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Supporting Information Texts 

 
(1) Preparation of cells, organoids, and tissue samples. 

Cell lines, mouse T cells (T cells), mouse leukemia cells (leukemia cells), mouse hematopoietic progenitor cells 

(HPCs), and human T cells (Jurkat cells) were prepared. Mouse T cells were established from BW-1100.129.237 

cells (provided by Leszek Ignatowicz, Georgia State University, USA) by retrovirally introducing the genes CD3d, 

CD3z, CD8a, CD8b, CD28, and 2Cm6a TCR (1). Mouse leukemia cells were established from the C1498 cell 

line (ATCC) by retrovirally introducing the CD86 gene and a fusion gene consisting of H2-Ld, b2M, a sequence 

encoding the QL9 peptide, and EGFP. Cell culture, plasmid reconstruction, retroviral gene transfection, and 

positive cell selection were performed as previously described (2). Mouse hematopoietic progenitor cells (HPCs) 

were prepared as previously described (3). Jurkat cells were obtained from RIKEN Cell Bank and maintained in 

Medium A (see Materials and Methods). 

        Mouse (C57BL6/J) peripheral blood mononuclear cells (PBMCs) were prepared from whole blood as follows. 

Approximately 500 µl of murine whole blood was collected in a tube containing 30 µl of liquid heparin (1000 

units/ml, MOCHIDA PHARMACEUTICAL CO., LTD.) by a syringe washed with heparin via cardiac puncture 

under anesthesia, then centrifuged using Histopaque-1083 (Sigma-Aldrich) following the manufacturer's protocol. 

The sedimented cells were incubated with ACK Lysing Buffer (Gibco) to lyse the remaining red blood cells. After 

washing twice with phosphate-buffered saline (PBS, Nacalai Tesque), the cells were stained with 1 µg/ml 7-

aminoactinomycin D (7-AAD) (eBioscience). Viable PBMCs were collected in medium (1× RPMI 1640 medium 

(Gibco) supplemented with final concentrations of 10% (v/v) fetal bovine serum (Corning), 1× Monothioglycerol 

Solution (FUJIFILM Wako Pure Chemical Industries), 1× GlutaMAX™ supplement (Gibco), 1× 

Penicillin/Streptomycin Mixed Solution (Nacalai Tesque Inc.), 5 mM HEPES (Gibco), 1× MEM nonessential AA 

(Gibco), and 1 mM sodium pyruvate (Gibco)) by cell sorting using a BD FACS Aria III (BD Biosciences) based 

on the forward and side scatter properties and 7-AAD-negative signals. The collected PBMCs were kept at room 

temperature until the subsequent experiments. 

        Mouse small intestinal crypts were isolated and cultured as described with slight modification (4). Briefly, 

the small intestine was obtained from a C57BL/6 mouse by surgery. After cutting the intestine into 2 mm long 

pieces and washing using ice-cold PBS, the intestinal pieces were incubated in PBS with 2.5 mM EDTA (Gibco) 

for 30 min at 4 °C with gentle agitation. Then, intestinal crypts were released from the intestinal pieces by vigorous 

suspension in ice-cold PBS. The crypts in the suspension were enriched by centrifugation at 300 ×g for 3 min at 

room temperature after passing through a 70-µm cell strainer (Corning). The collected crypts were incubated in 

1× DMEM/F-12 (Nacalai Tesque) with 10% (v/v) fetal bovine serum (Corning) at 4 °C until further experiments. 

