxylate (0.31g, 1.3mmol). 0.32g desired compound tert-butyl 5-(benzo[d]thiazole-2-carboxamido)indoline-1-carboxylate was obtained (73%). LCMS ESI (m/z): 340.20 (m-t-butyl); [M+H]⁺ calcd for C₂₁H₂₂N₃O₃S⁺: 396.14

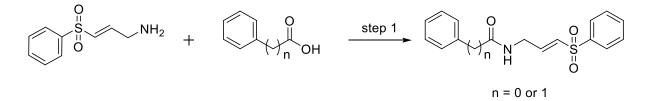

Step 2: The synthesis was performed according to the General Procedure 2 with tert-butyl 5-(benzo[d]thiazole-2-carboxamido)indoline-1-carboxylate (0.32g, mmol). 0.24g N-(indolin-5yl)benzo[d]thiazole-2-carboxamide (quant.). LCMS ESI (m/z): 295.87; [M+H]⁺ calcd for C₁₆H₁₄N₃OS⁺: 296.09 *Step 3*: The synthesis was performed according to the General Procedure N-(indolin-5-yl)benzo[d]thiazole-2-carboxamide (0.05g, 0.15mmol) and cyanogen bromide (0.048g, 0.45mmol), or chloroacetyl chloride (0.026g, 0.23mmol), or acryloyl chloride (0.021g, 0.23mmol).

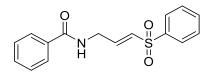
WH-9943-120A (N-(1-cyanoindolin-5-yl)benzo[d]thiazole-2-carboxamide (24mg, 50%))1H NMR (500 MHz, DMSO-d6) δ 11.01 (s, 1H), 8.17 (dd, 2H), 7.76 (d, J = 2.1 Hz, 1H), 7.70 (dd, J = 8.5, 2.1 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.57 – 7.50 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 4.05 (t, J = 8.5 Hz, 2H), 3.13 (t, J = 8.5 Hz, 2H). LCMS ESI (*m/z*): 320.87; [M+H]⁺ calcd for C₁₇H₁₃N₄OS⁺: 321.08



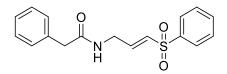
WH-9943-120C (N-(1-(2-chloroacetyl)indolin-5-yl)benzo[d]thiazole-2-carboxamide (35mg, 67%)). 1H NMR (500 MHz, DMSO-d6) δ 11.05 (s, 1H), 8.25 (dd, J = 8.0, 1.3 Hz, 1H), 8.21 (d, 1H), 8.14 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 2.1 Hz, 1H), 7.71 (dd, J = 8.6, 2.2 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.63 – 7.57 (m, 1H), 6.74 (dd, J = 16.6, 10.2 Hz, 1H), 6.31 (d, J = 16.6, 2.2 Hz, 1H), 5.81 (dd, J = 10.3, 2.2 Hz, 1H), 4.23 (t, J = 8.5 Hz, 2H), 3.19 (t, 2H). LCMS ESI (*m/z*): 371.77; [M+H]⁺ calcd for C₁₈H₁₅ClN₃O₂S⁺: 372.06

WH-9943-120B (N-(1-acryloylindolin-5-yl)benzo[d]thiazole-2-carboxamide (34mg, 61%)). 1H NMR (500 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.26 (d, J = 8.0, 1.3 Hz, 1H), 8.22 (d, 1H), 8.03 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 2.4 Hz, 1H), 7.72 (dd, J = 8.7, 2.2 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.64 – 7.57 (m, 1H), 4.54 (s, 2H), 4.16 (t, J = 8.4 Hz, 2H), 3.20 (t, J = 8.2 Hz, 2H). LCMS ESI (*m/z*): 349.87; [M+H]⁺ calcd for C₁₉H₁₆N₃O₂S⁺: 350.10


Synthesis of the scaffold: (E)-3-(phenylsulfonyl)prop-2-en-1-amine


Step 1 and 2: A mixture of (chloromethyl)(phenyl)sulfane (1.26mL, 12.5mmol) and (2.14mL 12.3mmol) in a sealed tube was stirred at 130°C for 48 hours. The mixture was cooled to room temperature and dissolved in AcOH (10mL), KMnO₄ (3.74g, 23.6mmol) in H₂O (20mL) was added dropwisely to the solution slowly at 5 to 15°C. Then stirred at room temperature for 1 hour. Saturated NaHCO₃ aqueous solution was added until the mixture became colorless (below 15°C). The mixture was extracted with EtOAc twice. Combined organic layers were washed with water and brine, dried over Na2SO4, filtered and concentrated to afford crude material as colorless oil, which was purified by flash chromatography (EtOAc in hexanes, 0 to 100%) to afford product as colorless oil (XX) LCMS ESI (m/z): 292.77; [M+H]⁺ calcd for C₁₁H₁₈O₅PS⁺: 293.06

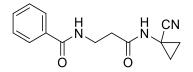
Step 3: Under N₂ atomsphere, to the solution of diethyl ((phenylsulfonyl)methyl)phosphonate (0.60g, 2.0mmol) in THF was added 60% NaH (0.099g, 2.5mmol) at at 0 to 5°C and the solution was stirred for 40min. N-Boc-2-aminoacetaldehyde (0.33g, 2.0mmol) was then added. The reaction was stirred for 15min at 5°C. The mixture was then quenched with saturated NH₄Cl and extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄, then filtered and concentrated to afford crude material which was purified by flash chromatography (EtOAc in hexanes, 0 to 100%) to afford product (0.27g, 45%). LCMS ESI (*m/z*): 197.87 (m–Boc); [M+H]⁺ calcd for C₁₄H₂₀NO₄S⁺: 298.11


Step 4: A solution of tert-butyl (E)-(3-(phenylsulfonyl)allyl)carbamate (0.27g, 0.9mmol) was dissolved in 2N HCl in MeOH. The solution was stirred at room temperature for 2 hours. The mixture was then concentrated, and the residue was triturated with acetonitrile. Precipitate was collected by filtration, washed with more acetonitrile and dried in vacuo to afford off-white solid as product (0.21g, quant.), LCMS ESI (m/z): 197.98; [M+H]⁺ calcd for C₉H₁₂NO₂S⁺: 198.06 Synthesis of WH-9943-127A, 127B:

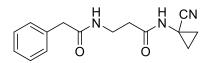
Step 1: (E)-3-(phenylsulfonyl)prop-2-en-1-amine (0.07g, 0.3mmol, 1.0 eq.), carboxylic acids (1.5 eq.) Et₃N (5.0 eq.) and HATU (1.5 eq.) were added into DMF (3-5mL). The mixture was stirred at room temperature overnight. If necessary, the mixture was diluted with EtOAc (50mL), and washed with brine (30mL×2) to remove excess DMF. Organic layer was dried over anhydrous sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc) and preparative HPLC (MeCN/H₂O with 0.0425% TFA)

WH-9943-127A ((E)-N-(3-(phenylsulfonyl)allyl)benzamide.(10mg, 11%)) ¹H NMR (500 MHz, DMSO- d_6) δ 9.72 (d, J = 10.7 Hz, 1H), 7.96 – 7.90 (m, 2H), 7.77 – 7.72 (m, 2H), 7.71 – 7.66 (m, 1H), 7.66 – 7.57 (m, 3H), 7.52 (t, J = 8.2, 6.9 Hz, 2H), 7.01 (t, J = 10.7, 9.1 Hz, 1H), 4.66 (q, J = 8.5 Hz, 1H), 4.49 (d, J = 8.2 Hz, 2H). LCMS ESI (*m*/*z*): 301.87; [M+H]⁺ calcd for C₁₆H₁₆NO₃S⁺: 302.08

WH-9943-127B ((E)-2-phenyl-N-(3-(phenylsulfonyl)allyl)acetamide (12mg, 13%)) ¹H NMR (500 MHz, DMSO- d_6) δ 9.69 (d, J = 11.1 Hz, 1H), 7.93 – 7.84 (m, 2H), 7.77 – 7.68 (m, 1H), 7.65 – 7.59 (m, 2H), 7.36 – 7.28 (m, 2H), 7.27 – 7.18 (m, 3H), 6.81 – 6.68 (m, 1H), 4.51 (q, J = 8.5 Hz, 1H), 4.33 (dd, J = 8.1, 1.0 Hz, 2H), 3.48 (s, 2H). LCMS ESI (*m/z*): 315.97; [M+H]⁺ calcd for C₁₇H₁₈NO₃S⁺: 316.10 Synthesis of WH-9943-157A, 157B and WH-10417-038A:

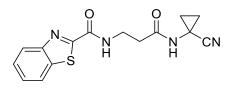

$$R \xrightarrow{0} H + H_2 N \xrightarrow{0} H \xrightarrow{0} R \xrightarrow{1} R \xrightarrow{0} H \xrightarrow{0} H \xrightarrow{0} R \xrightarrow{0} R \xrightarrow{1} R \xrightarrow{0} R \xrightarrow{0}$$

Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl 3-aminopropanoate (0.98g, 5.4mmol) and acids (1.0 eq.) and desired compounds were obtained

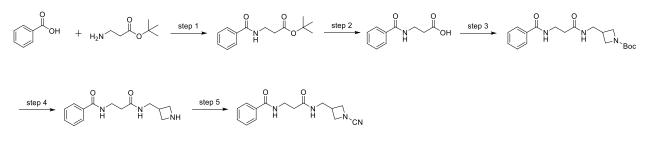

(when R=phenyl, 1.3g (96%), LCMS ESI (m/z): 193.99 (m-t-butyl); [M+H]⁺ calcd for C₁₄H₂₀NO₃⁺: 250.14, when R=benzyl, 0.64g (45%), LCMS ESI (m/z): 208.08 (m-t-butyl); [M+H]⁺ calcd for C₁₅H₂₂NO₃⁺: 264.16, when R=benzylthiazol, 0.25g (42%), LCMS ESI (m/z): 250.88 (m-t-butyl); [M+H]⁺ calcd for C₁₅H₁₉N₂O₃S⁺: 307.11)

Step 2: The synthesis was performed according to the General Procedure 1 with t-Butyl ester intermediates synthesized in Step 1. Free acid products were obtained by flash column chromatography (EtOAc in hexanes 0 to 100%) (when R=phenyl, 0.70g (70%), LCMS ESI (m/z): 193.99; [M+H]⁺ calcd for C₁₀H₁₂NO₃⁺: 194.08, when R=benzyl, 0.44g (82%), LCMS ESI (m/z): 208.08; [M+H]⁺ calcd for C₁₁H₁₄NO₃⁺: 208.10, when R=benzylthiazol, 0.2g (quant.), LCMS ESI (m/z): (m/z): 250.98; [M+H]⁺ calcd for C₁₁H₁₁N₂O₃S⁺: 251.05)

Step 3: The synthesis was performed according to the General Procedure 1 with 1aminocyclopropane-1-carbonitrile (0.04g, 0.34mmol) and acids (1.0eq.) synthesized in step 2, Et₃N (5.0eq.) and HATU (1.5eq.) The crude materials were purified by preparative HPLC ((MeCN/H₂O with 0.0425% TFA) to afford the products after concentration under reduced pressure, which were then triturated with DCM and collected by filtration to obtain the products as white solid.



