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Supporting Information Text 

 

Theoretical calculation method 

Mechanical properties of soft and hard nanocapsule shells 

For a given indentation depth δ significant smaller than the capsule shell thickness h, computational 

studies indicate that the relationship between the load F and indentation depth δ can be well captured by the 

Reissner’s formula on thin shell deformation as  (1), (2) 
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where E and ν denote the Young’s modulus and Poisson ratio of the capsule material (soft or hard SNs here), 

and R is the nanocapsule radius. Having knowledge of the force-indentation depth (F-δ) curves from 

experiments (fig. S3), values of the Young’s modulus E of soft and hard nanocapsules are obtained as ETEVS 

= 44 MPa and ETEOS = 2.3 GPa, respectively, with h = 7 nm, ν = 0.5, RTEVS = 86.3 nm, and RTEOS = 112.45 

nm.  

Membrane wrapping of spherical polymer nanocapsules 

The thin-shelled nanocapsule is assumed to undergo an axisymmetric deformation during the adhesive 

wrapping by the cell membrane (Fig. 5A). Before the wrapping process starts, the nanocapsule of an initial 

spherical shape with radius R is at a stress-free state. Characterizing the nanocapsule-membrane system in a 

cylindrical coordinate (r,ϕ,z), material point of the nanocapsule at (r = r0, z = z0) in the undeformed reference 

configuration can also be parameterized by coordinate (s0,ψ0) with geometrical relations dr0/ds0 = cosψ0 and 

dz0/ds0 = sinψ0, where s0 is the arclength measured along the meridian of the capsule layer from the bottom 

pole in the reference configuration and ψ0(= s0/R) is the tangent angle.  

As the membrane wraps around the nanocapsule, the nanocapsule material point (s0,ψ0) located at (r0,z0) 

is displaced by the cell membrane to (r,z) in the deformed configuration. Introducing the arclength s and 

tangent angle ψ of the deformed nanocapsule, (r,z) in the deformed configuration can be presented in a 

coordinate (s,ψ) with geometric relations dr/ds = cosψ and dz/ds = sinψ. Then one has the longitudinal stretch 

λs = ds/ds0 and latitudinal stretch λϕ = r/r0 for the deformed nanocapsule in the meridional and circumferential 

directions, respectively. 

The nanocapsule modeled as a linearly elastic isotropic thin shell has strain energy density Ws as (3) 
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where E is the Young’s modulus, ν is the Poisson ratio, h is the shell thickness, and es = λs − 1 and eϕ = λϕ − 

1 are the meridional and circumferential strains, respectively; B = Eh3/[12(1−ν2)] is the bending rigidity of 

the thin shell, and Cs = λscs − 1/a and Cϕ = λϕcϕ − 1/a are the meridional and circumferential bending strains, 

respectively, with the meridional curvature cs = dψ/ds and circumferential curvature cϕ = sinψ/r. 

The density of the elastic energy change of the cell membrane is (4) 

Wm = 2κH2 + σ(1 − cosψm),       (3) 

where κ, H = (dψm/dt+sinψm/r)/2, ψm, and sm are the bending stiffness, mean curvature, tangent angle, and 

arclength of the cell membrane, respectively. A representative value of κ is 20 kBT. Having Eqs. (2) and (3), 

the total system energy Etot is  

 𝐸tot = ∫ 2𝜋𝑟0𝑊s𝑑𝑠0
𝜋𝑅

0
+ ∫ 2𝜋𝑟𝑊md𝑠m

∞

0
− 𝛾𝐴c,                                                                   (4) 

where γ is the adhesion energy and 𝐴c = ∫ 2𝜋𝑟d𝑠
𝑎

0
 is the contact area with a as the arclength at the contact 

edge. That contact edge in the reference configuration is located at s0 = a0. The wrapping degree f is defined 

as the contact area in the reference configuration divided by the total surface area of the undeformed 

nanocapsule, written as 𝑓 = ∫ 2𝜋𝑟0d𝑠0
𝑎0
0

/(4𝜋𝑅2). 
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To determine the minimum energy state at given f, the interior point optimization method is employed to 

minimize Etot. The tangent angle ψ and longitudinal stretch λs in the inner free and adhesion regions as well 

as the tangent angle ψm in the outer free membrane are approximated by cubic B-spline functions (5). Each 

