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Extended Overview of Methods 

We constructed three kinds of gene programs from scRNA-seq data (Figure 1b): (i) cell type 

programs that represent genes specifically enriched in an individual broad cell type of a tissue 

(e.g., colon T cells) compared to other cell types in that tissue; (ii) disease-dependent cell type 

programs that represent disease specific differences in gene expression within the same cell type 

(e.g., colon T cells in UC vs. healthy colon); and (iii) cellular process programs that capture gene 

co-variation patterns within and across cell types (e.g., MHC class II antigen presenting process 

varying across dendritic cells and B cells) (Methods). We constructed (healthy) cell type programs 

by assessing the differential expression of each gene for the focal cell type vs. all other cell types 

in the tissue using healthy individuals (with cell types defined by clustering1 and annotated post 

hoc) and transforming each gene’s Z score to a continuous-valued score on the probabilistic (0-1) 

scale (Methods). (Analogous to healthy cell type programs generated from healthy tissues, we 

also generated disease cell type programs from cell profiles from disease tissues.) We constructed 

disease-dependent cell type programs by assessing differential expression between cells of the 

same type in disease vs. healthy tissue and transforming each gene’s Z score to a continuous-valued 

score (Methods), aiming to capture genes involved in disease and symptoms after onset. (We 

caution that disease-dependent programs may also capture genes reflecting genetic susceptibility 

to disease, rather than progression.) On average, disease-dependent cell type programs had low 

correlation with healthy cell type programs of the same cell type (Pearson r=0.16 across tissues; 

see below) compared to the much higher correlation between disease and healthy cell type 

programs (average r=0.62 across tissues); thus, we did not consider disease cell type programs in 



any of our primary analyses. Finally, independently of predefined cell type subsets, we constructed 

cellular process programs using unsupervised learning, via non-negative matrix factorization2 

(NMF) and a modified NMF (to jointly model both healthy and disease states) of normalized gene 

expression values, with the latent factors (programs) representing variation across continuums of 

cell types or processes active in multiple cell types. We computed the correlations between weights 

of each latent factor across cells and each gene’s expression across cells and then transformed 

them to a 0-1 continuous-valued scale to define each cellular process program. We annotated each 

cellular process program by its most enriched pathways (Methods) and labeled it as ‘intra-cell 

type’ or ‘inter-cell type’ if highly correlated with only one or multiple cell type programs, 

respectively (Methods). Intra-cell type cellular processes can correspond to narrower cell types 

(e.g., CD4 T cells) reflecting cell subsets of broader cell type categories (e.g., T cells) or variation 

within a cell type continuum, whereas inter-cell type cellular process programs can reflect shared 

processes or transitions. 

 

Next, we transformed the genes prioritized by each program into SNP annotations by linking each 

gene to SNPs that may regulate their activity in cis (Figure 1a). We generated SNP annotations 

using an enhancer-gene linking strategy, defined as an assignment of 0, 1 or more linked genes to 

each SNP, combining Roadmap Enhancer-Gene Linking (Roadmap)3,4 and Activity-By-Contact 

(ABC)5,6 strategies (Roadmap∪ABC) in the tissue underlying the program of interest (Methods). 

We used tissue level enhancer-gene links instead of cell type level enhancer-gene links because 

they generated more significant associations in benchmarking experiments based on current data 

(see below). We primarily focused on linking genes to non-coding regulatory variants (which may 



drive cell-type specific differences in expression), based on the results of our benchmarking 

experiments (see below). 

 

Finally, we evaluated each gene program for disease heritability enrichment by applying S-LDSC7 

with the baseline-LD model8,9 to the resulting SNP annotations (Figure 1a, Methods). The S-

LDSC analysis was conditioned on 86 coding, conserved, regulatory and LD-related annotations 

from the baseline-LD model (v2.1)8,9 (Data Availability), and uses heritability enrichment to 

evaluate informativeness for disease. Heritability enrichment is defined as the proportion of 

heritability explained by SNPs in an annotation divided by the proportion of SNPs in the 

annotation7; this generalizes to annotations with values between 0 and 110. We further define the 