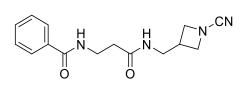
WH-9943-157A N-(3-((1-cyanocyclopropyl)amino)-3-oxopropyl)benzamide (42mg, 48%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.82 (s, 1H), 8.53 (t, J = 5.7 Hz, 1H), 7.90 – 7.73 (m, 2H), 7.55 – 7.49 (m, 1H), 7.46 (dd, J = 8.2, 6.7 Hz, 2H), 3.46 (td, J = 7.0, 5.5 Hz, 2H), 2.39 (t, J = 7.0 Hz, 2H), 1.44 (q, 2H), 1.12 (q, 2H). LCMS ESI (m/z): 257.97; [M+H]⁺ calcd for C₁₄H₁₆N₃O₂⁺: 258.12


WH-9943-157B N-(1-cyanocyclopropyl)-3-(2-phenylacetamido)propenamide (22mg, 24%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.77 (s, 1H), 8.12 (t, J = 5.8 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.25 – 7.17

(m, 3H), 3.38 (s, 2H), 3.35 (s, 3H), 3.24 (q, *J* = 6.7 Hz, 2H), 2.25 (t, *J* = 6.9 Hz, 2H), 1.43 (q, 2H), 1.08 (q, 2H). LCMS ESI (*m/z*): 271.97; [M+H]⁺ calcd for C₁₅H₁₈N₃O₂⁺: 272.14

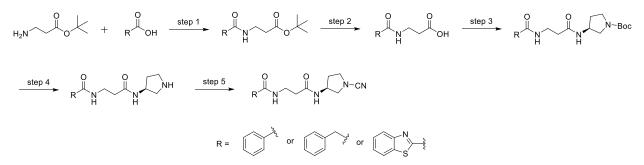
WH-10417-038AN-(3-((1-cyanocyclopropyl)amino)-3-oxopropyl)benzo[d]thiazole-2-
carboxamide (31mg, 49%). 1H NMR (500 MHz, DMSO-d6) δ 9.14 (t, J = 5.9 Hz, 1H), 8.86 (s, 1H),
8.23 (d, J = 7.8 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.64 (t, 1H), 7.59 (t, J = 7.5 Hz, 1H), 3.53 (q, J = 6.9
Hz, 2H), 2.45 (t, J = 7.1 Hz, 2H), 1.45 (q, 2H), 1.13 (q, 2H). LCMS ESI (*m/z*): 315.17; [M+H]⁺ calcd
for C₁₅H₁₅N₄O₂S⁺: 315.09

Synthesis of WH-9943-186:



Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl 3aminopropanoate (0.98g, 5.4mmol) and benzyl (1.0 eq.) and desired compounds were obtained (1.3g, 96%). LCMS ESI (m/z): 193.99 (m–t-butyl) ; [M+H]⁺ calcd for C₁₄H₂₀NO₃⁺: 250.14

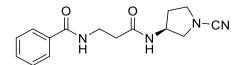
Step 2: The synthesis was performed according to the General Procedure 1 with t-Butyl ester intermediates synthesized in Step 1. Free acid product was obtained by flash column chromatography (EtOAc in hexanes 0 to 100%): 0.70g (70%). LCMS ESI (m/z): 193.99 (m-t-butyl); [M+H]⁺ calcd for C₁₀H₁₂NO₃⁺: 194.08


Step 3: The synthesis was preformed according to General Procedure 1 with 3benzamidopropanoic acid (0.07g, 0.36mmol) and tert-butyl 3-(aminomethyl)azetidine-1carboxylate (0.08g, 0.44mmol), Et3N (0.15mL, 1.1mmol) and HATU (0.21g, 0.54mmol) 0.14g desired compound tert-butyl 3-((3-benzamidopropanamido)methyl)azetidine-1-carboxylate was obtained (quant.). LCMS ESI (m/z): 361.97; [M+H]⁺ calcd for C₁₉H₂₈N₃O⁺: 362.21 Step 4: The synthesis was performed according to the General Procedure 1 with tert-butyl 3-((3-benzamidopropanamido)methyl)azetidine-1-carboxylate (0.14g, 0.38mmol). 0.1g N-(3-((azetidin-3-ylmethyl)amino)-3-oxopropyl)benzamide (quant.). LCMS ESI (m/z): 261.97; [M+H]⁺ calcd for C₁₄H₂₀N₃O₂⁺: 262.16

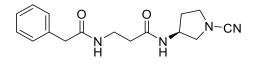
Step 5: The synthesis was performed according to the General Procedure 1 N-(3-((azetidin-3-ylmethyl)amino)-3-oxopropyl)benzamide (0.23g, 0.6mmol) and cyanogen bromide (0.06g, 0.6mmol).

WH-9943-186 N-(3-(((1-cyanoazetidin-3-yl)methyl)amino)-3-oxopropyl)benzamide (57mg, 33%). 1H NMR (500 MHz, DMSO-d6) δ 8.44 (t, J = 5.6 Hz, 1H), 8.01 (t, J = 5.8 Hz, 1H), 7.81 – 7.70 (m, 2H), 7.48 – 7.41 (m, 1H), 7.41 – 7.33 (m, 2H), 4.04 (t, J = 7.9 Hz, 2H), 3.74 (dd, J = 7.6, 5.8 Hz, 2H), 3.39 (q, J = 7.1, 5.6 Hz, 2H), 3.19 (t, J = 6.3 Hz, 2H), 2.77 – 2.61 (m, 1H), 2.32 (t, J = 7.2 Hz, 2H). LCMS ESI (*m/z*): 286.97; [M+H]⁺ calcd for C₁₅H₁₉N₄O₂⁺: 287.15

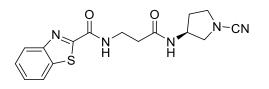
Synthesis of WH-9943-188, 189 and WH-10417-046A:



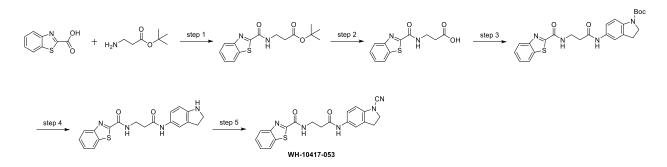
Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl 3aminopropanoate (0.98g, 5.4mmol) and acids (1.0 eq.) and desired compounds were obtained (when R=phenyl, 1.3g (96%), LCMS ESI (m/z): 193.99 (m-t-butyl); [M+H]⁺ calcd for C₁₄H₂₀NO₃⁺: 250.14, when R=benzyl, 0.64g (45%), LCMS ESI (m/z): 208.08 (m-t-butyl); [M+H]⁺ calcd for C₁₅H₂₂NO₃⁺: 264.16, when R=benzylthiazol, 0.25g (42%), LCMS ESI (m/z): 250.88 (m-t-butyl); [M+H]⁺ calcd for C₁₅H₁₉N₂O₃S⁺: 307.11) *Step 2*: The synthesis was performed according to the General Procedure 1 with t-Butyl ester intermediates synthesized in Step 1. Free acid products were obtained by flash column chromatography (EtOAc in hexanes 0 to 100%) (when R=phenyl, 0.70g (70%), LCMS ESI (m/z): 193.99; [M+H]⁺ calcd for C₁₀H₁₂NO₃⁺: 194.08, when R=benzyl, 0.44g (82%), LCMS ESI (m/z): 208.08; [M+H]⁺ calcd for C₁₁H₁₄NO₃⁺: 208.10, when R=benzylthiazol, 0.2g (quant.), LCMS ESI (m/z): (m/z): 250.98; [M+H]⁺ calcd for C₁₁H₁₁N₂O₃S⁺: 251.05)


Step 3: The synthesis was preformed according to General Procedure 1 with tert-butyl (S)-3aminopyrrolidine-1-carboxylate (0.08g, 0.44mmol) and acids (0.8eq.). Desired compounds were obtained (when R=phenyl, 0.14g (quant.), LCMS ESI (*m/z*): 261.87 (m–*Boc*); [M+H]⁺ calcd for $C_{19}H_{28}N_3O_4^+$: 362.21, when R=benzyl, 0.15g (quant.), LCMS ESI (*m/z*): 275.97 (m–*Boc*); [M+H]⁺ calcd for $C_{20}H_{30}N_3O_4^+$: 376.22, when R=benzylthiazol, 0.09g (quant.) LCMS ESI (*m/z*): 319.17 (m–*Boc*); [M+H]⁺ calcd for $C_{20}H_{27}N_4O_4S^+$: 419.17).

Step 4: The synthesis was performed according to the General Procedure 1 with Boc protected intermediate (0.4mmol). The amines (TFA salt) were obtained (quant.)


Step 5: The synthesis was performed according to the General Procedure 1 with amines (1 eq.) and cyanogen bromide (1 eq.), Et_3N (10.0 eq.) in DMSO.

WH-9943-188 (S)-N-(3-((1-cyanopyrrolidin-3-yl)amino)-3-oxopropyl)benzamide (31mg, 40%). 1H NMR (500 MHz, DMSO-d6) δ 8.52 (t, J = 5.6 Hz, 1H), 8.24 (d, J = 6.7 Hz, 1H), 7.91 – 7.76 (m, 2H), 7.55 – 7.49 (m, 1H), 7.49 – 7.42 (m, 2H), 4.35 – 4.19 (m, 1H), 3.53 (dd, J = 9.7, 6.1 Hz, 1H), 3.51 – 3.36 (m, 4H), 3.20 – 3.12 (m, 1H), 2.38 (t, J = 7.1 Hz, 2H), 2.11 – 1.95 (m, 1H), 1.84 – 1.68 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 171.03, 166.78, 134.97, 131.57, 128.72, 127.59, 117.74, 55.44, 49.26, 48.90, 36.55, 35.81, 31.28. LCMS ESI (*m/z*): 286.87; [M+H]⁺ calcd for C₁₅H₁₉N₄O₂⁺: 287.14

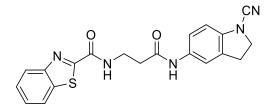


WH-9943-189 (S)-N-(1-cyanopyrrolidin-3-yl)-3-(2-phenylacetamido)propenamide (19mg, 25%). 1H NMR (500 MHz, DMSO-d6) δ 8.18 (d, J = 6.6 Hz, 1H), 8.09 (t, J = 5.8 Hz, 1H), 7.44 – 7.10 (m, 5H), 4.30 – 4.18 (m, 1H), 3.52 (dd, J = 9.7, 6.1 Hz, 1H), 3.48 – 3.36 (m, 4H), 3.25 (q, J = 6.7 Hz, 2H), 3.11 (dd, J = 9.7, 3.9 Hz, 1H), 2.25 (t, J = 6.9 Hz, 2H), 2.14 – 1.90 (m, 1H), 1.82 – 1.63 (m, 1H). LCMS ESI (*m/z*): 300.97; [M+H]⁺ calcd for C₁₆H₂₁N₄O₂⁺: 301.17

WH-10417-046A (S)-N-(3-((1-cyanopyrrolidin-3-yl)amino)-3-oxopropyl)benzo[d]thiazole-2carboxamide (43mg, 48%). 1H NMR (500 MHz, DMSO-d6) δ 9.11 (t, J = 6.0 Hz, 1H), 8.27 (d, J = 6.7 Hz, 1H), 8.23 (d, J = 7.9 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.64 (t, 1H), 7.59 (t, 1H), 4.33 – 4.19 (m, 1H), 3.59 – 3.49 (m, 3H), 3.49 – 3.36 (m, 2H), 3.15 (dd, J = 9.7, 3.9 Hz, 1H), 2.44 (t, J = 7.2 Hz, 2H), 2.10 – 1.92 (m, 1H), 1.86 – 1.67 (m, 1H). LCMS ESI (*m/z*): 344.17; [M+H]⁺ calcd for C₁₆H₁₈N₅O₂S⁺: 344.12

Synthesis of WH-10417-053:

Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl 3aminopropanoate (0.46g, 2.5mmol) and benzo[d]thiazole-2-carboxylic acid (0.35g, 1.9mmol.) and desired compounds were obtained (0.25g, 42%). LCMS ESI (m/z): 250.88 (m–t-butyl); [M+H]⁺ calcd for C₁₅H₁₉N₂O₃S⁺: 307.11


Step 2: The synthesis was performed according to the General Procedure 1 with t-Butyl ester intermediates synthesized in Step 1. Free acid products were obtained by flash column

chromatography (EtOAc in hexanes 0 to 100%) (0.2g, quant.) LCMS ESI (m/z): 250.98; [M+H]⁺ calcd for C₁₁H₁₁N₂O₃S⁺: 251.05

Step 3: The synthesis was preformed according to General Procedure 1 with 3-(benzo[d]thiazole-2-carboxamido)propanoic acid (0.05g, 0.2mmol) and tert-butyl 5-aminoindoline-1-carboxylate (0.05g, 0.2mmol). 0.06g desired compound tert-butyl 5-(3-(benzo[d]thiazole-2carboxamido)propanamido)indoline-1-carboxylate was obtained (61%). LCMS ESI (m/z): 467.28; [M+H]⁺ calcd for C₂₄H₂₇N₄O₄S⁺: 467.17

Step 4: The synthesis was performed according to the General Procedure 1 with tert-butyl 5-(3-(benzo[d]thiazole-2-carboxamido)propanamido)indoline-1-carboxylate (0.06g, 0.13mmol) in 2mL 4N HCl in dioxane. 0.04g N-(3-(indolin-5-ylamino)-3-oxopropyl)benzo[d]thiazole-2-carboxamide (85%). LCMS ESI (m/z): 367.17; [M+H]⁺ calcd for C₁₉H₁₉N₄O₂S⁺: 367.12

Step 5: The synthesis was performed according to the General Procedure 3 N-(3-(indolin-5-ylamino)-3-oxopropyl)benzo[d]thiazole-2-carboxamide (0.04g, 0.1mmol) and cyanogen bromide (0.023g, 0.2mmol).