        Mouse small intestinal organoids were grown from the crypts as described with slight modifications (5). The 

prepared crypts were collected from the medium by centrifugation at 400 ×g for 3 min at room temperature, 

embedded in growth factor-reduced Matrigel (Corning), and seeded on a 24-well plate. After polymerization, 

culture medium (1× advanced DMEM/F-12 (Gibco) supplemented with final concentrations of 1× 

Penicillin/Streptomycin Mixed Solution (Nacalai Tesque Inc.), 250 ng/ml amphotericin B (HyClone), 1× 

GlutaMAX™ supplement (Gibco), 1 mM N-acetyl-L-cysteine (Nacalai Tesque Inc.), 10 mM HEPES (Gibco), 1× 

N2 supplement (FUJIFILM Wako Pure Chemical Industries), 1× B-27 supplement (Gibco), 10 µM CHIR99021 

(Sigma), and 200 nM LDN193189 (Selleck)) was added and refreshed every 2-3 days. On days 6, 8, and 12, 
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Matrigel-embedded organoids were incubated with ice-cold cell recovery solution (Corning) for 30 min on ice to 

release the organoids from the Matrigel. Then, the organoids were transferred to a tube and sedimented by gravity. 

The supernatant was discarded, and the organoids were resuspended in DMEM/F-12 with 10% fetal bovine serum 

and kept at room temperature until further experiments. 

 

(2) Isolation of beads, leukemia cells, Jurkat cells, organoids, and crypts using ALPS 

Polystyrene beads 1 µm (Sigma-Aldrich), 3 µm (Polyscience), 45 µm (Polyscience), and 200~300 µm 

(Polyscience) in diameter were separately diluted in Milli-Q water with 0.1% Tween 20 and mixed by pipetting. 

Then, 3 ml of each diluted bead mixture was added to a 35-mm glass bottom dish (D35-27-1.5-, Matsunami), and 

the beads were sedimented by gravity for approximately 1 h, 15 min, 15 min, and 15 min, respectively, before 

isolation. The final densities of the beads on the bottom of the dish were approximately 2, 50, 50, and 10 per mm2, 

respectively. 

       For leukemia cells, Jurkat cells, organoids and crypts, 3 ml of each prepared sample was added into a 35 mm 

glass bottom dish and sedimented for approximately 15 min before isolation. 

       First, a randomly selected sample was moved to the center of the field of view by the microscopic motorized 

stage. Second, the sample was picked at the center of the field of view using a 40-µm needle with 9 nl of solution 

for a 1-µm bead, a 40-µm needle with 9 nl of solution for a 3-µm bead, a 70-µm needle with 9 nl of solution for 

a 45-µm bead, a 400-µm needle with 340 nl of solution for a 200~300-µm bead, a 60-µm needle with 11 nl of 

solution for a leukemia cell or Jurkat cell, a 400-µm needle with 110 nl of solution for an organoid, and a 40-µm 

needle with 11 nl of solution for a crypt. Third, the needle with the bead, cell, organoid, or crypt was moved to a 

well of a 96-well glass bottom plate (Greiner Bio-One) that contained 40 µl of Milli-Q water with 0.1% Tween 

20 for beads, organoids, and crypts or 40 µl of conditioned medium for leukemia cells and Jurkat cells (the 

conditioned medium was basically Medium A filtered using a 0.22 µm Steliflip filter unit after culturing 105 

(initial) leukemia or Jurkat cells for two days). Finally, 15 nl of solution was deposited into the well for 1-µm, 3-

µm, and 45-µm beads, 340 nl for 200~300-µm beads, 19 nl for leukemia cells and Jurkat cells, 110 nl for organoids, 

and 19 nl for crypts. All the isolation processes were recorded by the two cameras and the screen capture software 

(see section “Hardware and software of ALPS” in Materials and Methods). 

 

(3) Growth of cells isolated by ALPS 

After a leukemia or Jurkat cell was isolated into a well of a 96-well glass bottom plate, 60 µl of conditioned 

medium was added. After the plate was maintained at 37 °C and 5% CO2 using an incubator (MCO-170AIC-PJ, 

PHCbi) for three days, each well was imaged using a Nikon microscope by bright-field illumination (30% power), 

10 ms exposure time, and a 20× objective (see section “Hardware and software of ALPS” in Materials and 

Methods). For the negative control, the same procedures were performed except for cell deposition for wells in 

the same plate. 