Enrichment score (E-score) of a gene program as the difference between the heritability 

enrichment of the SNP annotation corresponding to the gene program of interest and the SNP 

annotation corresponding to a gene program assigning a value of 1 to all protein-coding genes with 

at least one enhancer-gene link in the relevant tissue (Methods). We use the p-value of the E-score 

as our primary metric, assessing statistical significance using a genomic block-jackknife as in our 

previous work7, because the p-values can be compared across datasets, whereas the E-score 

magnitude can vary substantially in gene programs dominated by a smaller (or larger) number of 

genes. We primarily focus on E-scores greater than 2, because E-scores that are statistically 

significant but small in magnitude may have more limited biological importance, as the cell types 

underlying these E-scores may be tagging other causal cell types (Methods). We performed this 

analysis over healthy cell type programs (Supplementary Data 1), disease-dependent programs 

(Supplementary Data 2), and cellular process programs (Supplementary Data 3). If the effect 

has the same magnitude for pathways in the cell type vs. disease-specific pathways in the cell type, 



then we might observe a cell type enrichment but not disease dependent enrichment. If the effect 

has higher magnitude for disease-specific vs. cell type pathways, then we might observe a disease-

dependent enrichment but not a cell type enrichment. Biologically, if only the cell type program is 

enriched, it could be because the native processes in this cell are impacted by genetic variants, and 

thus, for example, could impact disease initiation or onset. If only disease dependent programs are 

enriched, it could be because the process affected by genetic variants in that cell type is more active 

during disease or even only clearly apparent in the cell in the context of other tissue processes 

following onset of disease. Such genes are still often detectable by GWAS because in many 

common complex diseases, disease processes are gradual, or are processes that occur in healthy 

tissue under challenge, and thus the genes/process would still affect overall disease risk. We 

identified the top 50 genes driving disease enrichments with highest proximity based MAGMA (v 

1.08) gene-disease association scores11 of genes with high grade in each gene program (Figure 

1C, Supplementary Data 4, Methods) focusing on genes that are both (i) close to a GWAS signal 

and (ii) in an enriched gene program.  

 

Extended benchmarking of sc-linker 

The Roadmap∪ABC enhancer-gene linking strategy outperformed every other enhancer-gene 

linking strategy we tested in identifying these expected enrichments, including its constituent 

Roadmap and ABC strategies, the standard 100kb window-based approach used in LDSC-SEG12 

(Supplementary Fig. 1a, 2a-c), and other SNP-gene linking strategies (Supplementary Fig. 1b 

and Supplementary Data 5). Additionally, the tissue-specific Roadmap∪ABC-immune 

enhancer-gene linking strategy outperformed cell-type-specific enhancer-gene linking strategies, 



supporting the use of tissue-specific enhancer-gene linking (Supplementary Fig. 2l). This trend 

may stem from existing cell-type-specific enhancer-gene links being noisier, due to the limited 

amount of underlying cell-type-specific data, or because tissue-specific enhancer-gene links may 

tag enhancer-gene links in causal cell types that were not assayed (distinct from tagging captured 

by cell type programs). 

 

The cell type programs were robust to the number of cells and individuals. Specifically, cell type 

programs and their corresponding enrichment results were robust (correlation of r=0.91) to 

changes in the number of profiled cells for scRNA-seq datasets with greater than 500 cells 

(Supplementary Fig. 2f-h); larger scRNA-seq datasets can uncover cell populations and states 

that may be missed in smaller datasets, due to sampling power. The cell type programs were also 

highly similar across different sets of individuals (r=0.96 on average between programs of the 

same cell type generated from different samples, with consistent specificity in expected 

enrichments; Supplementary Fig. 2i-k).  

 

We observed higher values of  sensitivity/specificity index for enrichments of expected cell type-

trait pairs for our polygenic approach based on specifically expressed genes vs. other cell types 

compared to several other approaches including (i) functional enrichment of fine-mapped SNPs13 

(Supplementary Fig. 3a); (ii) all expressed genes in a cell type, defined across several thresholds 

(Supplementary Fig. 4); (iii) specifically expressed genes vs. other genes in the same cell type; 

or (iv) specifically expressed genes vs. other genes in the same cell type, after normalizing each 

gene across cell types (Supplementary Fig. 5 and Supplementary Data 6). We hypothesize that 

the “all expressed genes” approach greatly underperforms sc-linker because, for a given expressed 



gene, centrality of function in a cell is often reflected in its level of expression compared to that in 

other cells14,15. 