WH-10417-053 N-(3-((1-cyanoindolin-5-yl)amino)-3-oxopropyl)benzo[d]thiazole-2-carboxamide (15mg, 35%). 1H NMR (500 MHz, DMSO-d6) δ 9.73 (s, 1H), 8.24 (t, J = 5.7 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.47 (s, 1H), 7.38 – 7.24 (m, 3H), 7.22 (d, J = 8.7, 2.1 Hz, 1H), 3.87 (t, J = 8.8 Hz, 2H), 3.54 – 3.45 (m, 2H), 2.99 (t, J = 8.8 Hz, 2H), 2.51 (t, J = 6.8 Hz, 2H). LCMS ESI (*m/z*): 392.17; [M+H]⁺ calcd for C₂₀H₁₈N₅O₂S⁺: 392.12

Synthesis of 3-(2-phenylacetamido)propanoic acid

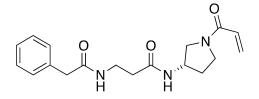
Step 1: The synthesis was preformed according to General Procedure 1 with *tert*-butyl 3-aminopropanoate (0.75 g, 4.13mmol) and 2-phenylacetic acid (1.12 g, 8.26mmol). 1.02 g desired compound (*tert*-butyl 3-(2-phenylacetamido)propanoate was obtained (94%).

Step 2: The synthesis was performed according to the General Procedure 1 with (*tert*-butyl 3-(2-phenylacetamido)propanoate (1.02 g, 3.87mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.802 g 3-(2-phenylacetamido)propanoic acid was obtained (quant.)

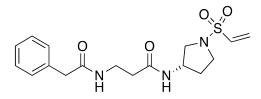
Synthesis of tert-butyl (S)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate

$$\begin{array}{c} O \\ CbzHN \end{array} + \begin{array}{c} O \\ H_2N \end{array} + O \\ H_2N \end{array} + O \\ + O \\ H_2N \end{array} + O \\ + O \\ H_2N \end{array} + O \\ +$$

Step 1: The synthesis was preformed according to General Procedure 1 with tert-butyl (S)-3-aminopyrrolidine-1-carboxylate(0.625g,3.36mmol)and3-(((benzyloxy)carbonyl)amino)propanoic acid, (0.75g, 3.36mmol).1.3g desired compound tert-butyl(S)-3-(3-(((benzyloxy)carbonyl)amino)propanamido)pyrrolidine-1-carboxylatewasobtained (99%).


Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3-(3-(((benzyloxy)carbonyl)amino)propanamido)pyrrolidine-1-carboxylate (1.3g, 0.357mmol) except for using activated palladium on carbon and methanol instead of TFA/DCM. 0.918g *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate was obtained (quant.)

Synthesis of AF_11010_64, 112:

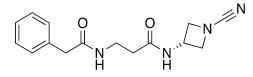

Step 1: The synthesis was performed according to the General Procedure 1 with 3-(2-phenylacetamido)propanoic acid (0.075g, 0.36mmol) and *tert*-butyl (*S*)-3-aminopyrrolidine-1-carboxylate (0.066mL, 0.36 mmol). 0.096g desired compound *tert*-butyl (*S*)-3-(3-(2-phenylacetamido)propanamido)pyrrolidine-1-carboxylate was obtained (71%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (3-(2-phenylacetamido)propanamido)pyrrolidine-1-carboxylate (0.096 g, 0.255 mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.070 g (*S*)-3-(2-phenylacetamido)-*N*- (pyrrolidin-3-yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 with *S*)-3-(2-phenylacetamido)-*N*-(pyrrolidin-3-yl)propanamide (0.05 g, 0.18 mmol) and ethenesulfonyl chloride (0.046mL, 0.44mmol), or acryloyl chloride (0.036mL, 0.44mmol).

AF_11010_64 ¹H NMR (500 MHz, Methanol- d_4) δ 7.33 – 7.17 (m, 5H), 6.56 (ddd, *J* = 39.0, 16.8, 10.4 Hz, 1H), 6.27 (ddd, *J* = 16.8, 6.2, 2.0 Hz, 1H), 5.74 (ddd, *J* = 10.4, 7.5, 1.9 Hz, 1H), 4.35 (dp, *J* = 15.9, 5.6 Hz, 1H), 3.73 – 3.65 (m, 2H), 3.62 – 3.52 (m, 1H), 3.49 – 3.46 (m, 2H), 3.43 (td, *J* = 6.7, 1.8 Hz, 2H), 3.41 – 3.34 (m, 1H), 2.38 (td, *J* = 6.7, 1.0 Hz, 2H), 2.26 – 2.06 (m, 1H), 1.95 – 1.79 (m, 1H). LC/MS (ESI) *m/z* 329.77; [M+H]⁺ calcd for C₁₈H₂₃N₃O₃⁺: 330.17

AF_11010_112 ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.32 – 7.21 (m, 5H), 6.69 (dd, *J* = 16.6, 10.0 Hz, 1H), 6.19 (d, *J* = 16.6 Hz, 1H), 6.09 (d, *J* = 10.1 Hz, 1H), 4.29 – 4.24 (m, 1H), 3.48 (d, *J* = 3.3 Hz, 2H), 3.47 – 3.36 (m, 4H), 3.09 (ddd, *J* = 10.5, 4.7, 0.8 Hz, 1H), 2.38 (t, *J* = 6.7 Hz, 2H), 2.13 (ddt, *J* = 13.1, 8.1, 6.6 Hz, 1H), 1.86 – 1.77 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 171.00, 170.66, 136.92, 132.17, 129.40, 129.03, 128.63, 126.75, 53.10, 49.21, 46.47, 42.77, 35.77, 35.59, 31.01. LC/MS (ESI) *m/z* 365.97; [M+H]⁺ calcd for C₁₇H₂₃N₃O₄S ⁺: 366.14


Synthesis of AF 11010 66:

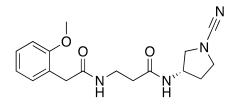
Step 1: The synthesis was performed according to the General Procedure 1 with 3-(2-phenylacetamido)propanoic acid (0.075g, 0.36mmol) and *tert*-butyl 3-aminoazetidine-1-carboxylate (0.057mL, 0.36mmol). 0.129g desired compound *tert*-butyl 3-(3-(2-phenylacetamido)propanamido)azetidine-1-carboxylate was obtained (99%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl 3-(3-(2-phenylacetamido)propanamido)azetidine-1-carboxylate (0.129g, 0.357mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.093g *N*-(azetidin-3-yl)-3-(2-phenylacetamido)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 with *N*-(azetidin-3-yl)-3-(2-phenylacetamido)propanamide (0.093g, 0.357mmol) and cyanogen bromide (0.424mL, 1.27mmol).

AF_11010_66 ¹H NMR (500 MHz, Methanol- d_4) δ 7.35 – 7.24 (m, 5H), 4.59 (tt, J = 7.8, 5.9 Hz, 1H), 4.37 (t, J = 7.9 Hz, 2H), 4.03 – 3.98 (m, 2H), 3.50 (s, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.41 (t, J = 6.6 Hz, 2H). LC/MS (ESI) *m/z* 286.97; [M+H]⁺ calcd for C₁₅H₁₈N₄O₂⁺: 287.14

Synthesis of AF 11010 82:



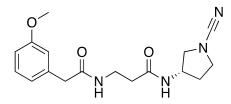
Step 1: The synthesis was performed according to the General Procedure 2-(2-methoxyphenyl)acetic acid (0.0485g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 0.194mmol). 0.079g desired compound

tert-butyl (*S*)-3-(3-(2-(2-methoxyphenyl)acetamido)propanamido)pyrrolidine-1-carboxylate was obtained (99%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3-(3-(2-(2-methoxyphenyl)acetamido)propanamido)pyrrolidine-1-carboxylate (0.079g, 0.194mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.059g (*S*)-3-(2-(2methoxyphenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide was obtained (quant.)

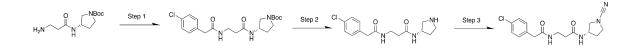
Step 3: The synthesis was performed according to the General Procedure 1 (*S*)-3-(2-(2-methoxyphenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide (0.059g, 0.194mmol) and cyanogen bromide (0.129mL, 0.388mmol).

AF_11010_82 ¹H NMR (500 MHz, Methanol- d_4) δ 7.26 (td, J = 7.8, 1.7 Hz, 1H), 7.19 (dd, J = 7.4, 1.7 Hz, 1H), 6.96 (dd, J = 8.2, 1.1 Hz, 1H), 6.91 (td, J = 7.5, 1.1 Hz, 1H), 4.30 (ddt, J = 8.6, 6.1, 3.0 Hz, 1H), 3.83 (s, 3H), 3.58 (dd, J = 9.9, 6.0 Hz, 1H), 3.54 – 3.50 (m, 1H), 3.49 (s, 2H), 3.48 – 3.44 (m, 1H), 3.42 (t, J = 6.7 Hz, 2H), 3.19 (ddd, J = 9.9, 3.9, 0.9 Hz, 1H), 2.38 (t, J = 6.6 Hz, 2H), 2.13 (dtd, J = 13.1, 8.0, 6.2 Hz, 1H), 1.89 – 1.80 (m, 1H). LC/MS (ESI) m/z 330.97; [M+H]⁺ calcd for $C_{17}H_{22}N_4O_3^+$: 331.17


Synthesis of AF 11010 83:

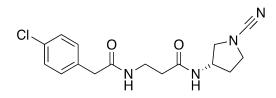
$$H_{2}N \xrightarrow{\mathsf{N}} H_{1}^{\mathsf{N}} \xrightarrow{\mathsf{NBoc}} \underbrace{\operatorname{Step 1}}_{\mathsf{H}} \xrightarrow{\mathsf{O}} \underbrace{\operatorname{Step 1}}_{\mathsf{H}} \xrightarrow{\mathsf{O}} \underbrace{\operatorname{O}}_{\mathsf{H}}^{\mathsf{O}} \xrightarrow{\mathsf{Step 2}} \underbrace{\operatorname{O}}_{\mathsf{H}}^{\mathsf{O}} \underbrace{\operatorname{O}}_{\mathsf{H}}^{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \underbrace{\operatorname{O}}_{\mathsf{H}}^{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \underbrace{\operatorname{O}}_{\mathsf{H}}^{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{$$

Step 1: The synthesis was performed according to the General Procedure 2-(3-methoxyphenyl)acetic acid (0.0485g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 0.194mmol). 0.079g desired compound *tert*-butyl (*S*)-3-(3-(2-(3-methoxyphenyl)acetamido)pyrrolidine-1-carboxylate was obtained (99%).

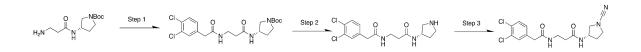

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3-(3-(2-(3-methoxyphenyl)acetamido)propanamido)pyrrolidine-1-carboxylate (0.079g, 0.194mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.059g (*S*)-3-(2-(3methoxyphenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 (*S*)-3-(2-(3-methoxyphenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide (0.059g, 0.194mmol) and cyanogen bromide (0.129mL, 0.388mmol).