B-spline function is determined by a set of control points and their corresponding cubic basis functions. Then 

Etot
 
as a combination of ψ(s0), λs(s0) and ψm(sm) at given f and γ can be represented as a function of all control 

points, whose values are determined via energy minimization. During the nonlinear minimization, boundary 

and constraint conditions below provide input parameters or act as equality constraints. At sm→∞, the outer 

free membrane is flat with ψm = 0. At the south and north poles of the nanocapsule, ψ(s0 = 0) = 0 and ψ(s0 = 

πR) = π. At the contact edge, the continuity of tangent angles and (r,z) coordinate are required. Once ψ, ψm, 

and λs are known, the total system energy and corresponding shapes of the nanocapsule and cell membrane 

can be determined. 

Fig. 5B left shows the profile of elastic energy Eel (= Etot + γAc) for hard and soft nanocapsule at σR2/κ = 

5 and γ = 0. Here only the cases of vanishing γ are presented. Further numerical results indicate that γR2/κ of 

practical interest has negligible influence on the elastic energy profiles and system configurations as the 

nanocapsule shell of high resistance to stretching exhibits slight area dilatation. Fig. 5B right shows selected 

wrapping configurations for rigid and soft nanocapsules. Fig. 5 demonstrate that soft and rigid nanocapsules 

show infinitesimal difference in the wrapping energy and configurations, indicating that the mechanical 

behaviors of wrapping around spherical soft and hard nanocapsules can be modeled as the wrapping around 

spherical rigid nanoparticles. 

Kinetics of receptor-mediated wrapping of rigid spherical nanoparticles 

  To investigate the kinetics of receptor-mediated wrapping of spherical rigid nanoparticles, here we 

consider an initially flat cell membrane patch containing diffusive receptors wrapping around a spherical 

rigid nanocapsule coated with uniformly distributed immobile ligands of density ξL. Before the nanocapsule 

contacts the cell membrane, the receptors are assumed to be uniformly distributed with a density of ξ0(< ξL). 

Upon contact, each ligand within the contact region binds specifically with a receptor, and the density of 

receptors therein is raised from ξ0 to ξL (Fig. 5C). The system free energy is reduced by the receptor-ligand 

binding, which benefits the membrane wrapping around the nanocapsule at the cost of membrane deformation 

energy and reduced configurational entropy due to receptor immobilization. Accompanying the expansion of 

the contact region, receptors in the vicinity of the contact region are drawn toward the contact edge via 

diffusion, and a local depletion of receptors near the contact edge is formed. Consequently, a global receptor 

diffusion in the outer free membrane region to the binding site is induced. As long as the free energy reduction 

owing to receptor-ligand binding can compensate the energy cost mentioned above, the wrapping process 

continues. Counting from the moment of contact (t = 0), the nanocapsule is fully wrapped at time t = tw with 

tw as the particle wrapping time. Eventually, the internalized nanoparticle pinches off from the cell membrane. 

The wrapping process above can be described with a mechanical model taking into account both the cell 

membrane deformation and the evolution of receptor density ξ(sm,t) as a function of the membrane arclength 

sm and time t, as proposed in refs (6), (7), and confirmed by molecular dynamics simulations (8). The 

evolution of receptor density ξ(sm,t) is characterized by the kinetics of receptor diffusion. Denoting the 

arclength of the contact region as a(t), one has a(0) = 0 and ξ(sm,0) = ξ0 at t = 0. Receptor conservation 

requires ∂[∫ξLdAc + ∫ξ(sm,t)dAouter]/∂t = 0, where Ac is the contact area and Aouter is the outer free membrane 

area. The diffusive flux of receptors, j = j(sm,t), is assumed to obey Fick’s first law as (9) 