 

Sc-linker also outperformed two methods that use the MAGMA software11. First, we compared 

sc-linker to a baseline method for scoring cell types by scoring each cell using MAGMA gene-

level associations to a trait and averaging across all cells of a cell type. We scored each cell for a 

trait using the top 200 MAGMA genes with highest score for the trait, computing the average 

expression over all the genes and subtracting an expression-matched control gene set. Sc-linker 

attained a higher sensitivity/specificity index compared to this baseline (Supplementary Fig. 2n). 

Second, we compared sc-linker to MAGMA gene set-level association, either applied to binarized 

gene programs at different gene value thresholds ranging from 0.20 to 0.95 or applied to gene 

programs treated as continuous variables on the probability scale or negative log odds of the 

probability scale (Methods, Supplementary Data 7). Sc-linker slightly outperformed MAGMA 

gene set-level association, with a sensitivity/specificity index of 6.29 for sc-linker versus 4.76-

5.83 for MAGMA (across different binarization thresholds and continuous variable based 

approaches; the binary threshold of 0.95 performed best) (Supplementary Fig. 6, Supplementary 

Data 7; sensitivity of 8.78 for sc-linker versus 7.55-8.68 for MAGMA). This was further 

underscored by a comparison across a broader set of cell types and diseases/traits. Specifically, we 

analyzed 3 major cell type categories (immune, brain, other) and 4 major categories of 

diseases/traits (blood cell traits, immune-related diseases, brain-related diseases, other 

diseases/traits), and used the most plausible pairings (immune cell types x blood cell traits, immune 

cell types x immune-related diseases, and brain cell types x brain-related diseases, which have 

previously been reported to include many true enrichments12), to define a sensitivity/specificity 



index (Methods); as in the analysis of blood cell traits, we caution that a limitation of this index 

is that other enrichments may be biologically real in some cases; thus, we also consider sensitivity 

to detect expected enrichments. Sc-linker attained a higher sensitivity/specificity index (9.47) 

compared to MAGMA gene set-level association (1.78-3.68 at different binarization thresholds 

and continuous variable based approaches; the negative log odds of the probability scale performed 

best) (Methods, Figure 2c, Supplementary Data 7). The difference in performance was primarily 

due to the higher sensitivity of sc-linker (sensitivity of 12.2 for sc-linker versus 4.50-7.70 for 

MAGMA). (We also compared sc-linker to FUMA16, a web interface that applies (gene set-level) 

MAGMA using precompiled scRNA-seq data (distinct from the data in our study). FUMA 

underperformed both sc-linker and gene set-level MAGMA (Supplementary Data 8 and 

Supplementary Data 9), but we caution that this is not a fair comparison due to the different 

underlying scRNA-seq data used by FUMA.)  

 

Extended analysis of disease critical brain cellular processes  

The 12 brain cellular process programs showed that the significant enrichment of neuronal cell 

types above is primarily driven by finer programs reflecting neuron subtypes (Figure 3f, Table 

1). For example, the enrichment of GABAergic neurons for BMI was driven by programs 

reflecting LAMP5+ and VIP+ subsets; the respective top driving genes included FLRT1 (for 

LAMP5+ neurons; ranked 1), whose absence reduces intercellular adhesion and promotes 

premature neuron migration17, and TIMP2 (for VIP+ neurons; ranked 7), implicated in obesity 

through hypothalamic control of food intake and energy homeostasis in mice18,19. Furthermore, the 

enrichment of GABAergic neurons for MDD reflects SST+ and PVALB+ subsets; the respective 

top driving genes included PCLO (for SST+ GABAergic neurons; ranked 2), and ADARB1 (for 



PVALB+ neurons; ranked 4), encoding an RNA editing enzyme that can edit the transcript for the 

serotonin receptor 2C with a role in MDD20. We also observed enrichment in more specific cell 

subsets within the glutamatergic neurons (IT neurons were enriched for neuroticism, whereas L6 

neurons were enriched for years of education and intelligence). Among inter cell type programs, 

electron transport cellular process programs (GABAergic and glutamatergic neurons) were 

enriched for several psychiatric/neurological traits, such as years of education, consistent with 

previous studies21, with the top driving genes including ATP6V0B and NDUFAF3 (ranked 1, 4). 