AF_11010_83 ¹H NMR (500 MHz, Methanol- d_4) δ 7.29 – 7.21 (m, 1H), 7.18 (dt, J = 7.4, 2.1 Hz, 1H), 6.96 (dd, J = 8.2, 1.2 Hz, 1H), 6.90 (tt, J = 7.5, 1.4 Hz, 1H), 4.30 (dd, J = 8.8, 4.3 Hz, 1H), 3.83 (d, J = 1.5 Hz, 3H), 3.58 (dd, J = 10.0, 6.0 Hz, 1H), 3.56 – 3.50 (m, 1H), 3.49 (d, J = 2.2 Hz, 2H), 3.48 – 3.44 (m, 1H), 3.42 (td, J = 6.7, 2.6 Hz, 2H), 3.22 – 3.14 (m, 1H), 2.38 (td, J = 6.6, 3.2 Hz, 2H), 2.19 – 2.06 (m, 1H), 1.89 – 1.79 (m, 1H). LC/MS (ESI) m/z 331.07; [M+H]⁺ calcd for $C_{17}H_{22}N_4O_3^+$: 331.17


Synthesis of AF 11010 84:

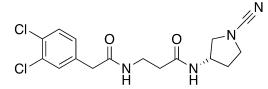
Step 1: The synthesis was performed according to the General Procedure 2-(4-chlorophenyl)acetic acid (0.0485g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 0.194mmol). 0.079g desired compound *tert*-butyl (*S*)-3-(3-(2-(4-chlorophenyl)acetamido)pyrrolidine-1-carboxylate was obtained (99%).


Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (3-(2-(4-chlorophenyl)acetamido)propanamido)pyrrolidine-1-carboxylate (0.079g, 0.194mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.059g (*S*)-3-(2-(4-chlorophenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 ((*S*)-3-(2-(4-chlorophenyl)acetamido)-*N*-(1-cyanopyrrolidin-3-yl)propanamide (0.059g, 0.194mmol) and cyanogen bromide (0.129mL, 0.388mmol).

AF_11010_84 ¹H NMR (500 MHz, Methanol- d_4) δ 7.33 – 7.25 (m, 3H), 4.33 – 4.28 (m, 1H), 3.59 (dd, J = 9.9, 6.0 Hz, 1H), 3.54 – 3.48 (m, 1H), 3.48 – 3.45 (m, 2H), 3.44 (t, J = 6.6 Hz, 2H), 3.22 – 3.17 (m, 1H), 2.38 (t, J = 6.6 Hz, 2H), 2.18 – 2.09 (m, 1H), 1.84 (ddt, J = 12.6, 7.4, 4.9 Hz, 1H), 1.30 (s, 1H). LC/MS (ESI) m/z 334.97; [M+H]⁺ calcd for $C_{16}H_{19}CIN_4O_2^+$: 335.12

Synthesis of AF 11010 124:

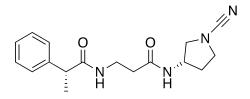


Step 1: The synthesis was performed according to the General Procedure 2-(3,4-dichlorophenyl)acetic acid (0.06g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 1.0mmol). 0.059g desired compound *tert*-butyl (*S*)-3-(3-(2-(3,4-dichlorophenyl)acetamido)pyrrolidine-1-carboxylate was obtained (68%).

Step 2: The synthesis was performed according to the General Procedure 1 with tert-butyl (S)-3-(3-(2-(3,4-dichlorophenyl)acetamido)propanamido)pyrrolidine-1-carboxylate(0.059g,

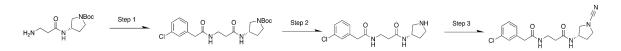
0.133mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.046g (S)-3-(2-(3,4-dichlorophenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 (*S*)-3-(2-(3,4-dichlorophenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide (0.045g, 0.133mmol) and cyanogen bromide (0.112mL, 0.33mmol).


AF_11010_124 ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.47 (d, *J* = 2.1 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.21 (dd, *J* = 8.3, 2.1 Hz, 1H), 4.31 (ddd, *J* = 10.3, 6.0, 4.3 Hz, 1H), 3.59 (dd, *J* = 9.9, 6.0 Hz, 1H), 3.54 – 3.49 (m, 1H), 3.48 (s, 2H), 3.44 (t, *J* = 6.6 Hz, 2H), 3.21 (dd, *J* = 9.9, 3.8 Hz, 1H), 2.39 (t, *J* = 6.6 Hz, 2H), 2.14 (dtd, *J* = 15.9, 7.9, 6.2 Hz, 1H), 1.84 (ddt, *J* = 12.6, 7.5, 4.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 170.86, 169.81, 138.04, 131.47, 131.10, 130.71, 129.93, 129.52, 117.75, 55.46, 49.24, 48.92, 41.47, 35.85, 35.54, 31.24. LC/MS (ESI) *m/z* 368.97; [M+H]⁺ calcd for $C_{16}H_{18}Cl_2N_4O_2^+$: 369.08

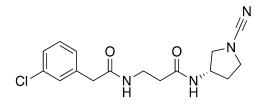
Synthesis of AF 11010 125:

Step 1: The synthesis was performed according to the General Procedure (*R*)-2-phenylpropanoic acid (0.044g, 0.29mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.050g, 0.194mmol). 0.052g desired compound *tert*-butyl (*S*)-3-(3-((*R*)-2-phenylpropanamido)pyrrolidine-1-carboxylate was obtained (69%).


Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (3-((*R*)-2-phenylpropanamido)propanamido)pyrrolidine-1-carboxylate (0.052g, 0.135mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.040g ((*R*)-*N*-(3-oxo-3-(((*S*)-pyrrolidin-3-yl)amino)propyl)-2-phenylpropanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 (*R*)-*N*-(3-oxo-3-(((*S*)-pyrrolidin-3-yl)amino)propyl)-2-phenylpropanamide (0.04g, 0.135mmol) and cyanogen bromide (0.112mL, 0.34mmol).

AF_11010_125 ¹H NMR (500 MHz, Methanol- d_4) δ 7.36 – 7.30 (m, 4H), 7.27 – 7.23 (m, 1H), 4.29 (ddd, J = 6.2, 4.5, 1.7 Hz, 1H), 3.63 (q, J = 7.1 Hz, 1H), 3.56 (dd, J = 9.9, 6.1 Hz, 1H), 3.53 – 3.44 (m, 3H), 3.40 (q, J = 6.8 Hz, 1H), 3.09 (ddd, J = 9.9, 4.1, 0.8 Hz, 1H), 2.38 (td, J = 6.7, 3.9 Hz, 2H), 2.18 – 2.09 (m, 1H), 1.88 – 1.80 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H). LC/MS (ESI) *m/z* 314.87; [M+H]⁺ calcd for C₁₇H₂₂N₄O₂⁺: 315.17

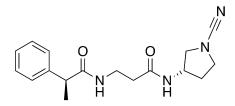

Synthesis of AF 11010 131:

Step 1: The synthesis was performed according to the General Procedure 2-(3-chlorophenyl)acetic acid (0.044g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 0.194mmol). 0.079g desired compound *tert*-butyl (*S*)-3-(3-(2-(3-chlorophenyl)acetamido)pyrrolidine-1-carboxylate was obtained (99%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (3-(2-(3-chlorophenyl)acetamido)propanamido)pyrrolidine-1-carboxylate (0.079g, 0.194mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.06g (*S*)-3-(2-(3-chlorophenyl)acetamido)-*N*-(pyrrolidin-3-yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 ((*S*)-3-(2-(3-chlorophenyl)acetamido)-*N*-(1-cyanopyrrolidin-3-yl)propanamide (0.06g, 0.194mmol) and cyanogen bromide (0.162mL, 0.485mmol).

AF_11010_131 ¹H NMR (500 MHz, Methanol- d_4) δ 7.34 – 7.20 (m, 4H), 4.32 (tt, J = 6.1, 4.2 Hz, 1H), 3.59 (dd, J = 9.9, 6.0 Hz, 1H), 3.54 – 3.50 (m, 1H), 3.49 (s, 2H), 3.48 – 3.46 (m, 1H), 3.45 (t, J = 6.7 Hz, 2H), 3.20 (dd, J = 9.9, 3.9 Hz, 1H), 2.40 (t, J = 6.7 Hz, 2H), 2.19 – 2.09 (m, 1H), 1.90 – 1.81 (m, 1H). LC/MS (ESI) m/z 334.97; [M+H]⁺ calcd for $C_{16}H_{19}CIN_4O_2^+$: 334.12


Synthesis of AF 11010 132:

Step 1: The synthesis was performed according to the General Procedure (*S*)-2-phenylpropanoic acid (0.044g, 0.291mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1-carboxylate (0.05g, 0.194mmol). 0.075g desired compound *tert*-butyl (*S*)-3-(3-((*S*)-2-phenylpropanamido)pyrrolidine-1-carboxylate was obtained (99%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (3-((*S*)-2-phenylpropanamido)propanamido)pyrrolidine-1-carboxylate (0.075g, 0.194mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.056g ((*S*)-*N*-(3-oxo-3-(((*S*)-pyrrolidin-3-yl)amino)propyl)-2-phenylpropanamide was obtained (quant.)

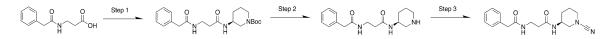
Step 3: The synthesis was performed according to the General Procedure 1 (*R*)-*N*-(3-oxo-3-(((*S*)-pyrrolidin-3-yl)amino)propyl)-2-phenylpropanamide (0.056g, 0.194mmol) and cyanogen bromide (0.162mL, 0.485mmol).

AF_11010_132 ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.35 – 7.26 (m, 4H), 7.22 (dddd, *J* = 6.9, 5.7, 3.3, 1.4 Hz, 1H), 4.26 (ddd, *J* = 10.4, 6.1, 4.3 Hz, 1H), 3.63 – 3.53 (m, 2H), 3.49 – 3.34 (m, 4H), 3.17 (ddd, *J* = 9.9, 3.8, 0.9 Hz, 1H), 2.39 – 2.33 (m, 2H), 2.14 – 2.02 (m, 1H), 1.83 – 1.73 (m, 1H), 1.42 (dd, *J* = 7.2, 1.5 Hz, 3H). LC/MS (ESI) *m/z* 314.97; [M+H]⁺ calcd for C₁₇H₂₂N₄O₂⁺: 315.17

Synthesis of AF 11010 104:

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$

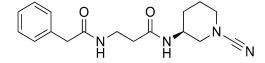
Step 1: The synthesis was performed according to the General Procedure 1 with 3-(2-phenylacetamido)propanoic acid (0.075g, 0.362mmol) and *tert*-butyl 4-aminopiperidine-1-carboxylate (0.06g, 0.3mmol). 0.116g desired compound *tert*-butyl 4-(3-(2-phenylacetamido)propanamido)piperidine-1-carboxylate was obtained (99%).


Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl 4-(3-(2-phenylacetamido)propanamido)piperidine-1-carboxylate (0.116g, 0.3mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.087g 3-(2-phenylacetamido)-*N*-(piperidin-4-yl)propanamide was obtained (quant.)

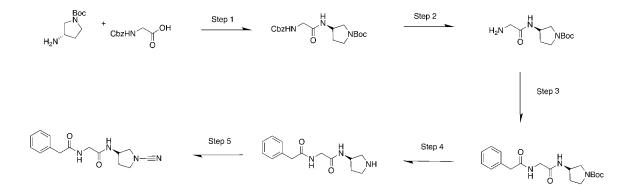
Step 3: The synthesis was performed according to the General Procedure 1 with 3-(2-phenylacetamido)-*N*-(piperidin-4-yl)propanamide (0.087g, 0.3mmol) and cyanogen bromide (0.251mL, 0.75mmol).

N N N

AF_11010_104 ¹H NMR (500 MHz, Methanol- d_4) δ 7.33 – 7.22 (m, 5H), 3.74 (tt, J = 10.8, 4.0 Hz, 1H), 3.48 (s, 2H), 3.43 (t, J = 6.7 Hz, 2H), 3.39 (td, J = 5.3, 4.4, 3.1 Hz, 2H), 3.13 (ddd, J = 13.2, 11.6, 2.8 Hz, 2H), 2.36 (t, J = 6.7 Hz, 2H), 1.86 – 1.79 (m, 2H), 1.55 – 1.44 (m, 2H). LC/MS (ESI) m/z 314.77; [M+H]⁺ calcd for C₁₇H₂₂N₄O₂⁺: 315.17


Synthesis of AF 11010 105:

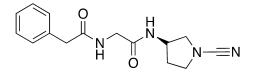
Step 1: The synthesis was performed according to the General Procedure 1 with 3-(2-phenylacetamido)propanoic acid (0.15g, 0.724mmol) and *tert*-butyl (*S*)-3-aminopiperidine-1-carboxylate (0.125g, 0.626mmol). 0.243g desired compound *tert*-butyl (*S*)-3-(3-(2-phenylacetamido)propanamido)piperidine-1-carboxylate was obtained (99%).


Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3-(3-(2-phenylacetamido)propanamido)piperidine-1-carboxylate (0.233, 0.6mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.173g (*S*)-3-(2-phenylacetamido)-*N*-(piperidin-3yl)propanamide was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 with (*S*)-3-(2-phenylacetamido)-*N*-(piperidin-3-yl)propanamide (0.087g, 0.3mmol) and cyanogen bromide (0.25mL, 0.75mmol).

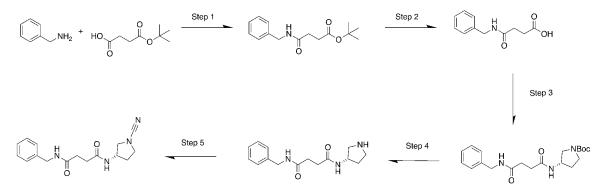
AF_11010_105 ¹H NMR (500 MHz, Methanol- d_4) δ 7.35 – 7.21 (m, 5H), 3.83 (ddd, J = 9.0, 5.5, 4.0 Hz, 1H), 3.48 (s, 2H), 3.43 (td, J = 6.6, 3.2 Hz, 2H), 3.35 (dd, J = 12.4, 4.2 Hz, 1H), 3.30 – 3.24 (m, 1H), 3.09 – 3.03 (m, 1H), 2.79 (dd, J = 12.4, 8.6 Hz, 1H), 2.39 (td, J = 6.7, 1.1 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.71 – 1.61 (m, 1H), 1.44 – 1.35 (m, 1H). LC/MS (ESI) m/z 314.67; [M+H]⁺ calcd for $C_{17}H_{22}N_4O_2^+$: 315.17

Synthesis of AF 11010 136


Step 1: The synthesis was preformed according to General Procedure 1 with ((benzyloxy)carbonyl)glycine (0.075g, .36mmol) and *tert*-butyl (*S*)-3-aminopyrrolidine-1-carboxylate (0.055mL, 0.3mmol). 0.103g desired compound *tert*-butyl (*S*)-3-(2-(((benzyloxy)carbonyl)amino)acetamido)pyrrolidine-1-carboxylate was obtained (91%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (2-(((benzyloxy)carbonyl)amino)acetamido)pyrrolidine-1-carboxylate (0.103g, 0.27mmol) except for using palladium on carbon and MeOH instead of TFA/DCM. 0.065g *tert*-butyl (*S*)-3-(2-aminoacetamido)pyrrolidine-1-carboxylate was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 tert-butyl (S)-3-(2-
aminoacetamido)pyrrolidine-1-carboxylate (0.065g, 0.27mmol) and 2-phenyl acetic acid (0.043g,
0.32mmol).0.32mmol).0.90gdesiredcompoundtert-butyl(S)-3-(2-(2-
phenylacetamido)acetamido)pyrrolidine-1-carboxylate was obtained (92%).

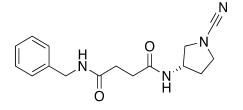

Step 4: The synthesis was performed according to the General Procedure 1 with *S*)-3-(2-(2-phenylacetamido)acetamido)pyrrolidine-1-carboxylate (0.09g, 0.25mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.065g (*S*)-*N*-(2-oxo-2-(pyrrolidin-3-ylamino)ethyl)-2-phenylacetamide was obtained (quant.)

Step 5: The synthesis was performed according to the General Procedure 1 with (*S*)-*N*-(2-oxo-2-(pyrrolidin-3-ylamino)ethyl)-2-phenylacetamide (0.065g, 0.25mmol) and cyanogen bromide (0.250mL, 0.75mmol).

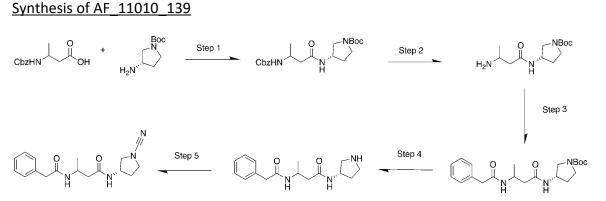
AF_11010_136 ¹H NMR (500 MHz, Methanol- d_4) δ 7.35 – 7.32 (m, 3H), 7.29 – 7.24 (m, 1H), 4.38 (tt, J = 6.1, 4.2 Hz, 1H), 3.84 (d, J = 2.5 Hz, 2H), 3.63 (dd, J = 9.9, 6.0 Hz, 1H), 3.60 (s, 2H), 3.55 – 3.46 (m, 2H), 3.26 (ddd, J = 10.1, 3.9, 0.9 Hz, 1H), 2.17 (dtd, J = 13.0, 8.0, 6.2 Hz, 1H), 1.94 – 1.87 (m, 1H). LC/MS (ESI) m/z 286.97; [M+H]⁺ calcd for $C_{15}H_{18}N_4O_2^+$: 287.14

Synthesis of AF 11010 137

Step 1: The synthesis was preformed according to General Procedure 1 with phenylmethanamine (0.031mL, 0.287mmol) and 4-(*tert*-butoxy)-4-oxobutanoic acid (0.075g, 0.43mmol).
0.105g desired compound *tert*-butyl 4-(benzylamino)-4-oxobutanoate was obtained (93%).


Step 2: The synthesis was performed according to the General Procedure 1 with (*tert*-butyl 4-(benzylamino)-4-oxobutanoate (0.105g, 0.4mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.83g 4-(benzylamino)-4-oxobutanoic acid was obtained (quant.)

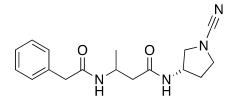
Step 3: The synthesis was performed according to the General Procedure 1 4-(benzylamino)-4oxobutanoic acid (0.083g, 0.4mmol) and *tert*-butyl (*S*)-3-(3-aminopropanamido)pyrrolidine-1carboxylate (0.088mL, 0.48mmol). 0.144g desired compound *tert*-butyl (*S*)-3-(4-(benzylamino)-4oxobutanamido)pyrrolidine-1-carboxylate was obtained (99%).


Step 4: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (*S*)-3- (4-(benzylamino)-4-oxobutanamido)pyrrolidine-1-carboxylate (0.144g, 0.4mmol) except for

using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.11g (S)- N^1 -benzyl- N^4 -(pyrrolidin-3-yl)succinamide was obtained (quant.)

Step 5: The synthesis was performed according to the General Procedure 1 with S)- N^1 -benzyl- N^4 -(pyrrolidin-3-yl)succinamide (0.11g, 0.4mmol) and cyanogen bromide (0.33mL, 1.0mmol).

AF_11010_137 ¹H NMR (500 MHz, Methanol- d_4) δ 7.35 – 7.23 (m, 5H), 4.37 (s, 2H), 4.34 (dq, J = 6.0, 4.2, 3.1 Hz, 1H), 3.61 (dd, J = 9.9, 6.0 Hz, 1H), 3.58 – 3.46 (m, 2H), 3.24 (dd, J = 9.9, 3.9 Hz, 1H), 2.58 – 2.49 (m, 4H), 2.15 (dtd, J = 13.1, 8.0, 6.2 Hz, 1H), 1.90 (ddt, J = 12.6, 7.3, 4.8 Hz, 1H). LC/MS (ESI) m/z 300.97; [M+H]⁺ calcd for $C_{16}H_{20}N_4O_2^+$: 301.16

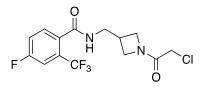

Step 1: The synthesis was preformed according to General Procedure 1 with 3-(((benzyloxy)carbonyl)amino)butanoic acid (0.072g, 0.3mmol) and *tert*-butyl (*S*)-3aminopyrrolidine-1-carboxylate (0.046mL, 0.25mmol). 0.094g desired compound *tert*-butyl (3*S*)-3-(3-(((benzyloxy)carbonyl)amino)butanamido)pyrrolidine-1-carboxylate was obtained (93%).

Step 2: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (3*S*)-3-(3-(((benzyloxy)carbonyl)amino)butanamido)pyrrolidine-1-carboxylate (0.094g, 0.233mmol) except for using palladium on carbon and MeOH instead of TFA/DCM. 0.63g *tert*-butyl (3*S*)-3-(3aminobutanamido)pyrrolidine-1-carboxylate was obtained (quant.)

Step 3: The synthesis was performed according to the General Procedure 1 3-(2-phenylacetamido)butanoic acid (0.038g, 0.28mmol) and *tert*-butyl (3*S*)-3-(3-aminobutanamido)pyrrolidine-1-carboxylate (0.063g, 0.233mmol). 0.09 desired compound *tert*-butyl (3*S*)-3-(3-(2-phenylacetamido)butanamido)pyrrolidine-1-carboxylate was obtained (98%).

Step 4: The synthesis was performed according to the General Procedure 1 with *tert*-butyl (3*S*)-3-(3-(2-phenylacetamido)butanamido)pyrrolidine-1-carboxylate (0.09g, 0.23mmol) except for using 4N HCl in 1,4-dioxane instead of TFA/DCM. 0.067g 3-(2-phenylacetamido)-*N*-((*S*)-pyrrolidin-3-yl)butanamide was obtained (quant.)

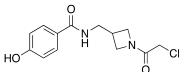
Step 5: The synthesis was performed according to the General Procedure 1 3-(2-phenylacetamido)-*N*-((*S*)-pyrrolidin-3-yl)butanamide (0.067g, 0.23mmol) and cyanogen bromide (0.192mL, 0.575mmol).


AF_11010_139 ¹H NMR (500 MHz, Methanol- d_4) δ 7.34 – 7.23 (m, 5H), 4.27 (qd, J = 6.4, 2.5 Hz, 2H), 3.57 (dd, J = 9.9, 6.0 Hz, 1H), 3.55 – 3.49 (m, 1H), 3.48 (d, J = 2.4 Hz, 2H), 3.45 (tdd, J = 9.3, 4.9, 3.3 Hz, 1H), 3.19 – 3.11 (m, 1H), 1.20 (d, J = 6.7 Hz, 3H). LC/MS (ESI) m/z 314.97; [M+H]⁺ calcd for $C_{17}H_{22}N_4O_2^+$: 315.17

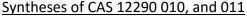
Synthesis of CAS 11487 188, 193, 195, 199, 200, 205:

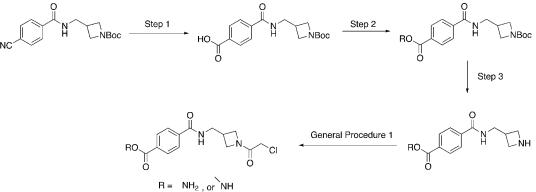
Synthesis of **CAS-11487-188** followed the General Procedure 1 by using 4-fluorobenzoic acid (0.075 g, 0.535 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.098 mL, 0.535 mmol) to afford CAS-11487-188 (0.0353g, 51.7%) ¹H NMR (500 MHz, DMSO-*d*6) δ 8.67 (t, *J* = 5.7 Hz, 1H), 7.99 – 7.81 (m, 2H), 7.42 – 7.18 (m, 2H), 4.31 – 4.17 (m, 1H), 4.09 (d, *J* = 1.4 Hz, 2H), 4.01 – 3.89 (m, 2H), 3.69 (dd, *J* = 9.9, 5.5 Hz, 1H), 3.51 – 3.37 (m, 2H), 2.91 – 2.71 (m, 1H). LC/MS (ESI) *m/z* 285.67; [M+H]⁺ calcd for C_{13H15}CIFN₂O₂⁺285.08

Synthesis of CAS-11487-193 followed the General Procedure 1 by using 4-


(trifluoromethyl)benzoic acid (0.200 g, 1.05 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1carboxylate (0.192 mL, 1.05 mmol) to afford CAS-11487-193 (0.0128g, 11.7%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.07 (t, *J* = 6.0 Hz, 1H), 4.42 (t, *J* = 8.7 Hz, 1H), 4.20 – 4.08 (m, 2H), 3.96 – 3.91 (m, 1H), 3.89 (d, *J* = 2.5 Hz, 2H), 3.80 (dt, *J* = 14.0, 6.3 Hz, 1H), 3.68 (dt, *J* = 13.7, 6.5 Hz, 1H), 3.04 (dtdd, *J* = 8.3, 6.6, 4.9, 1.5 Hz, 1H). LC/MS (ESI) *m/z* 335.07; [M+H]⁺ calcd for C₁₄H₁₅ClF₃N₂O₂⁺: 335.08

