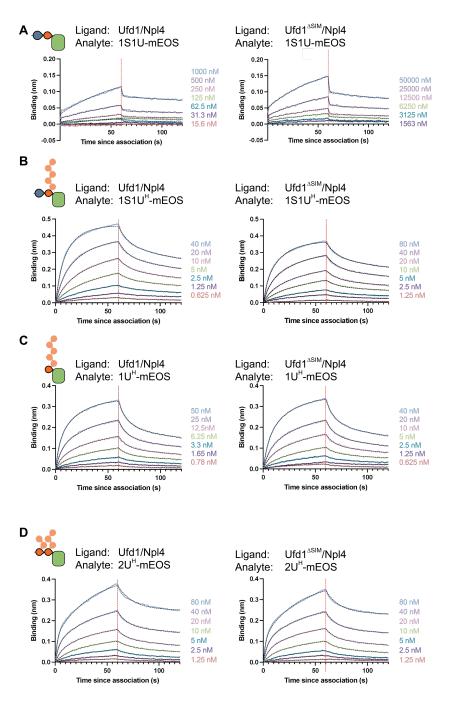


Supporting Information for


SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex

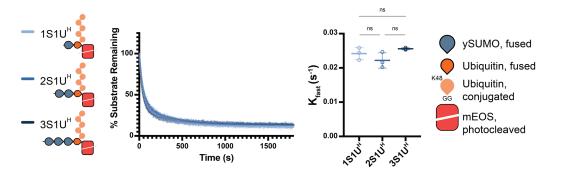
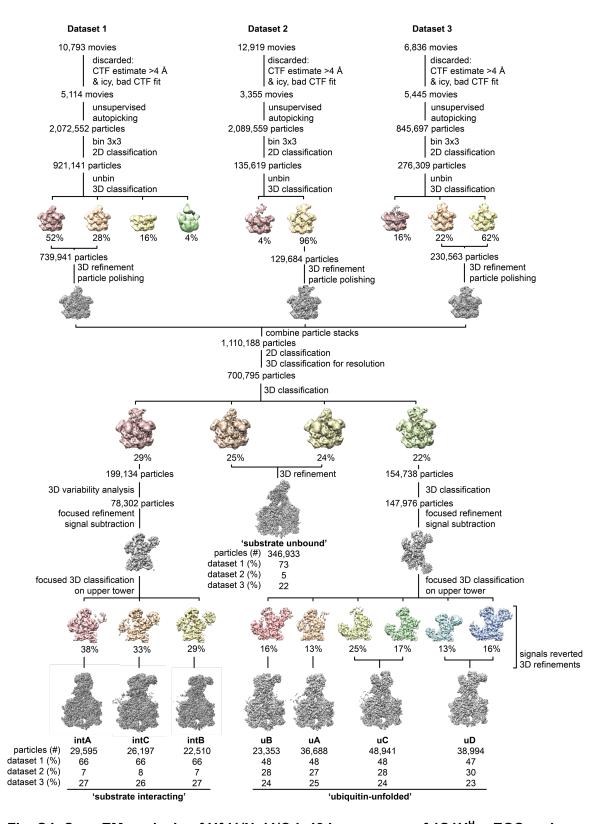
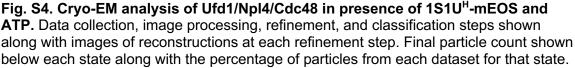
Hyein G. Lee, Abigail A. Lemmon, and Christopher D. Lima*

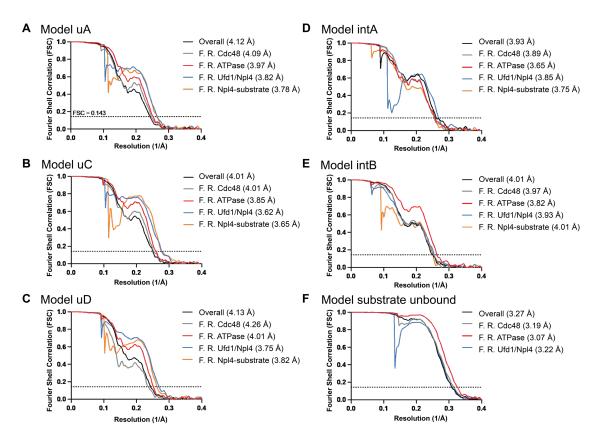
Corresponding Author: Christopher D. Lima Email: limac@mskcc.org

This PDF file includes:

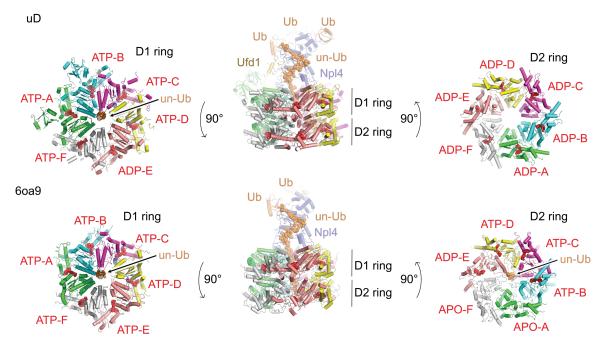
Figures S1 to S8 Tables S1 to S2

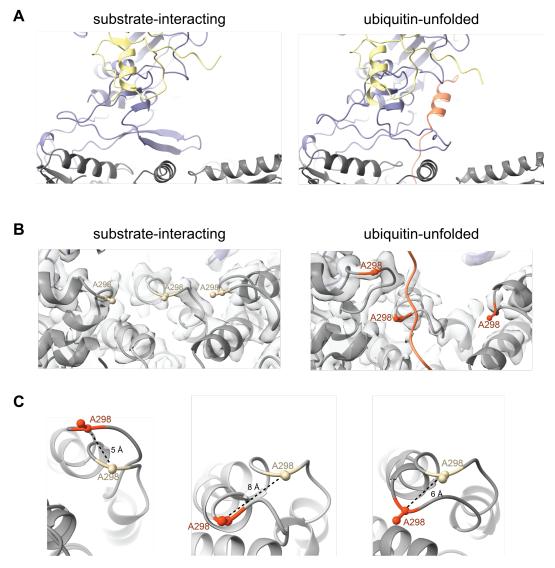
Fig. S1. Biolayer interferometry measurements. (A) Binding of wild-type and Δ SIM Ufd1/Npl4 to 1S1U-mEOS. (B) Binding of wild-type and Δ SIM Ufd1/Npl4 to 1S1U^H-mEOS. (C) Binding of wild-type and Δ SIM Ufd1/Npl4 to 1U^H-mEOS. (D) Binding of wild-type and Δ SIM Ufd1/Npl4 to 2U^H-mEOS. Time-dependent binding response curves shown with concentrations as in legend and global fit for 2:1 heterogeneous ligand binding model generated by Octet HT Data Analysis program shown as a dashed black curve. Dotted vertical red lines indicate end of association and beginning of dissociation phases.


Fig. S2. Unfolding assay for $1S1U^{H}$, $2S1U^{H}$, and $3S1U^{H}$ by wild-type Ufd1/Npl4/Cdc48. Values were normalized to background fluorescence in the absence of ATP. Plot of three replicates with fit of two-phase non-linear regression. K_{fast} (sec⁻¹) determined using two phase decay fit. Error bars represent standard deviation. P values calculated by one-way ANOVA with Tukey's test; * (P<0.05), ** (P<0.01), *** (P<0.001), ns (not significant).

Α				, 01A	В					States and a	
	kDa	NN .	coche trai	N'U' S					с. т. ÷ ч		
									an da		
	100										
	50					A TA				112 d 1	
	-		-								en de la composition de la com
	20	: :									
С											
	62609 ptcls	61703 ptcls	55131 ptcls 6.6 A 1 ess	49569 ptcls	49288 ptcls	44405 ptcls	42854 ptcls 7.4 A 1 ess	42161 ptcls	40825 ptcls	37429 ptcts	
	33924 ptcls	32849 ptcls 8.4 A 1 ess	31977 ptcls 7.9 A 1 ess	30676 ptcls	28567 ptcls 9.6 Å 1 ess	23225 ptcls 10.1 A 1 ess	17240 ptcls 15.0 A 2 ess	15329 ptcls 16.3 A 2 ess	14863 ptcls 10.6 A 2 ess	14758 ptcls 22.1 A 2 ess	
	0.7 A 1 ess 14053 ptcls	14215 ptcls	13984 ptcls	13971 ptcls	9.6 A 1 655	13180 ptcls	13084 ptcis	10.3 A 2 685	10.6 A 2 ess 12109 ptcls	12018 ptcls	
	15.2 A 2 ess 11988 ptcls	16.2 A 2 ess 11960 ptcls	10.8 A 2 ess 11447 ptcls	9.4 A 2 ess 11426 ptcls	19.7 A 2 ess 11246 ptcls	13.0 A 2 ess 11135 ptcls	15.2 A 2 ess 10960 ptcls	12.3 A 2 ess 10696 ptcls	14.7 A 2 ess 10373 ptcls	13.7 A 2 ess 9679 ptcls	
	7.7 A 2 ess 8965 ptcls	8.1 A 2 ess 8465 ptcls	10.7 A 2 ess 7752 ptcls	14.7 A 2 ess 7483 ptcis	15.0 A 2 ess 7283 ptcls	15.8 A 2 ess 6662 ptcls	18.5 A 2 ess 4693 ptcls	15.6 A 2 ess 4689 ptcls	15.0 A 2 ess 3522 ptcls	22.6 A 2 ess	
	28.8 A 2 ess	22.6 A 2 ess	17.0 A 2 ess	17.9 A 2 ess	22.5 A 3 ess	25.8 A 2 ess	116A3 ess	27.9 A 2 ess	26.8 A 2 ess	20.4 A 2 ess	


Fig. S3. Cryo-EM sample preparation and data collection. (A) SDS-PAGE analysis of components used in sample preparation. Molecular weight marker (MW) is Invitrogen BenchMark Protein Ladder with 20, 50 and 100 kDa shown on the left. (B) Example micrograph from data collection (dataset 1). (C) Output of initial 2D classification of particles.