 

“Tagging” cell types from one tissue to disease in another 

The enrichment of Langerhans cells for AD is plausible given that Langerhans cells respond 

differently to A peptides, which has implications in AD immunotherapy22. On the other hand, the 

enrichment of colon M cells for asthma may suggest a role for lung-resident M cells, which have 

not been identified to date but are expected to be in the lung, as M cells stimulate IgA antibody 

production as an immune response23, while selective IgA immunodeficiency increases risk for 

asthma24. Similarly, the heart smooth muscle cell program may merely mirror that of airway 

smooth muscle cells, whose function is a pivotal determinant of lung capacity25. 

 

Gene driving enrichment in Alzhemiers and microglia disease-dependent programs 

The top genes driving enrichment specifically in the disease-dependent microglia program (but 

not the healthy cell type program) included PICALM1, APOC1, APOE and TREM2 (ranked 1, 2, 

3 and 8). APOE regulates microglial responses to Alzheimer’s related pathologies26, APOC1 is a 

an APOE-dependent suppressor of glial activation27, and TREM2 modulates microglial 

morphology and neuroinflammation in Alzheimer’s disease pathogenesis models28. 



 

Cellular processes involved in MS and Alzheimer’s Disease 

For MS, there was enrichment for the complement cascade disease-specific cellular process 

program (in B cells and microglia; the top driving genes included FC-complement genes CD37, 

FCRL2 and FCRL1 (ranked 1, 10, 14) consistent with studies showing that Complement activity 

is a marker for MS progression29,30. For Alzheimer’s disease, the apelin signaling pathway disease-

specific cellular process program is consistent with recent studies implicating this pathway in 

reducing neuroinflammation in animal models of Alzheimer’s disease31. The top genes driving the 

enrichment included SORL1 and SYK (ranked 2 and 3). SORL1 expression levels are significantly 

reduced in Alzheimer’s disease patients, and has also been implicated by rare variant analyses32. 

 

Role of healthy and disease-dependent T cells in Asthma 

For example, healthy cell type and disease-dependent T cell programs were enriched in asthma, 

consistent with the contribution of T cell-driven inflammation to airway hyper-responsiveness and 

tissue remodeling33. From a pathway enrichment analysis, we identified that healthy T cell 

program overlapped with T cell receptor signaling, while the T cell disease-dependent program 

overlapped with RNA binding (see Supplementary Data 10). These partially overlapping 

programs both included IL2 signaling pathway genes; IL2 is a T cell growth factor that increases 

airway response to allergens34 and drives differentiation of Th2 cells linked to asthma35. 

 

Disease critical cell types in IPF and COVID-19 

For asthma, we looked into the gene driving the enrichments that were observed. For example, 

both healthy and disease-dependent fibroblast/stromal programs were enriched for lung capacity 



(but not asthma), consistent with the adverse impact of overproduction of extracellular matrix 

(ECM) on the reduced lung capacity and elasticity characteristic of fibrosis36. In the cell type 

program, top driving genes included LOX (ranked 1), which alters ECM mechanical properties via 

collagen cross-linking37, and TGFBR3 (ranked 37) which regulates the pool of available TGF, a 

master regulator of lung fibrosis. Notably, the enrichment of basal cell disease-dependent 

programs in lung capacity are supported by the significant increase (p-value: 3x10-5) in basal cells 

in asthma vs. healthy lungs (Figure 7e). Expanding the analysis to cellular process programs, the 

top driving genes of the enrichment of a MAPK signaling pathway program for lung capacity, 

include FOXA3 (ranked 1), which plays a key role in allergic airway inflammation38, and PDE2A 

(ranked 2), which has been associated with alveolar inflammation39.  

 

For IPF, a disease characterized by mucociliary dysfunction40, the mucous disease-dependent 

program was most enriched, and nominally significant (p = 0.04, not FDR significant), with top 

driving genes including DSP (ranked 1), a cell-cell adhesion molecule linked to tissue architecture 

in IPF lung41, and MUC5B (ranked 2), the well characterized genetic risk factor for IPF that likely 

increases mucinous expression in terminal airways of the lung40.  