                                                        j = −D∂ξ/∂sm,      (5) 

where D is the diffusivity of receptors in the outer free membrane. Substituting the continuity equation (9) 

                                                     ∂ξ/∂t = −r−1∂(rj)/∂sm                   (6) 

into the conservation equation yields 

             (2R2/r+)(ξL – ξ+)df/dt + j+ = 0    or (ξL – ξ+)da/dt + j+ = 0,   (7) 

where r+(t) ≡ r(a+,t), j+(t) ≡ j(a+,t), and ξ+(t) ≡ ξ(a+,t) represent corresponding values directly in front of the 

contact edge. In the derivation of Eq. (6), conditions of fixed total area of the cell membrane and j = 0 at the 

remote boundary have been used.  

Substituting Eq. (5) into Eq. (6) yields the governing equation for the receptor density evolution in the 

outer free membrane as 
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The profiles of r and ψm are given by the equilibrium solutions obtained from the energy minimization in the 

previous section. 

To obtain the nanoparticle wrapping time 𝑡w = ∫ (d𝑓/d𝑡)−1d𝑓
1

0
, one needs to evaluate the wrapping rate 

df/dt as a function of r+, ξ+ and j+ (or equivalently ∂ξ/∂sm at sm = a+) based on Eq. (7), and the procedure is as 

follows.  

The total free energy F(t) of the system consists of the energy of receptor-ligand binding, configurational 

entropy of receptors, and cell membrane deformation energy Eel, and can be written as 

       L
L B RL c B outer el

0 0

( ) ln d ln dF t k T e A k T A E
 

 
 

 
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where kBT = 4.1×10−21 J and kBTeRL denotes the binding energy per receptor-ligand bond of around 10 kBT 

to 25 kBT [Leck01]; kBTln(ξL/ξ0) and kBTln(ξ/ξ0) are the free energy per receptor associated with the relative 

entropy of the bound and free receptors, respectively. Differentiation of F(t) in Eq. (9) with respect to time t 

leads to 
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(10) 

where χ(s,t) = ln(ξ/ξ0) + 1 is the local chemical potential per receptor. Balancing the rate of free energy 

reduction in the wrapping process with the rate of energy dissipation associated with receptor transport, the 

first term in the above equation must vanish (6). Therefore, one has 

                     el
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which allows ξ+(t) to be determined at given a.  

Once the receptor density profile ξ(sm,t0) at t = t0 during the initial stage of contact is known, one can 

determine ξ(sm,t) at t > t0 by solving Eq. (8) via the finite difference method, using ξ+(t) to determine j+(t) in 

Eq. (5), and then obtaining df/dt with knowledge of ξ+(t), j+(t) and r+(t) from Eq. (7).  

The procedure for obtaining ξ(sm,t0) is as follows. At the initial stage of contact, the contact size is much 

smaller than the membrane size and the outer free membrane is almost flat. Therefore, the membrane at the 

moment t = t0 can be regarded approximately as a flat membrane of an infinite size and Eq. (8) becomes ∂ξ/∂t 

= D∂2ξ/∂sm
2 over a(t0) < s < ∞, which can be solved analytically as (6) 

                          ξ(sm,t0) = ξ0 + ΛE1(sm
2/(4Dt0)),     (12) 

where 𝐸1(𝑥) = ∫ 𝑢−1𝑒−𝑢𝑥d𝑢
∞

1
 is the exponential integral and Λ is a constant of integration. This solution 

satisfies the diffusion equation and boundary condition ξ(sm,0) = ξ0 and ξ(sm,t0)→ξ0,  j(sm,t0)→0 as sm→∞. 

Substituting Eq. (11) into Eq. (7) gives Λ = −α2exp(α2)(ξL − ξ0)/(1 − g) with g = α2exp(α2)E1(α2) and α as a 

constant to be determined. Then one has ξ+/ξL = (ξ0/ξL − g)/(1 − g). Substituting Eq. (12) and ξ+/ξL into Eq. 