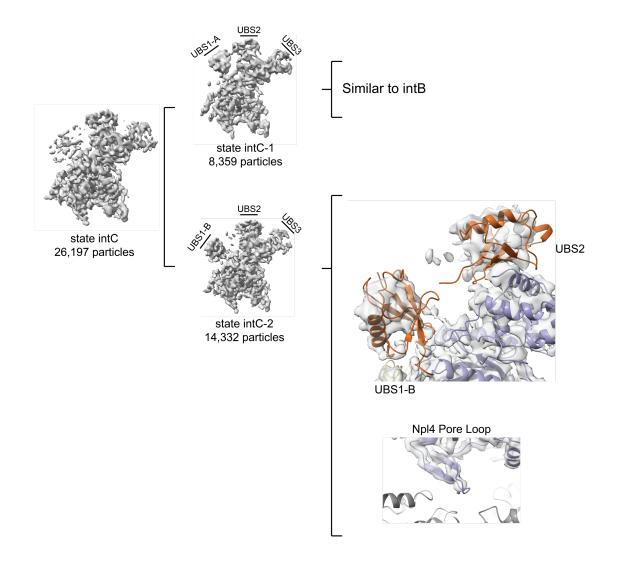

Fig. S5. FSC curves for cryo-EM reconstructions. Fourier Shell Correlation between half maps obtained from indicated reconstructions for ubiquitin unfolded state uA (A), uC (B), uD (C), substrate interacting state intA (D), intB (E), and substrate unbound state (F).

Fig. S6. Cdc48 comparison. Cartoon representation and comparison between Cdc48 rings using the ubiquitin unfolded state uD (top) and PDB 6oa9 (bottom), specifically comparing D1 rings and nucleotide occupancy (left), complex composition (middle), and D2 rings (right). Nucleotide identity and occupancy are indicated in red in left and right panels). Cdc48 is colored by protomer with nucleotide (red) and unfolded ubiquitin (light brown; un-Ub) shown as spheres.

Fig. S7. Orientation of Cdc48 subunits in substrate-interacting and ubiquitinunfolded classes. (A) Placement of Ufd1/Npl4 relative to the Cdc48 differs between substrate-interacting and ubiquitin-unfolded classes. Models shown are state intB (for substrate-interacting) and uC (for ubiquitin-unfolded). Npl4 is in light blue, Ufd1 is in yellow, Cdc48 is in grey, and unfolded ubiquitin is in orange. (B) Relative positioning of Cdc48 monomers with the position of a loop containing Ala298 indicated in the region of Cdc48 that contacts substrate as its being unfolded. In substrate unbound or substrateinteracting classes the Cdc48 hexamer is symmetric and the loops containing Ala298 (colored beige) of respective Cdc48 protomers are in the same plane. In ubiquitinunfolded classes, adjacent Cdc48 protomers move relative to one another shifting the loop containing Ala298 (colored in red) out of this plane. (C) Close up of the loop containing Ala298 in substrate-interacting class (beige) and ubiquitin unfolded class (red) overlayed in three monomers of Cdc48 indicating the relative change in position of Ala298 within these Cdc48 loops.

Fig. S8. Subclassification of state intC. 3D classification without image alignment of particles in state intC revealed two substates with densities for ubiquitin at UBS1-A or UBS1-B. Overlay of atomic models with the reconstructed map of intC-2 show ubiquitin molecules at positions UBS1-B and UBS2 and a closed conformation for the Npl4 loop, conformations not present in atomic models for intA and intB.

Table S1. Association and dissociation parameters of interaction between Ufd1/Npl4 and substrates containing SUMO and ubiquitin. K_D values derived from steady-state responses while K_a and K_{dis} values derived from association and dissociation kinetics fitted to a 2:1 kinetic binding model. Standard error shown.