 

(4) Single-cell RNA sequencing 

An automated library preparation system for RNA-seq was set up using the Bravo NGS workstation (Agilent 

Technologies): multiple steps, including cell lysis, reverse transcription, template switching, and bead purification, 

were programmed to perform scRNA-seq (SI Appendix Fig. S21). Two types of barcodes were introduced to 
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identify individual cells in multiplex sequencing: 96 well-position barcodes and 96 plate barcodes distinguished 

a total of 9,216 (=96 × 96) cells (Dataset S13). It took less than 2 days for one technician to perform library 

preparation for four 96-well plates using four thermal cyclers, including quality check and concentration 

measurements of the generated libraries. 

        Bravo NGS workstation (Agilent Technologies) was programmed as follows. (1) Frozen picked or sorted 

cells in 96-well PCR plates were thawed and kept at 4 °C on Bravo’s deck cooler. (2) Then, 0.8 µl of a lysis and 

fragmentation solution (0.4 U RNAsin plus RNase inhibitor (Promega), final concentrations of 2.5 × Single-cell 

lysis buffer (Takara), 1 ×Maxima H Minus Reverse Transcriptase buffer, 2.5 nM polyT14V_A, 2.5 nM 

polyT14V_T, 2.5 nM polyT14V_G, 2.5 nM polyT14V_C (Integrated DNA Technologies, Inc.) (Dataset S13), 

and 1,280,000-fold diluted ERCC RNA Spike-In Mix (Thermo Fisher Scientific)) was added to each well of the 

plates. (3) After the plate was sealed and centrifuged for 30 s at 4,000 rpm using Plate Centrifuge PlateSpin II 

(KUBOTA), cell lysis and RNA fragmentation were performed at 94 °C for 3 min using thermal cyclers 

(Mastercycler X50s, Eppendorf). (4) Then, 1.2 µl of a reverse transcription solution (8 U Maxima H Minus 

Reverse Transcriptase (Thermo Fisher Scientific), 0.4 U RNAsin plus RNase inhibitor, final concentrations of 3.3 

mM dNTPs (NEB), 17 mM DTT (Sigma-Aldrich), 6.7 µM TSO (Integrated DNA Technologies, Inc.) (Dataset 

S13), and 25% (w/v) PEG 8000 (Promega)) was added to each well of the plates. (5) After the plates were sealed, 

centrifuged for 30 s at 4,000 rpm using Plate Centrifuge PlateSpin II, vortexed for 15 s at 3,000 rpm using 

MixPlate, and centrifuged again for 30 s at 4,000 rpm at room temperature, reverse transcription was performed 

at 42 °C for 90 min and inactivated at 85 °C for 10 min. (6) The unreacted primers were digested with 1 U of 

Exonuclease I (NEB) at 37 °C for 30 min followed by inactivation at 80 °C for 20 min. (7) After adding 15 µl of 

an amplification solution (10 µl of 2 × SeqAmp CB PCR buffer (Takara), 0.25 U of SeqAmp DNA polymerase 

(Takara), and final concentrations of 0.4 µM well-barcode primer and 0.4 µM plate-barcode primer (Integrated 

DNA Technologies, Inc.) (Dataset S13)) to each well of the plates, amplification was performed: 1 min at 94 °C; 

21 cycles of 10 s at 94 °C, 15 s at 60 °C and 2 min at 68 °C; and 5 min at 68 °C. (8) Then, 10 µl of the amplified 

PCR products of each of 12 wells (i.e., each row) of the 96-well PCR plate were pooled into one well of a 96-

deepwell plate (Eppendorf). We note that for eight plates of the three-type-mixed cell experiments and all plates 

of the PBMC experiments, the amplified products of the wells were discarded before pooling when any cell was 

not picked, more than one cell was deposited, or the linking with time-lapse imaging failed (see image analysis 

section). (9) The pooled amplified products were purified by three rounds of AMPure XP Bead purification 