Synthesis of **CAS-11487-195** followed the General Procedure 1 by using 4-fluoro-2-(trifluoromethyl)benzoic acid (0.250 g, 1.20 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1carboxylate (0.440 mL, 2.40 mmol) to afford CAS-11487-195 (0.0266 g, 12.6%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (dd, *J* = 8.5, 5.2 Hz, 1H), 7.43 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.32 (td, *J* = 8.1, 2.6 Hz, 1H), 6.37 (s, 1H), 4.41 (t, *J* = 8.8 Hz, 1H), 4.17 (t, *J* = 9.5 Hz, 1H), 4.10 (dd, *J* = 9.2, 5.4 Hz, 1H), 3.88 (s, 2H), 3.84 (dd, *J* = 10.6, 5.6 Hz, 1H), 3.79 – 3.60 (m, 2H), 3.08 – 2.98 (m, 1H). LC/MS (ESI) *m/z* 353.06; [M+H]⁺ calcd for C₁₄H₁₄ClF₄N₂O₂⁺: 353.07

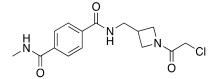

Synthesis of **CAS-11487-199** followed the General Procedure 1 by using 4-cyanobenzoic acid (1.0 g, 6.80 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (1.4 mL, 7.48 mmol) to afford CAS-11487-199 (0.011 g, 11.5%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 – 7.88 (m, 2H), 7.81 – 7.73 (m, 2H), 6.82 (s, 0H), 4.43 (t, *J* = 8.7 Hz, 1H), 4.23 – 4.15 (m, 1H), 4.12 (dd, *J* = 9.2, 5.2 Hz, 1H), 3.96 – 3.90 (m, 1H), 3.90 (d, *J* = 2.0 Hz, 2H), 3.81 (dt, *J* = 13.1, 6.4 Hz, 1H), 3.69 (dt, *J* = 13.6, 6.4 Hz, 1H), 3.10 – 2.98 (m, 1H). LC/MS (ESI) *m/z* 292.38; [M+H]⁺ calcd for C₁₄H₁₅ClN₃O₂⁺: 292.08


Synthesis of **CAS-11487-200** followed the General Procedure 1 by using 1-methylpiperidine-4carboxylic acid (0.300 g, 2.10 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.421 mL, 2.30 mmol) to afford CAS-11487-200 (0.0266 g, 12.6%). ¹H NMR (500 MHz, Methanol- d_4) δ 4.37 (t, J = 8.8 Hz, 1H), 4.13 – 4.07 (m, 1H), 4.07 – 3.98 (m, 4H), 3.76 (dd, J = 10.4, 5.5 Hz, 1H), 3.62 – 3.54 (m, 2H), 3.51 – 3.37 (m, 3H), 3.03 (td, J = 13.0, 3.1 Hz, 2H), 2.88 (s, 5H), 2.53 (tt, J = 12.1, 3.8 Hz, 1H), 2.15 (d, J = 16.0 Hz, 1H), 2.10 – 2.01 (m, 2H), 2.01 – 1.88 (m, 2H). LC/MS (ESI) m/z 288.07; [M+H]⁺ calcd for C₁₃H₂₃ClN₃O₂⁺: 288.15

Synthesis of **CAS-11487-205** followed the General Procedure 1 by using 4-hydroxybenzoic acid (0.200 g, 1.45 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.291 mL, 1.59 mmol) to afford CAS-11487-205 (0.001 g, 1.4%) ¹H NMR (500 MHz, Methanol- d_4) δ 7.76 – 7.65 (m, 2H), 7.66 – 7.51 (m, 0H), 7.05 – 6.93 (m, 0H), 6.90 – 6.78 (m, 2H), 4.46 – 4.34 (m, 1H), 4.19 – 4.06 (m, 2H), 4.02 (d, *J* = 1.1 Hz, 2H), 3.91 – 3.81 (m, 1H), 3.67 – 3.55 (m, 2H), 3.00 (dddd, *J* = 12.3, 8.4, 5.0, 2.2 Hz, 1H). LC/MS (ESI) *m/z* 283.15; [M+H]⁺ calcd for C₁₃H₁₆CIN₂O₃⁺: 283.08 Synthesis of CAS 12290 001

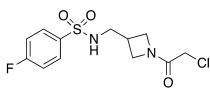
Synthesis of **CAS-12290-001** followed the General Procedure 1 by using 4-methoxybenzoic acid (0.250 g, 1.64 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.330 mL, 1.81 mmol) to afford CAS-12290-001 (0.060 g, 24.8%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 – 7.63 (m, 2H), 7.18 (t, *J* = 6.1 Hz, 1H), 7.00 – 6.80 (m, 2H), 4.36 (t, *J* = 8.7 Hz, 1H), 4.18 – 4.04 (m, 2H), 3.89 (q, *J* = 5.4, 5.0 Hz, 1H), 3.86 (d, *J* = 7.5 Hz, 5H), 3.72 (dt, *J* = 13.1, 6.4 Hz, 1H), 3.62 (dt, *J* = 13.6, 6.4 Hz, 1H), 3.05 – 2.94 (m, 1H). LC/MS (ESI) *m/z* 297.18; [M+H]⁺ calcd for C₁₄H₁₈ClN₂O₃⁺: 297.10

Step 1: Nitrile *tert*-butyl 3-((4-cyanobenzamido)methyl)azetidine-1-carboxylate (0.350 g, 1.10 mmol) was dissolved in 80% EtOH (8 mL), KOH (0.311 g, 5.55 mmol) was added and the reaction was heated to reflux for 16h. Crude was purified directly by flash chromatography using eluent gradient 0-40% MeOH/EtOAc. 140 mg of desired product 4-(((1-(*tert*-butoxycarbonyl)azetidin-3-yl)methyl)carbamoyl)benzoic acid was obtained (38%).

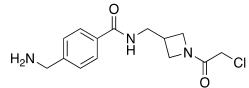

Step 2: 4-(((1-(*tert*-butoxycarbonyl)azetidin-3-yl)methyl)carbamoyl)benzoic acid (0.0703 g, .210 mmol) was dissolved in DCM (1-2 mL) with diisopropylethylamine (0.074 mL, 0.4205 mmol), and HATU (0.094 g, 0.2522 mmol) at room temperature. Ammonium chloride (0.045 g, 0.8409 mmol), or 2M Methylamine (0.030 mL, 0.6307 mmol) were added. The mixture then stirred at room temperature overnight, and was directly purified by flash chromatography 10% MeOH/ EtOAc. 34 mg of desired product, *tert*-butyl 3-((4-carbamoylbenzamido)methyl)azetidine-1-carboxylate, and 39 mg of desired product *tert*-butyl 3-((4-

(methylcarbamoyl)benzamido)methyl)azetidine-1-carboxylate were obtained (49%, 53%, respectively).

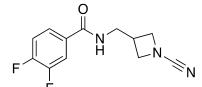
Step 3: Products from the last step were dissolved in DCM (1-2 mL) at room temperature and treated with TFA (1 mL). The mixtures stirred at room temperature until the tertbutyloxycarbonyl protecting group was cleaved tracking by UPLC-MS. The mixtures were concentrated and placed *in vacuo* for 12 hours.


Step 4: Acylations using chloroacetyl chloride were performed according to Step 3 of General Procedure 1 to yield the target compounds **CAS-12290-010** (5.65%), and **CAS-12290-011** (5.7%).

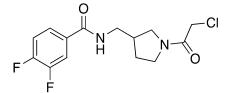
CAS-12290-010 ¹H NMR (500 MHz, Methanol- d_4) δ 8.82 (s, 1H), 7.99 – 7.95 (m, 1H), 7.93 – 7.89 (m, 1H), 4.42 (t, J = 8.8 Hz, 1H), 4.16 (d, J = 9.5 Hz, 1H), 4.13 (dd, J = 8.3, 4.6 Hz, 1H), 4.03 (d, J = 2.5 Hz, 2H), 3.87 (dd, J = 10.3, 5.5 Hz, 1H), 3.71 – 3.63 (m, 2H), 3.05 – 3.00 (m, 1H). LC/MS (ESI) m/z 310.07; [M+H]⁺ calcd for $C_{14}H_{17}CIN_3O_3^+$: 310.10

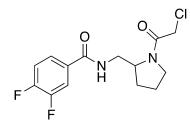

Synthesis of **CAS-12290-011** ¹H NMR (500 MHz, Methanol- d_4) δ 8.81 (s, 1H), 7.91 (s, 4H), 4.43 (d, J = 8.8 Hz, 1H), 4.17 – 4.11 (m, 2H), 4.03 (d, J = 2.6 Hz, 2H), 3.87 (dd, J = 10.3, 5.5 Hz, 2H), 3.66 (dd, J = 7.0, 3.2 Hz, 2H), 3.03 (d, J = 7.1 Hz, 1H), 2.95 (s, 3H), 2.68 (s, 2H). LC/MS (ESI) m/z 324.17; [M+H]⁺ calcd for C₁₅H₁₉CIN₃O₃⁺: 324.11

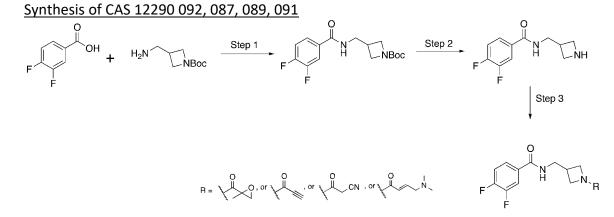
Syntheses of CAS-12290 024, 039, 073, 076, and 077



Synthesis of **CAS-12290-024** was performed by combining 4-fluorobenzenesulfonyl chloride (.200 g, 1.03 mmol), *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.181 mL, 1.03 mmol), and K₂CO₃ (0.285 g, 2.06 mmol) in DCM at rt and was allowed to react overnight. Crude was then directly purified by flash chromatography 80% EtOAc / Hexanes then conc. *in vacuo* to

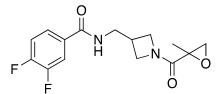

afford *tert*-butyl 3-(((4-fluorophenyl)sulfonamido)methyl)azetidine-1-carboxylate (92.2 %). Subsequent removal of the Boc protecting group and acylation using chloroacetyl chloride were executed following Step(s) 2, and 3 of General Procedure 1 to afford **CAS-12290-024** (2.5 %). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.96 – 7.78 (m, 1H), 7.52 – 7.40 (m, 1H), 6.57 (s, 1H), 4.16 (t, *J* = 8.6 Hz, 1H), 4.07 (s, 1H), 3.90 – 3.76 (m, 1H), 3.55 (dd, *J* = 9.9, 5.4 Hz, 1H), 3.03 – 2.90 (m, 1H), 2.67 (dddd, *J* = 13.8, 6.7, 4.2, 1.5 Hz, 1H). LC/MS (ESI) *m/z* 321.04; [M+23]⁺ calcd for C₁₂H₁₅CIFN₂O₃S⁺ : 321.05


Synthesis of **CAS-12290-039** was executed by combining CAS-11487-199 (0.0263 g, 0.0902 mmol), and NiCl₂ · 6H₂O (0.02145 g, 0.0902 mmol) in 15:1 EtOH/DCM (1 mL) and placed on ice. NaBH₄ (0.0102 g, 0.2708 mmol) was added slowly, and then the mixture was warmed to room temperature and allowed to react for 2h. The crude was purified by flash chromatography (hexanes/EtOAc/MeOH) and preparative HPLC (MeOH/H₂O w/ 0.0425% TFA) to afford the target molecule (5.6 %). ¹H NMR (500 MHz, Methanol- d_4) δ 10.09 (s, 1H), 8.05 – 7.98 (m, 2H), 7.86 – 7.81 (m, 1H), 7.57 (dd, *J* = 18.7, 8.1 Hz, 2H), 4.45 – 4.38 (m, 2H), 4.15 (ddd, *J* = 14.2, 9.3, 5.2 Hz, 3H), 4.03 (t, *J* = 2.5 Hz, 2H), 3.87 (dt, *J* = 9.9, 4.6 Hz, 2H), 3.69 – 3.62 (m, 3H), 3.03 (q, *J* = 6.5, 5.9 Hz, 2H). LC/MS (ESI) *m/z* 296.32; [M+H]⁺ calcd for C₁₄H₁₉ClN₃O₂⁺: 296.12