 

For severe COVID-1942, the macrophage disease-dependent program was enriched, and nominally 

significant (p = 0.01, not FDR significant), with top driving genes including key antiviral enzyme 

activators43,44 OAS3 and OAS1 (ranked 1, 3), and CCR5, a chemokine receptor in which therapeutic 

intervention has been associated with improved prognosis in severe COVID-19 patients45. Further 

analyses of a meta-atlas of COVID-19 scRNA-seq in conjunction with COVID-19 GWAS data 



are described elsewhere46. Our nominally significant findings should be interpreted cautiously, but 

should become more powered as IPF and COVID-19 GWAS sample sizes grow. 

 

Extended discussion of limitations 

First, the enhancer-gene linking strategies from Roadmap and Activity-By-Contact (ABC) models 

are limited in the tissues and cell states represented. More fine-grained enhancer-gene linking 

strategies will likely prove beneficial, but the strategies that we used here provide a clear 

improvement over a standard gene window-based approach. Second, we focus on genome-wide 

disease heritability (rather than a particular locus); however, our approach can be used to implicate 

specific genes and gene programs. Third, sc-linker does not distinguish whether two cell types (or 

more generally, gene programs) implicated in disease exhibit conditionally independent signals. 

Assessing this via a conditional S-LDSC analysis of the corresponding SNP annotations is likely 

to be underpowered, as the gene programs (and SNP annotations) may be highly correlated. A 

more powerful approach may be to define cell type programs based on specific expression relative 

to a narrower set of cells12. This approach should be particularly useful in analyses of fine-grained 

cell types, in which overlapping signals between related cell type programs is a particular concern. 

Fourth, the continuous-valued scores of the sc-linker gene programs were transformed to the 0-1 

scale using min/max normalization47, but further investigation of the choice of scale remains as a 

future direction. Fifth, although all studies considered in this work profiled large numbers of cells 

(up to 300,000 in some tissues), some rare cell types and processes may not yet be adequately 

sampled due to the number of cells or their tissue distribution48, or may only be apparent in a 

disease context, as we observe for rare M cells in UC. Sixth, we have focused on human scRNA-

seq data49; however, incorporating data from animal models, as discussed in prior work50, would 



allow experimental validation of disease mechanisms in model organisms. Seventh, the disease-

dependent programs that we link to disease may not be causal for disease, but rather reflect disease-

induced changes or genetic susceptibility to disease51,52. However, our findings clearly validate the 

relevance of these gene programs to disease as observed in M cells and UC53. Eighth, the LD score 

regression framework7 is primarily applicable to common and low-frequency variants, and less 

applicable to rare variant enrichments. Ninth, we capture programs by cell category or gene co-

variation, whereas future work could extend beyond these to capture dynamic cellular transitions54. 
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1-2 

Supplementary Figure 1-7 

Supplementary Data File Legends 1-12 

 

SUPPLEMENTARY TABLES 

Supplementary Table 1 
Tissue # of cells # of individuals # of cell types 

PBMC (Travaglini et al) 4,640 2 6 

PBMC (Zheng et al) 68,551 8 6 

Cord Blood 263,828 8 6 

Bone Marrow 283,894 8 6 

Brain 47,509 3 9 

Kidney 40,268 13 24 

Liver 13,340 4 12 

Lung 31,644 10 19 

Heart 287,269 7 12 

Colon 110,373 12 20 

Adipose 11,184 3 13 

Skin 71,864 9 13 

Colon (healthy + 
disease) 

287,269 20 (healthy), 16 
(disease) 

20 

MS brain (healthy + 
disease) 

48,918 9 (healthy), 12 
(disease) 

12 

Alzheimer’s brain 
(healthy + disease) 

70,634 24 (healthy), 24 
(disease) 

8 

Asthma lung (healthy 
+ disease) 

67,078 42 (healthy), 12 
(disease) 

26 

Idiopathic pulmonary 
fibrosis lung (healthy 
+ disease) 

114,396 10 (healthy), 20 
(disease) 

19 

COVID-19 BAL 
(healthy + disease) 

43,930 3 (healthy), 6 
(disease) 

10 

 

Supplementary Table 1. Description of scRNA-seq datasets analyzed. We report the tissue of 

origin, number of cells, number of individuals and number of cell type programs analyzed for each 

single-cell dataset analyzed. 