(Beckman Coulter). For the first, 240 µl of bead buffer (final concentrations of 8% (w/v) PEG 8000 and 1.4 M 

NaCl) and 120 µl of AMPure Beads were added, and 60 µl of elution buffer (Qiagen) with 0.1% (v/v) Tween 20 

was used for elution; for the second, 120 µl of bead buffer, 60 µl of AMPure beads, and 60 µl of elution buffer 

was used; and for the third, 120 µl of bead buffer, 60 µl of AMPure beads, and 15 µl of elution buffer were used. 

        The quality of the libraries was checked by an Agilent 2100 Bioanalyzer (Agilent Technologies), and the 

concentration was determined by qPCR (KAPA SYBR Fast qPCR kit, KAPA Biosystems) using primers 

P1_qPCR_Fw and P2_qPCR_Rv (Dataset S13). For the libraries that had a high proportion of products between 

100~200 bp, two more rounds of AMPure bead purification were performed. The twelve purified libraries from 

the same plate were mixed in equal volumes. The libraries of different plates (8 or 10 plates for each sequencing 

run) were mixed by equal volume or by equal concentration, and 20~25% Phix (Illumina) was added. The libraries 

of samples were paired-end sequenced on an Illumina MiSeq (two runs for PBMC) or HiSeq (three runs for three-
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type-mixed cells) platform by allocating 102 cycles for Read 1, 8 cycles for Index 1, 8 cycles for Index 2, and 56 

cycles for Read 2 (SI Appendix Fig. S21). The Illumina Index 1 and Read 2 sequencing primers were replaced by 

custom primers named I1_primer and R2_primer (Dataset S13). 

 

(5) Sequence analysis 

The sequencing results were processed to count the number of RNA molecules for detected genes in each index 

(unique pair of a well-position barcode and plate barcode), which basically corresponded to each single cell. For 

HiSeq runs, the output bcl files were converted to fastq format and demultiplexed into different fastq files based 

on indexes using bcl2fastq (Illumina). For the fastq files from each sequencing run of HiSeq or MiSeq, the 

following steps were performed. First, a read pair (Read 1 and Read 2 in pairs) that had correct fixed bases in the 

molecular barcode (24 bp from the 5’ end of Read 1; SI Appendix Fig. S21 and Dataset S13) was selected for the 

next step (6). Second, the first 38 bases from the 5’ end of Read 1 that corresponded to the designed molecular 

barcode and poly T primer were deleted, and the poly T sequences in the remaining reads were replaced by N 

using tantan 23 (7) with the parameters "-x N -r 0.0005". Third, the processed Read 1 and Read 2 were mapped 

to both the mouse genome (mm10) and the sequences of the ERCC Spike-In RNA using STAR 2.7.3a (8) with 

the parameter "--outFilterMultimapNmax 50", which allowed mapping to multiple genes. The mapping results 

outputted from STAR were reformatted using samtools 1.10 (9). The mapped Read 1 and Read 2 were annotated 

with gene name(s) using the GTF file from the UCSC genome browser (refFlat, downloaded using “Table Browser” 

on Jan. 21st, 2018). We note that for the sequencing results of PBMCs, 270 T cell receptor-related genes registered 

in the GTF file (version M25) from Gecode were also used for annotation. If Read 1 and Read 2 for the same read 

pair were mapped to the same gene(s), the read was annotated to the gene(s); if not, the read was annotated to all 

mapped genes of both Read 1 and Read 2 (the annotated gene(s) were defined as a gene set for the next steps). 