Synthesis of **CAS-12290-073** followed the General Procedure 1 by using 3,4-difluorobenzoic acid (0.500 g, 3.16 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.636 mL, 3.48 mmol) to afford CAS-12290-073 (0.0062 g, 11.6%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (ddd, *J* = 10.6, 7.5, 2.2 Hz, 1H), 7.54 (dddd, *J* = 8.5, 3.9, 2.2, 1.4 Hz, 1H), 7.28 – 7.22 (m, 1H), 6.46 (s, 1H), 4.30 (t, *J* = 8.0 Hz, 2H), 3.98 (dd, *J* = 7.8, 5.6 Hz, 2H), 3.69 (t, *J* = 6.4 Hz, 2H), 3.05 (ttt, *J* = 8.2, 6.7, 5.6 Hz, 1H). LC/MS (ESI) *m/z* 252.19; [M+H]⁺ calcd for C₁₂H₁₂F₂N₃O⁺: 252.09

Synthesis of **CAS-12290-076** followed the General Procedure 1 by using 3,4-difluorobenzoic acid (0.150 g, 0.9487 mmol), and *tert*-butyl 3-(aminomethyl)pyrrolidine-1-carboxylate (0.200 mL, 1.04 mmol) to afford CAS-12290-076 (0.0151 g, 14.8%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 (dddd, *J* = 16.4, 10.7, 7.5, 2.2 Hz, 1H), 7.64 – 7.51 (m, 1H), 7.28 – 7.20 (m, 1H), 6.83 (d, *J* = 141.9 Hz, 1H), 4.08 – 4.03 (m, 3H), 3.71 (pd, *J* = 6.0, 4.5, 1.7 Hz, 3H), 3.67 – 3.54 (m, 1H), 3.51 (ddd, *J* = 8.9, 5.5, 3.3 Hz, 1H), 3.47 – 3.28 (m, 2H), 2.77 – 2.60 (m, 1H), 2.26 – 2.08 (m, 1H), 1.83 (ddq, *J* = 55.3, 12.8, 7.7 Hz, 1H). LC/MS (ESI) *m/z* 317.38; [M+H]⁺ calcd for C₁₄H₁₆ClF₂N₂O₂⁺: 317.09

Synthesis of **CAS-12290-077** followed the General Procedure 1 by using 3,4-difluorobenzoic acid (0.150 g, 0.9487 mmol), and *tert*-butyl 2-(aminomethyl)pyrrolidine-1-carboxylate (0.200 mL, 1.04 mmol) to afford CAS-12290-077 (0.0291 g, 27.3%) ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 (s, 1H), 7.75 (ddd, *J* = 11.0, 7.6, 2.2 Hz, 1H), 7.60 (dddd, *J* = 8.6, 3.9, 2.2, 1.4 Hz, 1H), 7.23 (ddd, *J* = 9.9, 8.6, 7.7 Hz, 1H), 5.90 (s, 1H), 4.48 (ddt, *J* = 10.7, 7.4, 3.3 Hz, 1H), 4.10 (d, *J* = 1.9 Hz, 2H), 3.76 – 3.61 (m, 3H), 3.44 (ddd, *J* = 14.0, 10.4, 3.7 Hz, 1H), 2.21 – 1.97 (m, 3H), 1.93 – 1.70 (m, 1H). LC/MS (ESI) *m/z* 317.08; [M+H]⁺ calcd for C₁₄H₁₆ClF₂N₂O₂⁺: 317.09

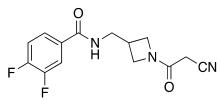


114

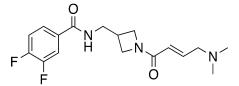
Step 1: Following methods described in Step 1 of General Procedure 1, 3,4-difluorobenzoic acid (0.500 g, 3.16 mmol), and *tert*-butyl 3-(aminomethyl)azetidine-1-carboxylate (0.636 mL, 3.48 mmol) were combined to form *tert*-butyl 3-((3,4-difluorobenzamido)methyl)azetidine-1-carboxylate (57.3%).

Step 2: Synthesis was performed adhering to methods describes in Step 2 of General Procedure 1 to afford *N*-(azetidin-3-ylmethyl)-3,4-difluorobenzamide (quant.)

Step 3: The synthesis was performed according to Step 1 of General Procedure 3 with *N*-(azetidin-3-ylmethyl)-3,4-difluorobenzamide (0.100 g, 0.3064 mmol), and 2-methyloxirane-2carboxylic acid (0.045 mL, 0.4864 mmol), or propiolic acid (0.022 mL, 0.337 mmol), or 2cyanoacetic acid (0.050 g, 0.574 mmol), or (*E*)-4-(dimethylamino)but-2-enoic acid (0.062 g, 0.4862 mmol). Combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was then purified by flash column chromatography (hexanes/EtOAc/MeOH) followed by preparative HPLC (MeOH or CH₃CN/H₂O with 0.0425% TFA) to afford the target products **CAS-12290-092** (7%), **CAS-12290-087**(15.3%), **CAS-12290-089** (17.8%), and **CAS-12290-091**(13.8%).

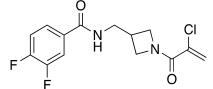


CAS-12290-092 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (dddt, *J* = 11.4, 7.5, 4.1, 2.0 Hz, 1H), 7.56 (ddh, *J* = 8.7, 6.6, 2.2 Hz, 1H), 7.24 (dddt, *J* = 11.7, 10.2, 8.0, 2.1 Hz, 1H), 7.04 – 6.55 (m, 1H), 4.65 – 4.46 (m, 1H), 4.46 – 4.24 (m, 1H), 4.16 (td, *J* = 9.3, 8.6, 4.7 Hz, 1H), 3.97 – 3.81 (m, 1H), 3.80 – 3.61 (m, 3H), 3.05 – 2.89 (m, 1H), 2.89 – 2.74 (m, 1H), 1.54 (d, *J* = 8.1 Hz, 1H), 1.51 – 1.37 (m, 1H), 1.31 (s, 1H). LC/MS (ESI) *m/z* 311.11; [M+H]⁺ calcd for C₁₅H₁₇F₂N₂O₃⁺: 311.12



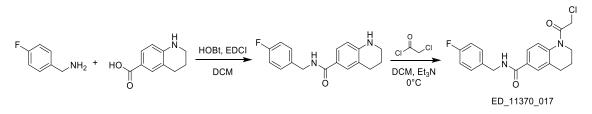
CAS-12290-087 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (ddd, *J* = 10.8, 7.5, 2.2 Hz, 1H), 7.61 (dddd, *J* = 8.7, 3.9, 2.2, 1.4 Hz, 1H), 7.24 (ddd, *J* = 9.9, 8.6, 7.6 Hz, 1H), 7.13 (d, *J* = 6.2 Hz, 1H), 4.35 (dd, *J* = 9.7, 8.2 Hz, 1H), 4.14 (dd, *J* = 10.7, 8.4 Hz, 1H), 4.02 (ddd, *J* = 9.8, 5.2, 1.2 Hz, 1H),

3.91 (ddd, *J* = 10.8, 5.3, 1.2 Hz, 1H), 3.78 (dt, *J* = 13.9, 6.3 Hz, 1H), 3.61 (ddd, *J* = 13.6, 7.5, 5.8 Hz, 1H), 3.02 (ddd, *J* = 14.0, 7.4, 3.3 Hz, 1H), 2.71 (s, 1H). LC/MS (ESI) *m/z* 279.09; [M+H]⁺ calcd for C₁₄H₁₃F₂N₂O₂⁺: 279.09

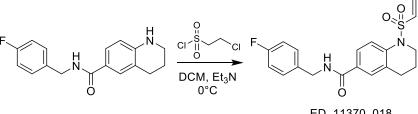


CAS-12290-089 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (ddd, *J* = 10.1, 7.4, 2.1 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.30 – 7.23 (m, 4H), 4.42 (t, *J* = 8.6 Hz, 1H), 4.21 (t, *J* = 9.4 Hz, 1H), 4.14 (dd, *J* = 8.8, 5.2 Hz, 1H), 3.88 (dd, *J* = 10.3, 5.4 Hz, 1H), 3.79 (dt, *J* = 13.6, 6.7 Hz, 1H), 3.68 (dt, *J* = 13.6, 6.2 Hz, 1H), 3.29 (s, 2H), 3.05 (s, 1H).). LC/MS (ESI) *m/z* 294.18; [M+H]⁺ calcd for $C_{14}H_{14}F_2N_3O_2^+$: 294.10

CAS-12290-091 ¹H NMR (500 MHz, DMSO- d_6) δ 10.05 (s, 1H), 8.78 (t, J = 5.7 Hz, 1H), 7.88 (ddd, J = 11.5, 7.8, 2.2 Hz, 1H), 7.77 – 7.65 (m, 1H), 7.57 (dt, J = 10.5, 8.3 Hz, 1H), 6.57 (dt, J = 15.2, 7.1 Hz, 2H), 6.42 – 6.34 (m, 1H), 4.28 (t, J = 8.5 Hz, 1H), 4.02 – 3.93 (m, 2H), 3.87 (dd, J = 7.1, 1.2 Hz, 2H), 3.72 (dd, J = 10.3, 5.4 Hz, 1H), 3.56 – 3.43 (m, 2H), 2.91 – 2.81 (m, 1H), 2.76 (s, 6H). LC/MS (ESI) m/z 338.16; [M+H]⁺ calcd for $C_{17}H_{22}F_2N_3O_2^+$: 338.17

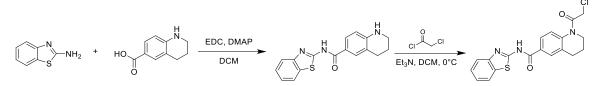

Synthesis of CAS-12290-094

Synthesis of **CAS-12290-094** followed Step 3 of General Procedure 1 and used previously synthesized intermediate *N*-(azetidin-3-ylmethyl)-3,4-difluorobenzamide (0.050 g, 0.221 mmol), and 2-chloroacryloyl chloride (0.0226 mL, 0.243 mmol) to afford CAS-12290-094 (0.0124 g,17.9 %) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (ddd, *J* = 10.7, 7.5, 2.3 Hz, 1H), 7.57 (ddt, *J* = 8.0, 4.1, 1.8 Hz, 1H), 7.28 – 7.19 (m, 1H), 6.86 (s, 1H), 6.11 (d, *J* = 1.8 Hz, 1H), 5.80 (d, *J* = 1.7 Hz, 1H), 4.55 (t, *J* = 9.1 Hz, 1H), 4.21 (d, *J* = 9.8 Hz, 2H), 3.96 (dd, *J* = 11.1, 5.5 Hz, 1H), 3.85 – 3.54 (m,


2H), 3.00 (dddd, J = 13.5, 6.8, 3.0, 1.5 Hz, 1H). LC/MS (ESI) m/z 315.07; [M+H]⁺ calcd for C₁₄H₁₄ClF₂N₂O₂⁺: 315.06

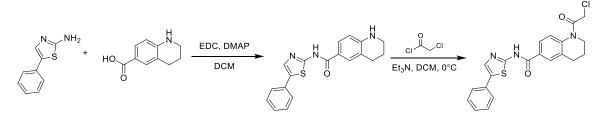
Synthesis of ED-11370-017, 018:

Step 1: 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.088g, 0.5mmol), HOBt (80%, 0.12g, 0.6mmol), and EDCI (0.14g, 0.75mmol) were added sequentially into 3mL anhydrous DCM. Into the solution was added 4-fluorobenzylamine (0.063g, 0.5mmol). The mixture was stirred at room temperature overnight, and purified directly by flash column chromatography (hexanes/EtOAc/MeOH) to afford 0.15g product 4-fluorobenzyl 1,2,3,4-tetrahydroquinoline-6carboxylate (quant.) LC/MS (ESI) m/z 284.67; [M+H]⁺ calcd for $C_{17}H_{18}FN_2O^+$: 285.14