(11), α can be determined. Once α is known, ξ(sm,t0) at the initial stage of contact is fully given by Eq. (12). 

With the knowledge of ξ(sm,t0), ξ+(t), profiles of Eel(f) or dEel/df (Fig. 4a), and diffusion equation (8), the 

wrapping rate df/dt can be determined through Eq. (7). Then the nanoparticle wrapping time tw is obtained as 

𝑡w = ∫ (d𝑓/d𝑡)−1d𝑓
1

0
. 
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Figures 
 

 
Fig. S1 Stability of MCSNs. (A) Stability of soft MCSNs in PBS buffer, as measured by DLS. (B) Stability 

of hard MCSNs in PBS buffer, as measured by DLS.  (C) Stability of MCSNs in DMEM with 10% FBS, as 

measured by UV-vis, the values are means ± SD (n = 3). 
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Fig. S2 Mechanical properties of SNs and MCSNs. (A) AFM height profiles of (i) PEGylated hard SNs, 

(ii) hard MCSNs, (iii) PEGylated soft SNs, (iv) soft MCSNs. (B) Reconstructed 3D morphologies of (i) 

PEGylated hard SNs, (ii) hard MCSNs (iii) PEGylated soft SNs, (iv) soft MCSNs. (C) Young’s moduli of 

soft and hard PEGylated SNs (PEG) and MCSNs, the values are means ± SD (n = 10). 
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Fig. S3. Representative force-indentation curves. Representative force-indentation curves of soft (left) and 

hard (right) MCSNs. Calculated Young’s modules were 44 ± 2.8 MPa (left) and 2.3 ± 0.1 GPa (right). 
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Fig. S4. Cell vitality tested by WST-1. Cell vitality of IHH cells under various treatments. The values are 

means ± SD (n = 8).  
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Fig. S5. Standard curve of SDF-1α for ELISA measurement. 
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Fig. S6. Flow cytometry analysis of the presence of integrin α5β1. Flow cytometry analysis of the presence 

of integrin α5β1on the surface of IHH cells expressed by overlay distribution. Cell incubated with only 

secondary antibody was the control group.   
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Fig. S7. BCA assay of overall protein concentration. Left: BCA assay standard curve calculated by the 

standard BSA solution. Right: BCA assay of overall protein concentration of soft and hard MCSNs. All 

values are means ± SD (n = 3, with *P < 0.05). 
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Fig. S8. Protein concentration measured using BCA assay. (A) Protein concentration of MCSNs with or 

without protein corona effect. (B) Concentration of protein corona on PEGylated nanoparticles and MCSNs. 

All values are means ± SD (n = 3, with *P < 0.05 and **P < 0.01). 
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Fig. S9. Flow cytometry analysis of the presence of CXCR4 on the surface of soft and hard MCSNs with 

FBS treated for 4 hours. All values are means ± SD (n = 3, with *P < 0.05 and **P < 0.01). 
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Fig. S10. Axis dimension ratio of the soft and hard MCSNs on cell surfaces. (A) value of axis. (B)  

Average of axis dimension ratios, measured by NanoMeasurer software (v. 1.2.5). 

  



 

 

16 

 

 

 
Fig. S11. TEM images of MCSNs co-incubated with macrophage cells. (A) TEM images of hard MCSNs 

co-incubated with macrophage cells. (B) TEM images of soft MCSNs co-incubated with macrophage cells. 
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Table S1. Parameters used in the theoretical model 

Parameter Significance 

κ Cell membrane bending rigidity 

σ Membrane tension 

γ Membrane-nanocapsule adhesion energy 

R Nanocapsule radius 

B Bending rigidity of the capsule thin shell 

D Diffusivity of ligands on cell membrane 

ξ0 Initial receptor density 

ξL Ligand density 
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