  



Supplementary Table 2 
Trait 

category 

Trait Source Sample size (N) 

Blood cell 

traits 

Lymphocyte percentage UK Biobank 444502 

Monocyte percentage UK Biobank 439938 

Platelet count UK Biobank 444382 

Red blood cell count UK Biobank 445174 

Red blood cell volume UK Biobank 442700 

Eosinophil count UK Biobank 439938 

Basophil count UK Biobank 439938 

Neutrophil count UK Biobank 439938 

Mean corpuscular volume UK Biobank 442122 

Urine 

biomarkers 

Creatinine UK Biobank 434158 

Vitamin D UK Biobank 415700 

Bilirubin UK Biobank 429423 

Alkaline phosphatase UK Biobank 433862 

Aspartate amino transferase UK Biobank 430982 

Total protein UK Biobank 397652 

Autoimmune 

diseases 

Inflammatory bowel disease de Lange et al 2017 59957 

Crohn’s disease de Lange et al 2017 40266 

Ulcerative colitis de Lange et al 2017 45975 

Eczema UK Biobank 458699 

Hypothyroidism UK Biobank 459324 

Rheumatoid Arthritis Okada et al 2014 37681 

Primary biliary cirrhosis Cordell et al. 2015 13239 

Lupus Bentham et al. 2015 14267 

Type 1 diabetes Bradfield et al. 2011 26890 

All autoimmune traits UK Biobank 459234 

Celiac disease Dubois et al. 2010 15283 

Alzheimer’s disease Jansen et al. 2019 450988 

Multiple Sclerosis Sawcer et al. 2011 27148 

Neurological/ 

Psychiatric 

Number of children UK Biobank 456500 

Anorexia Boraska et al 2014 32143 

ADHD Demontis et al 2019 55374 

Autism PGC cross disorder group 10263 

Sleep duration Dashti et al 2019 446118 

BMI UK Biobank 458417 

Major depressive disorder Wray et al. 2018 173005 

Neuroticism Nagel et al. 2018 449484 

Smoking status UK Biobank 457683 

Years of education UK Biobank 454813 

Intelligence UK Biobank 117131 

Morning person UK Biobank 410520 

Insomnia Jansen et al. 2019 385506 

Schizophrenia SCZ Working Group 2014 70100 

SCZ v. BD Ruderfer et al 2018 38855 

Bipolar disorder PGC bipolar group 2011 16731 

Reaction time Davies et al 2018 300486 

Age of first birth Barban et al. 2016 222037 



Cardiac 

related traits 

Coronary artery disease Schunkert et al 2011 77210 

ECG rate UK Biobank 53777 

Atrial Fibrillation Nielsen et al. 2018 1030836 

Systolic blood pressure UK Biobank 422771 

Diastolic blood pressure UK Biobank 422771 

Lung traits Childhood-Onset-Asthma Ferreira et al. 2019 314633 

FEV1adjFEVC (lung 

capacity) 

UK Biobank 371949 

Idiopathic Pulmonary 

Fibrosis 

Allen et al. 2020 11259 

Other traits Height Lango, Allen et al 2010 131547 

Breast Cancer UK Biobank 459324 

BMI-WHR UK Biobank 458417 

Type 2 Diabetes Morris et al 2012 6078 

Basal metabolic rate UK Biobank 354825 

General risk tolerance Karlsson Linner et al 2019 466571 

Supplementary Table 2. Diseases and complex traits analyzed. We analyzed 60 diseases and 

complex traits with genetic correlation <= 0.9 and report the publication and sample size of each 

study. 