Step 2: 4-fluorobenzyl 1,2,3,4-tetrahydroquinoline-6-carboxylate (0.075g, 0.25mmol) was dissolved in 2.5mL anhydrous DCM. Into the solution was added Et₃N (0.18mL, 1.3mmol), and 2chloroacetyl chloride (0.036g, 0.32mmol) at 0°C. The mixture was stirred for 10min before direct purification by flash column chromatography (hexanes/EtOAc/MeOH) and followed by preparative HPLC (CH₃CN/H₂O with 0.0425% TFA) to afford desired product ED 11370 017 (28mg, 30%). 1H NMR (500 MHz, DMSO) δ 9.00 (t, J = 5.8 Hz, 1H), 7.79 – 7.62 (m, 3H), 7.35 (dd, J = 8.5, 5.7 Hz, 2H), 7.21 – 7.10 (m, 2H), 4.59 (s, 2H), 4.45 (d, J = 5.9 Hz, 2H), 3.78 – 3.68 (t, J = 6.3 Hz, 2H), 2.78 (t, J = 6.6 Hz, 2H), 1.96 - 1.88 (m, 2H). LC/MS (ESI) m/z 360.77; [M+H]⁺ calcd for $C_{19}H_{19}CIFN_2O_2^+: 361.11$

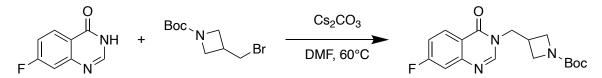
ED_11370_018

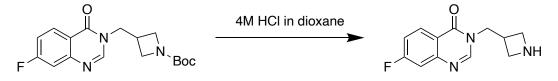
Step 1: 4-fluorobenzyl 1,2,3,4-tetrahydroquinoline-6-carboxylate (0.075g, 0.25mmol) was dissolved in 2.5mL anhydrous DCM. Into the solution was added Et₃N (0.18mL, 1.3mmol), and 2chloroethanesulfonyl chloride (0.052g, 0.32mmol) at 0°C. The mixture was stirred for 10min


before direct purification by flash column chromatography (hexanes/EtOA_C/MeOH) and followed by preparative HPLC (CH₃CN/H₂O with 0.0425% TFA) to afford desired product ED_11370_018 (10mg, 10%). 1H NMR (500 MHz, DMSO) δ 8.95 (t, J = 5.9 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.56 (d, J = 8.7 Hz, 1H), 7.34 (dd, J = 8.8, 5.6 Hz, 2H), 7.15 (t, J = 8.9 Hz, 2H), 6.92 (dd, J = 16.4, 9.9 Hz, 1H), 6.14 (d, J = 16.4 Hz, 9.9 Hz, 2H), 4.44 (d, J = 6.1 Hz, 2H), 3.80 – 3.69 (m, 2H), 2.82 (t, J = 6.6 Hz, 2H), 1.93 (dd, J = 12.1, 6.1 Hz, 2H). LC/MS (ESI) *m/z* 374.97; [M+H]⁺ calcd for C₁₉H₂₀FN₂O₃S⁺: 375.12 Synthesis of ED_11370_027:

Step 1: 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.26g, 1.5mmol), benzothiazole-2-amine (0.12g, 0.75mmol) were added into 3mL anhydrous DCM. Into the solution was added EDC (0.29g, 1.5mmol), and DMAP(0.37g, 3.0mmol) sequentially. The mixture was stirred at room temperature overnight, and purified directly by flash column chromatography (hexanes/EtOAc/MeOH) to afford 0.026g product N-(benzo[d]thiazol-2-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide (11%). LC/MS (ESI) *m/z* 309.87; [M+H]⁺ calcd for $C_{17H_{16}N_3OS^+$: 310.10

Step 2: N-(benzo[d]thiazol-2-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide (0.026g, 0.08mmol) was dissolved in 5mL anhydrous DCM. Into the solution was added Et₃N (0.085mL, 0.6mmol), and 2-chloroacetyl chloride (0.01uL, 0.14mmol) at 0°C. The mixture was stirred for 10min before direct purification by flash column chromatography (hexanes/EtOA_c/MeOH) and followed by preparative HPLC (CH₃CN/H₂O with 0.0425% TFA) to afford desired product ED_11370_027 (27mg, 88%). 1H NMR (500 MHz, DMSO) δ 12.80 (s, 1H), 8.06 – 8.00 (m, 2H), 7.98 (dd, J = 8.6, 2.1 Hz, 1H), 7.81 (dd, J = 16.2, 8.1 Hz, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 4.65 (s, 2H), 3.81 – 3.72 (t, J = 5.8 Hz, 2H), 2.84 (t, J = 6.5 Hz, 2H), 2.03 – 1.87 (m, 2H). LC/MS (ESI) *m/z* 385.97; [M+H]⁺ calcd for C₁₉H₁₇CIN₃O₂S⁺: 386.07


Synthesis of ED 11370 030:


Step 1: 1,2,3,4-tetrahydroquinoline-6-carboxylic acid (0.26g, 1.5mmol), 5-phenylthiazol-2-amine (0.13g, 0.75mmol) were added into 3mL anhydrous DCM. Into the solution was added EDC (0.29g, 1.5mmol), and DMAP(0.28g, 2.3mmol) sequentially. The mixture was stirred at room temperature overnight, and purified directly by flash column chromatography (hexanes/EtOAc/MeOH) to afford 0.064g N-(5-phenylthiazol-2-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide (25%). LC/MS (ESI) *m/z* 335.87; $[M+H]^+$ calcd for C₁₉H₁₈CIN₃OS⁺: 336.12

Step 2: N-(5-phenylthiazol-2-yl)-1,2,3,4-tetrahydroquinoline-6-carboxamide (0.064g, 0.2mmol) was dissolved in 5mL anhydrous DCM. Into the solution was added Et₃N (0.13mL, 0.9mmol), and 2-chloroacetyl chloride (0.017uL, 0.23mmol) at 0°C. The mixture was stirred for 10min before direct purification by flash column chromatography (hexanes/EtOA_c/MeOH) and followed by preparative HPLC (CH₃CN/H₂O with 0.0425% TFA) to afford desired product ED_11370_030 (12mg, 15%). 1H NMR (500 MHz, DMSO) δ 12.63 (s, 1H), 8.01 (s, 1H), 7.99 – 7.92 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 4.64 (s, 2H), 3.82 – 3.70 (t, J = 6.1 Hz, 2H), 2.84 (t, J = 6.4 Hz, 2H), 2.04 – 1.88 (m, 2H). LC/MS (ESI) *m/z* 411.97; [M+H]⁺ calcd for C₂₁H₁₉CIN₃O₂S⁺: 412.09


Synthesis of CAS-12290-201

7-Fluoroquinazolin-4(3H)-one (82.02 mg, 0.5 mmol), tert-butyl 3-(bromomethyl)azetidine-1carboxylate (150.0 mg, 0.6 mmol), and Cs_2CO_3 (325.6 mg, 1.0 mmol) were combined in DMF (1.5 mL) and stirred at 60°C overnight. The reaction was diluted with water (25 mL) and extracted with ethyl acetate (25 mL x 2). The combined organics were washed with brine (50 mL x 1), dried over anhydrous Na₂SO₄, filtered, concentrated, and purified by flash chromatography (50% to 100% EtOAc / hexanes) to afford 129.2 mg the product (77.5%). LCMS (m/z): 334.14 [M + H]⁺ ; calculated for $C_{17}H_{21}FN_3O_3^{+}$: 334.16.

Tert-butyl 3-((7-fluoro-4-oxoquinazolin-3(4*H*)-yl)methyl)azetidine-1-carboxylate (110.1 mg, 0.330 mmol) was combined with 4M HCl in dioxane (2 mL) and then stirred at rt for 30 minutes. Reaction mixture was concentrated under reduced pressure to afford crude material which was used directly without any further purification. LCMS (m/z): 234.21 [M + H]⁺. calcd for $C_{12}H_{13}FN_{3}O^{+}$: 234.10.

3-(azetidin-3-ylmethyl)-7-fluoroquinazolin-4(3*H*)-one (65.2 mg, 0.280 mmol) and Et₃N (97.40 µL, 0.699 mmol) was taken up in DMF (0.5 mL) and cooled to 0°C. 2-chloroacetyl chloride (26.74 µL, 0.335 mmol) was added dropwise to the reaction mixture at 0°C. The reaction was warmed to rt and stirred for 2 hours. The mixture was purified by flash chromatography (0% to 100% EtOAc / hexanes), followed by preparative HPLC (MeCN/H2O with 0.0425% TFA) to afford 32.1 mg product (37.1%). LCMS ESI (m/z): 309.85 [M + H]⁺. ; calculated for $C_{14}H_{13}CIFN_3O_2^{-+}: 309.07. {}^{1}H$ NMR (500 MHz, DMSO-d6) δ 8.50 (s, 1H), 8.20 (dd, J = 8.9, 6.3 Hz, 1H), 7.45 (dd, J = 10.0, 2.6 Hz, 1H), 7.40 (td, J = 8.7, 2.6 Hz, 1H), 4.29 – 4.21 (m, 3H), 4.12 (s, 2H), 4.07 (dd, J = 8.9, 5.6 Hz, 1H), 3.98 (t, J = 9.2 Hz, 1H), 3.80 (dd, J = 9.9, 5.6 Hz, 1H), 3.15 – 3.05 (m, 1H). {}^{1}C NMR (126 MHz, DMSO-d_6) δ 166.21, 166.03 (d, J = 251.3 Hz), 160.32, 150.51 (d, J = 13.3 Hz), 149.72, 129.71 (d, J = 10.9 Hz), 119.09 (d, J = 1.9 Hz), 116.12 (d, J = 23.6 Hz), 112.72 (d, J = 21.7 Hz), 53.68, 51.82, 49.12, 40.45, 28.53.

Supplementary References

- 1. Lamberto, I. *et al.* Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. *Cell Chem Biol* **24**, 1490-1500.e11 (2017).
- 2. Turnbull, A. P. *et al.* Molecular basis of USP7 inhibition by selective small molecule inhibitors. *Nature* **550**, 481–486 (2017).
- Zhang, Z. & Marshall, A. G. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. *Journal of the American Society for Mass Spectrometry* 9, 225–233 (1998).
- Hughes, C. S. *et al.* Ultrasensitive proteome analysis using paramagnetic bead technology. *Mol. Syst. Biol.* **10**, 757 (2014).
- Alexander, W. M., Ficarro, S. B., Adelmant, G. & Marto, J. A. multiplierz v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. *PROTEOMICS* 17, 1700091 (2017).
- 6. Askenazi, M., Parikh, J. R. & Marto, J. A. mzAPI: a new strategy for efficiently sharing mass spectrometry data. *Nature Methods* **6**, 240–241 (2009).
- 7. Ficarro, S. B., Alexander, W. M. & Marto, J. A. mzStudio: A Dynamic Digital Canvas for User-Driven Interrogation of Mass Spectrometry Data. *Proteomes* **5**, 20 (2017).
- 8. Ficarro, S. B., Max Alexander, W., Tavares, I. & Marto, J. A. Open source fraction collector/MALDI spotter for proteomics. *HardwareX* **11**, e00305 (2022).
- Ficarro, S. B. *et al.* Improved Electrospray Ionization Efficiency Compensates for Diminished Chromatographic Resolution and Enables Proteomics Analysis of Tyrosine Signaling in Embryonic Stem Cells. *Anal. Chem.* **81**, 3440–3447 (2009).

- 10. Zhu, H. *et al.* PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. *Anal. Chem.* **93**, 13791–13799 (2021).
- 11. Yu, F. *et al.* Identification of modified peptides using localization-aware open search. *Nat Commun* **11**, 4065 (2020).
- Zhang, Y. *et al.* A Robust Error Model for iTRAQ Quantification Reveals Divergent Signaling between Oncogenic FLT3 Mutants in Acute Myeloid Leukemia. *Mol Cell Proteomics* 9, 780–790 (2010).
- Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B* (*Methodological*) 57, 289–300 (1995).