Fourth, the annotated reads were divided into groups, each of which had different combinations of gene sets and 

indexes. Within each group, the molecular barcode sequences (first 24 bp of Read 1) were clustered using 

Nucleotide-Sequence-Clusterizer with the parameter "--distance 2" (6). Fifth, for each cluster, the sequence at 

each position in the barcode with the highest number of reads was used as a representative sequence for the cluster 

(when multiple sequences had the highest number of reads, one of them was used). The clusters that had the same 

representative sequences among all groups from different gene sets or indexes were merged. In a merged cluster, 

a representative index with the highest number of reads was used as an index for this cluster. When multiple 

indexes had the highest number of reads in a merged cluster, the cluster was annotated by all these indexes. In a 

merged cluster, a representative gene set that had the highest number of reads was used as a gene set for this 

cluster. When multiple gene sets had the highest number of reads in a merged cluster, the cluster was annotated 

by all these gene sets. We note that each (merged) cluster corresponded to one detected RNA molecule. Sixth, the 

number of clusters for each gene and index was counted as follows: a coefficient of 1 was given to each cluster; 

when a cluster was annotated by multiple gene sets and/or indexes, a coefficient of 1/(the number of different 

combinations of gene sets and indexes) was given for each combination of the gene sets and indexes; then, for 

each combination of a gene set and an index, a coefficient of 1/(the number of different combinations of gene sets 

and indexes)/(the number of genes in the gene set) was given for each gene; the total number of clusters (RNA 

molecules) for each combination of a gene and an index was determined as the sum of the coefficients given to 

the combination of the gene and index. Finally, the number of reads for each combination of a gene and an index 
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in each cluster (RNA molecule) was determined as the total number of reads in the cluster multiplied by the given 

coefficient of the combination of the gene and index. The average detection efficiency of ERCC Spike-In RNA 

was 6.7% for three-type-mixed cells and 6.6% for PBMCs based on the nominal concentration of ERCC Spike-

In RNA. We confirmed that the sequencing depths in all runs and the number of random bases in our designed 

barcode were sufficient (SI Appendix Figs. S22 and S23). 

 

(6) Gene expression analysis 

Single cells were clustered based on RNA expression. The indexes (i.e., wells) with failed time-lapse tracking 

(see next section) and/or isolation by ALPS (Datasets S1 and S2) were filtered out. The remaining indexes 

(corresponding to single cells) whose detected number of ERCC RNA molecules was < 1,000 or detected number 

of molecules of murine genes was < 10,000 for three-type-mixed cells (< 1,000 for PBMCs) were removed from 

further analyses. For the three-type-mixed cells, the indexes whose detected number of genes was < 2,500 were 

removed from further analyses. The gene expression matrices of the remaining cells were normalized by the 

NormalizeData function using the parameters “normalization.method = LogNormalize" and “scale.factor = 

10,000”. For dimensional reduction, 2,000 genes with high cell-to-cell variation were found using the 

FindVariableFeatures function. The dimensional reduction was performed by the RunPCA function with default 

parameters on the scaled data which were linear-transformed by the ScaleData function. The cells were clustered 

into different numbers of clusters using the FindNeighbors and FindClusters functions by adjusting the parameter 

“resolution”. For visualization, nonlinear dimensional reduction by the RunTSNE function was conducted. All 

functions were used with the instructions from Seurat 3.2.2 (10). 

 

(7) Image analysis 

Determination of cell types by fluorescent images 

To determine the cell types of each single cell based on the fluorescent images obtained by the ALPS using 

imaging method 3 in the assays of single isolated cells using multimode imaging (Materials and Methods), the 

mean intensities of GFP (marker for leukemia cells), PE (marker for T cells) and Alx648 (marker for HPCs) of 

the cells were determined. The mean intensity was calculated from all pixels in a circular area (radius, 40 pixels 

(12.8 µm)) that covered the given cell. Then, the calculated mean intensity was subtracted by the background, 

which was the average intensity of the same image excluding the circular area. The subtracted mean intensities of 

all cells were divided by the highest mean intensity among these cells for each color respectively. Finally, the cell 

type of each cell was determined to be the one that had the highest intensity among the three colors. When the 

values of all colors were less than 0.04, meaning that the cell was not efficiently labeled by any of the three 

markers, the cell type was defined as “undetermined” (Fig. 2A and Dataset S3). 