  



SUPPLEMENTARY FIGURES 

Supplementary Fig. 1. Roadmap∪ABC outperforms other strategies. The metric for this 

comparison is the sensitivity/specificity index. The sensitivity/specificity index (y axis, mean and 

s.e.) of immune programs and blood cell traits for different choices of regulatory regions linked to 

genes (x axis), including Roadmap∪ABC enhancer-gene strategy (ABC+Roadmap) and its 

constituent ABC and Roadmap strategies, promoter capture Hi-C (PC-HiC)55,56 and eQTLs from 

the GTEx data47, and combination of Roadmap∪ABC with PCHiC (Roadmap+ABC+PCHiC), 

Roadmap∪ABC with eQTL (Roadmap+ABC+eQTLGTEx) and both PCHiC and eQTL 

(Roadmap+ABC+PCHiC+eQTLGTEx) (x axis, a), or closest TSS linking strategy between SNPs 

and genes at different distances (1kb, 10kb and 100kb), and their combinations with 

Roadmap∪ABC. Data are presented as mean values +/- SEM. Numerical results are reported in 

Supplementary Data 5. 

 



 
Supplementary Fig. 2. Benchmarking sc-linker across immune cell type programs and blood 

cell traits. a-c. Magnitude (E-score, dot size) and significance (-log10(P-value), dot color) of the 

heritability enrichment of immune cell type programs (columns) aggregated over 4 scRNA-seq 



datasets (PBMC (2), cord blood, and bone marrow) for 5 blood cell traits with SNP annotations 

combined with 100Kb (a), ABC-immune (b) or Roadmap-immune (c) strategies (compare to 

Roadmap∪ABC-immune strategy in Figure 2b). d. Pairwise correlation heat map between all 

cell type programs computed for each sample separately. e. Magnitude (E-score, dot size) and 

significance (-log10(P-value), dot color) of the heritability enrichment of immune cell type 

programs constructed for each sample. f. Sensitivity/specificity index (y axis; see Methods) for 

immune cell type programs generated from each individual. g. Pairwise correlation heat map 

between all cell type programs computed for each dataset size separately. h. Magnitude (E-score, 

dot size) and significance (-log10(P-value), dot color) of the heritability enrichment of immune cell 

type programs constructed for each dataset size. i. Sensitivity/specificity index (y axis; see 

Methods) for immune cell type programs generated from subsampled PBMC scRNA-seq data at 

varying numbers of cells. j,k. Magnitude (E-score, dot size) and significance (-log10(P-value), dot 

color) of the heritability enrichment of immune cell type programs (columns) for 5 blood cell traits 

(j) and 11 autoimmune traits (k). l. Mean gene set expression score (dot color) from the baseline 

cell scoring approach. Comparison of panels l,m and n remains subjective, as the two metrics 

plotted (E-score/p.E-score in j,k; cell scores in l) are in different types of scoring schemes. Details 

for all traits analyzed are in Supplementary Table 2. 

  



 
Supplementary Fig. 3. Analysis of functional enrichment of fine-mapped SNPs of immune 

cell type programs and heritability enrichment of immune cellular process programs. a. 

Functional enrichment of fine-mapped SNPs of immune cell type programs. Magnitude 

(Enrichment, dot size) and significance (-log10(P-value), dot color) of SNP annotations 

corresponding to immune cell type programs (using the Roadmap∪ABC-immune enhancer-gene 

linking strategy) with respect to functionally fine-mapped SNPs (from ref. 58). b. Heritability 

enrichment of cellular process programs for blood cell traits. Magnitude (E-score, dot size) and 

significance (-log10(P-value), dot color) of the heritability enrichment of immune cellular process 

programs (columns) and blood cell traits (rows). Details for all traits analyzed are in 

Supplementary Table 2. The metric for comparing overall results in expected enrichments is the 

sensitivity/specificity index. 

 



 
 

Supplementary Fig. 4: Evaluation of dichotomized gene programs. a,b. Enrichment in blood 

cell traits for binary and regular cell type programs. Enrichment (E score, dot size; and significance 

(-log10(P-value), dot color) for blood cell traits (rows) with cell type program defined by genes 

expressed in more than 10% of cells (a) or by our regular approach (b, as in Figure 2d). The size 

of each corresponding SNP annotation (% of SNPs) is reported in parentheses. c. The metric for 

this comparison is the sensitivity/specificity index. Regular cell type programs have a higher 

sensitivity/specificity index than dichotomous ones. The sensitivity/specificity index metric (y 

axis, mean and s.e.) for blood cell traits and immune cell type programs defined by our regular 

approach (“cell type”) or by genes expressed in more than 10, 30 or 50% of cells of a given type 

(x axis). Data are presented as mean values +/- SEM. Numerical results are reported in 

Supplementary Data 6.  

