Identification of volatile organic liquids by combining an array of fiber-optic sensors and machine learning.

Wassana Naku, [†] Anand K. Nambisan, [†] Muhammad Roman, [†] Chen Zhu, [‡] Rex E. Gerald II, [†] and Jie Huang^{†,*}

†Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

‡Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 311100, China.

*Corresponding Author: E-mail: jieh@mst.edu (Jie Huang). Telephone.: +1- 573-341-4836.

Supporting Figures

Figure S1. An example of time-domain evaporation transient response signals for evaporating droplets of **decane** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **decane** droplet from a single surface in the

array of sensor. For comparison, the x-axis is set to a range of 0 to 16 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S2. Comparison of the scalograms for the evaporation events for **decane** from the "three-dip" test. Response signals from **decane** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S3. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **decane** are used. Each channel corresponds to the response collected from a droplet evaporation event of **decane** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S4. An example of time-domain evaporation transient response signals for evaporating droplets of **dimethylformamide** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **dimethylformamide** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 9.5 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S5. Comparison of the scalograms for the evaporation events for **dimethylformamide** from the "three-dip" test. Response signals from **dimethylformamide** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S6. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **dimethylformamide** are used. Each channel corresponds to the response collected from a droplet evaporation event of **dimethylformamide** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S7. An example of time-domain evaporation transient response signals for evaporating droplets of **isooctane** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **isooctane** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 0.8 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S8. Comparision of the scalograms for the evaporation events for **isooctane** from the "three-dip" test. Response signals from **isooctane** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S9. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **isooctane** are used. Each channel corresponds to the response collected from a droplet evaporation event of **isooctane** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S10. An example of time-domain evaporation transient response signals for evaporating droplets of **2-propanol** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **2-propanol** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 1.5 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S11. Comparison of the scalograms for the evaporation events for **2-propanol** from the "three-dip" test. Response signals from **2-propanol** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S12. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **2-propanol** are used. Each channel corresponds to the response collected from a droplet evaporation event of **2-propanol** from the differentlytreated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S13. An example of time-domain evaporation transient response signals for evaporating droplets of **ethanol** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **ethanol** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 1.5 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S14. Comparison of the scalograms for the evaporation events for **ethanol** from the "three-dip" test. Response signals from **ethanol** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S15. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **ethanol** are used. Each channel corresponds to the response collected from a droplet evaporation event of **ethanol** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S16. An example of time-domain evaporation transient response signals for evaporating droplets of **trichloroethylene** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **trichloroethylene** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 0.8 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S17. Comparison of the scalograms for the evaporation events for **trichloroethylene** from the "three-dip" test. Response signals from **trichloroethylene** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S18. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **trichloroethylene** are used. Each channel corresponds to the response collected from a droplet evaporation event of **trichloroethylene** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S19. An example of time-domain evaporation transient response signals for evaporating droplets of **ethyl acetate** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **ethyl acetate** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 0.8 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S20. Comparison of the scalograms for the evaporation events for **ethyl acetate** from the "three-dip" test. Response signals from **ethyl acetate** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S21. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **ethyl acetate** are used. Each channel corresponds to the response collected from a droplet evaporation event of **ethyl acetate** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S22. An example of time-domain evaporation transient response signals for evaporating droplets of **methanol** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **methanol** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 1.5 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S23. Comparison of the scalograms for the evaporation events for **methanol** from the "three-dip" test. Response signals from **methanol** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S24. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for methanol are used. Each channel corresponds to the response collected from a droplet evaporation event of methanol from the differentlytreated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S25. An example of time-domain evaporation transient response signals for evaporating droplets of **acetone** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **acetone** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 0.6 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S26. Comparison of the scalograms for the evaporation events for **acetone** from the "three-dip" test. Response signals from **acetone** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S27. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **acetone** are used. Each channel corresponds to the response collected from a droplet evaporation event of **acetone** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S28. An example of time-domain evaporation transient response signals for evaporating droplets of **dichloromethane (DCM)** using an array of three fiber-optic sensors. Each signal corresponds to an evaporation event of a single **dichloromethane (DCM)** droplet from a single surface in the array of sensor. For comparison, the x-axis is set to a range of 0 to 0.8 seconds for all evaporation transients, so that response signals of varying durations can be compared.

Figure S29. Comparison of the scalograms for the evaporation events for **dichloromethane (DCM)** from the "three-dip" test. Response signals from **dichloromethane (DCM)** droplet evaporation on (a) the intrinsic surface, (b) the hydrophobic surface, and (c) the hydrophilic surface for the "three-dip" test are shown.

Figure S30. The example of a 3-channel image from Dataset-surface-channels displayed as an RGB image, where scalogram images of response signals from a single complete data collection step or "three-dip" test for **dichloromethane (DCM)** are used. Each channel corresponds to the response collected from a droplet evaporation event of **dichloromethane (DCM)** from the differently-treated cleaved optical fiber sensor head surfaces, namely intrinsic (green channel), hydrophobic (red channel), and hydrophilic (blue channel).

Figure S31. Examples of time-domain evaporation transient response signals for droplet evaporation experiments using **acetonitrile** on **an innate (untreated cleaved tip sensor)** tip sensor. The similarity in transient responses show that the experiments were repeatable and reproducible.

Figure S32. Examples of time-domain evaporation transient response signals for droplet evaporation experiments using **acetonitrile** on **a hydrophobic-surface** tip sensor. The similarity in transient responses show that the experiments were repeatable and reproducible.

Figure S33. Examples of time-domain evaporation transient response signals for droplet evaporation experiments using **acetonitrile** on **a hydrophilic-surface** tip sensor. The similarity in transient responses show that the experiments were repeatable and reproducible.