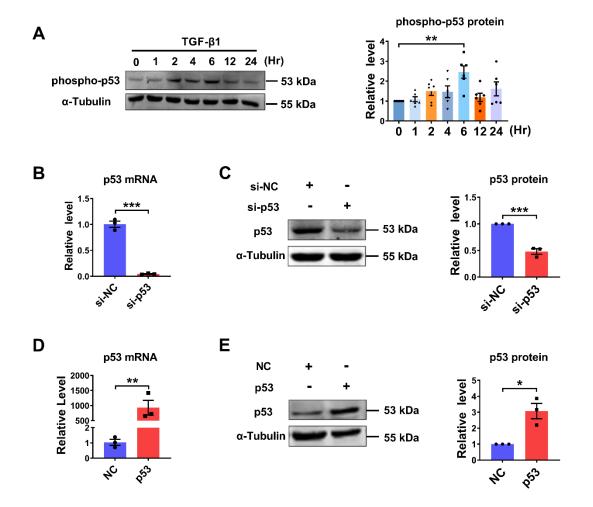
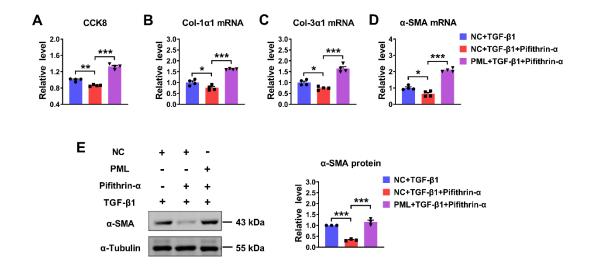

1. Supplementary Figures


Supplementary Figure S1. Successful establishment of cardiac fibrosis model in vivo and in vitro.

(A) The transcriptional expression of PML was examined in RNA-sequencing data (GSE116250) including patients with normal myocardium (No Failing; n = 14), patients with dilated cardiomyopathy (DCM; n = 37), and patients with ischemic cardiomyopathy (ICM; n = 13). (B) Masson's trichrome staining of the LV sections of mouse hearts at 7 days after MI operation. Scale bar, 50 μ m (n = 5). (C-E) qRT-PCR showing increased mRNA levels of Col-1 α 1, Col-3 α 1 and α -SMA in the infarct border zone of mouse left ventricular tissues at 7 days after MI operation (n = 6). (F-G) Following treatment with TGF- β 1, Col-1 α 1 and Col-3 α 1 mRNA levels in CFs were examined by qRT-PCR (n = 4-6). **P < 0.001, ***P < 0.001.


Supplementary Figure S2. The transfection efficiency of PML knockdown and overexpression in cardiac fibroblasts.

(A-D) qRT-PCR and western blot assay were used to verify PML knockdown or overexpression efficiency in CFs (n = 4-6). ***P < 0.001.

Supplementary Figure S3. The transfection efficiency of p53 knockdown and overexpression in cardiac fibroblasts.

(A) The protein level of phospho-p53 in CFs treated with TGF- β 1 at the indicated time points (n = 6). (B-E) qRT-PCR and western blot assay were used to verify p53 knockdown or overexpression efficiency in CFs (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure S4. Overexpression of PML cancelled the anti-fibrotic effect of p53 depletion.

(A) After transfection with PML plasmid, CFs were treated with or without Pifithrin- α in the presence of TGF- β 1. Cell viabilities were examined by the CCK8 assay (n = 4). (B-D) qRT-PCR showing the mRNA levels of Col-1 α 1, Col-3 α 1 and α -SMA (n = 4). (E) Western blot quantification of α -SMA expression (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.

2. Supplementary Tables

Table S1 Sequences of the specific siRNAs

Gene	Sense (5'-3')	Antisense (5'-3')
si-PML	GCUGAUCUCCGCGACA UUTT	AAUUGUCGCGGAGAUC AGCTT
si-p53	CAUUUUCAGGCUUAUG GAATT	UUCCAUAAGCCUGAAA AUGTT

Table S2 Quantitative real-time PCR primer sequences of genes

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
PML	CCTTTTCTTTTGACGGA CCA	TGCAACACAGAGGCTTG GC
p53	TGGAGGAGTCACAGTC GGAT	CAGTGAGGTGATGGCAG GAT
Col-1α1	AAGAAGACATCCCTGAA GTCA	TTGTGGCAGATACAGAT CAAG
Col-3α1	TTGGGATGCAGCCACCT TG	CGCAAAGGACAGATCCT GAG
TGF-β1	CCTGAGTGGCTGTCTTT TGACG	AGTGAGCGCTGAATCGA AAGC
α-SMA	CCCAGACATCAGGGAGT AATGG	TCTATCGGATACTTCAGC GTCA
GAPDH	GACAGCAGTTGGTTGGA GCA	TTGGGAGGGTGAGGGA CTTC

Table S3 ChIP-qPCR primer sequences

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
PML	CTCACAGACAGGGAAAA	CAAGCAAGTAAACAAGC
	GCC	CCG