Ligand	Ufd1 ^{∆SIM} /	Ufd1/	Ufd1 ^{∆SIM} /	Ufd1/	Ufd1 ^{∆SIM} /	Ufd1/	Ufd1 ^{∆SIM} /	Ufd1/
	Npl4	Npl4	Npl4	Npl4	Npl4	Npl4	Npl4	Npl4
Analyte	2U ^H -	2U ^H -	1U ^H -	1U ^н -	1S1U ^H -	1S1U [∺] -	1S1U-	1S1U-
	mEOS	mEOS	mEOS	mEOS	mEOS	mEOS	mEOS	mEOS
K₀ 1 (nM)	<0.001 ± 0.001	<0.001 ± <0.001	5.29 ± 0.06	5.71 ± 0.07	4.97 ± 0.10	2.42 ± 0.04	1.13*10 ⁴ ± 300	193 ± 11
K₀ 2 (nM)	15.7 ± 0.2	13.4 ± 0.2	40.7 ± 0.6	34 ± 0.4	34.2 ± 0.6	26.4 ± 0.5	1.38*10 ⁴ ± 960	309 ± 39
K _a 1 (x1,000/Ms)	411 ± 4	384 ± 3	1020 ± 6	906 ± 5	704 ± 4	1760 ± 7	0.322 ± 0.008	11.8 ± 0.6
K _a 2 (x1,000/Ms)	4300 ± 46	4790 ± 51	2950 ± 40	3620 ± 40	2620 ± 36	3790 ± 61	81.7 ± 5	2770 ± 320
K _{dis} 1(/s)	1.54*10 ⁻⁷ ±	<1.0*10 ⁻⁷ ±	0.005 ±	0.005 ±	0.004 ±	0.004 ±	0.004 ±	0.002 ±
	7*10 ⁻⁷	3*10 ⁻⁷	6*10 ⁻⁵	6*10 ⁻⁵	7*10 ⁻⁵	6*10 ⁻⁵	4*10 ⁻⁵	7*10 ⁻⁵
K _{dis} 2(/s)	0.068 ±	0.064 ±	0.12 ±	0.123 ±	0.09 ±	0.1±	1.13 ±	0.857 ±
	0.004	0.0004	0.0009	0.0008	0.001	0.001	0.03	0.04

Duit		Data	iset 2	Data	set 3				
	aset 1		500x	Dataset 3					
300									
-1.0 to -2.5									
•									
unbound	intA		uA	uC	uD				
8DAR	8DAS	8DAT	8DAU	8DAV	8DAW				
			-		38,994				
		,• • •	,	,	,				
3.3	3.9	4.0	4 1	4 0	4.1				
			1	-	4.3				
			1						
3.0					4.0				
			-		3.8				
	3.8	4.0	3.8	3.7	3.8				
	1	1	1						
2.8 - 7.6	3.2 - 8.2	3.2 - 10.5	3.3 - 9.4	3.3 - 8.7	3.5 - 8.7				
2.8 - 6.6	3.3 - 10.0	3.3 - 10.0	3.4 - 8.4	3.4 - 7.7	3.5 - 8.3				
2.9 - 4.5	3.2 - 5.7	3.3 - 6.6	3.4 - 7.1	3.4 - 6.7	3.4 - 7.1				
2.9 - 5.0	3.1 - 6.2	3.5 - 8.2	3.3 - 5.5	3.1 - 5.1	3.2 - 5.3				
N/A	3.1 - 4.9	3.6 - 6.0	3.2 - 5.0	3.0 - 4.8	3.3 - 5.4				
		6049							
3.3	3.9			3.8	3.9				
0.0	0.0			0.0	0.0				
30 157	34 059	34 635	34 248	34 248	34,848				
,					4,418				
		-	· ·		2				
					5				
					7				
0	1	1	1	7	7				
					143.49				
47.68	107.99	118.39	140.51	113.21	133.33				
0.004	0.003	0.003	0.003	0.004	0.004				
0.603	0.553	0.534	0.932	0.958	0.985				
1.88	1.96	1.84	1.87	1.85	1.87				
6.06	7.37	7.14	9.62	9.34	9.62				
1.93	1.89	1.34	0.90	0.79	0.48				
0.00	0.00	0.00	0.25	0.25	0.22				
		1	1	-					
95.33	95.07	95.01	94.67	94.81	94.64				
30.00				-					
4.67	4.93	4.97	5.31	5.15	5.31				
	346,933 3.3 3.8 3.6 2.8 - 7.6 2.8 - 6.6 2.9 - 4.5 2.9 - 5.0 N/A 3.3 30,157 3,827 2 6 6 6 6 55.57 47.68 0.004 0.603 1.88 6.06 1.93 0.00	8DAR 8DAS 346,933 29,595 3.3 3.9 3.8 3.9 3.6 3.7 3.9 3.6 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 2.8 - 7.6 3.2 - 8.2 2.8 - 6.6 3.3 - 10.0 2.9 - 4.5 3.2 - 5.7 2.9 - 5.0 3.1 - 6.2 N/A 3.1 - 4.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.3 3.9 3.8 7 3.3 3.9 3.6 7 3.3 3.9 3.6 7 55.57 123.03 47.68 107.99 0.0		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				