 



 
Supplementary Fig. 5. Evaluation of alternative approaches of gene program construction. 
a-c. Enrichment in blood cell traits for immune cell type programs defined in two different 

approaches. (a) Enrichment (E score, dot size; and significance (-log10(P-value), dot color) for 

blood cell traits (rows) with cell type programs (columns) defined either by genes differentially 

enriched in expression in a cell type compared to other genes in the same cell type (a), by genes 

differentially enriched in a cell type compared to their expression in other cell types (b, the primary 

analysis in this study), or by a combination of the previous two strategies (c). d. The metric for 

this comparison is the sensitivity/specificity index. Sensitivity/specificity index (y axis, mean and 

s.e.) for blood cell traits and immune cell type programs for the approaches in a-c. Data are 

presented as mean values +/- SEM. Numerical results are reported in Supplementary Data 6. 

 



 
Supplementary Fig. 6. Comparison of sc-linker and MAGMA. Negative log p-value of immune 

cell type programs and blood cell traits for (a) E-score in sc-linker analysis, and (b) MAGMA 

gene-set level association analysis. For the MAGMA analysis, the gene program is binarized using 

a threshold=0.95 and numerical results for other binarization thresholds and continuous variable 

based approaches are reported in Supplementary Data 7. Numerical results are reported in 

Supplementary Data 9.  



 
Supplementary Fig. 7: Top genes in blood cellular processes are neither highest expressed in 

cells nor in the tissue overall. Overlap (Jaccard index, y axis) between the top 200 genes in each 

blood cellular processes (x axis) and the highest expressed genes in the top 50 cells (based on the 

weight from the NMF decomposition) associated with the cellular process (a) or overall across the 

tissue (b). 

 

  



EXTENDED DATA FILE LEGENDS 

 

Supplementary Data 1: Healthy cell type program heritability enrichment results. Numerical 

values for E-score and significance are reported for all cell type programs and traits analyzed.   

 

Supplementary Data 2: Disease-dependent program heritability enrichment results. 

Numerical values for E-score and significance are reported for all disease-dependent programs and 

traits analyzed. 

 

Supplementary Data 3: Cellular process program heritability enrichment results. Numerical 

values for E-score and significance are reported for all healthy, disease, and shared cellular 

processes and traits analyzed. 

 

Supplementary Data 4: List of genes driving each enrichment. Up to 50 genes with the 

strongest MAGMA gene score and membership in the gene program. 

 

Supplementary Data 5: Heritability enrichment results from eQTL, PCHi-C and other 

alternative enhancer-gene linking strategies. Numerical values for E-score and significance are 

reported for all traits analyzed with alternative enhancer-gene linking strategies. 

 

Supplementary Data 6: Heritability enrichment results from alternative approaches for 

constructing cell type gene programs. Numerical values for E-score and significance are 

reported for all traits analyzed with the alternative cell type programs. 

 

Supplementary Data 7: MAGMA analysis with alternative input representations. 

Sensitivity/specificity index, standard error, average sensitivity and average specificity for various 

binarization thresholds (0.20 to 0.95) and continuous variable approaches (probability scale or 

negative log odds of the probability scale), for both the analysis of 5 blood cell traits and the 

analysis of 4 major categories of diseases/traits. 

 

Supplementary Data 8: FUMA enrichments for blood cell traits and immune cell type 

programs. Numerical values for beta, standard error and p-value for all cell types and traits 

analyzed. 

 

Supplementary Data 9: MAGMA gene set enrichment results for all cell type programs. 

MAGMA scores across all traits analyzed. 

 

Supplementary Data 10: Pathway enrichment analysis for each disease-dependent program. 

Gene overlap, p-value and gene list for each of the enriched pathway ontology terms across KEGG, 

Wikipathways and Reactome. 

 

Supplementary Data 11: Composition of cell types in each tissue. Proportion of cells observed 

for each cell type and condition in each of the single cell datasets. 

 

Supplementary Data 12: Correlation between disease-dependent and healthy cell type 

program. 