 

Linking time-lapse image to each isolated single cell 

The cells in the images obtained by 29 min time-lapse imaging (1 min interval, 30 time points) and nine scans 

during cell isolation at focal position 2 (Materials and Methods) were tracked and linked to the picked cells by 

the following steps. First, after normalizing the background using the “Shading correction” job (NIS-Elements), 

the images of 6 × 6 squares for each time point were stitched, and all 39 stitched frames were stacked based on 

the time series of acquisition using the “stitch Multipoint to Large Image” job (NIS-Elements). Second, the 
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intensity of each pixel of the first 31 frames was subtracted by a constant value of 500 because frames 32-39 had 

lower background intensity due to the effect of the needle position. Third, the cells in each image were segmented 

by the “Define Threshold” job (NIS-Elements) using the following parameters: “Intensity = 0~1600, Fill holes = 

On, Separate = 1 ×, and Size = 5~25 µm for cell lines or 5~15 µm for PBMCs”. Fourth, the cells were tracked 

along the time series by the “Tracking” job (NIS-Elements) using the following parameters: “Radom motion = 

On, Constant speed = Off, Allow Gaps in tracks = Off, Allow New Tracks After First Frame = Off, Standard 

Deviation Multiplication Factor (Stdev) = 20”. We note that when the “Tracking” job failed the tracking of a cell 

after frame 31 (until the cell was picked), we tracked it manually between two continuous frames based on the 

closest distance if the distance from the second closest cell was more than 5 times the distance from the first 

closest cell. Fifth, the picked cell was linked with the closest cell in the last frame before picking. 

      When the cell was not tracked in all frames from the first to the last frame before the cell picking, the tracking 

of this picked cell was considered a failure and was not used for further analyses (Dataset S2). 

 

Cropping cell images for machine learning 

For successfully tracked cells, stacked cell patches (100 × 100 pixels, 30 frames ordered by time) containing the 

cell at the center of the image were obtained by the following steps. First, the images obtained by time-lapse 

imaging (1 min interval, 30 time points) were stitched using the “stitch Multipoint to Large Image” job for focal 

position 1 (Materials and Methods). Second, for each tracked cell, cell patches (100 × 100 pixels) were cropped 

from each stitched image using the tracked coordinates of the cell (this was determined in the third step of the 

section “linking time-lapse image to each isolated single cell”) as the center and were aligned by time series. 

 

Conventional image analysis 

To cluster cells based on morphological and dynamical features of cells, first, 19 features which are defined by 

NIS-Elements (version 5.11.00) (Datasets S7 and S10) were extracted from the time-lapse cell images at focal 

position 2 using the same procedures as “Linking time-lapse image to each isolated single cell”.  

      Second, 82 morphological and dynamical features which are defined by CellProfiler 4 (version 4.2.4) (11) 

(Datasets S8 and S11) were extracted from the stitched time-lapse cell images at focal position 2 (see “Linking 

time-lapse image to each isolated single cell”) by cell detection and tracking using the “Object Tracking” example 

pipeline (version 5) obtained from a website (https://cellprofiler.org/examples). The “ColorToGray” module was 

replaced by the “ImageMath” module with the “Invert” operation since the analyzed time-lapse cell images were 

in grey format and the cells in the images were darker than the background. The “Typical diameter of objects, in 

pixel units (Min, Max)” in the “IdentifyPrimaryObjects” module was set as 20 and 100 for the 3mix-ALPS-

timelapse cells and 10 and 50 for the PBMCs to fit the sizes of the analyzed cells (1 pixel = 0.324 µm). The 

“Lower and upper bounds on threshold” in the “IdentifyPrimaryObjects” module was set as 0.01 and 1 for the 

3mix-ALPS-timelapse cells and 0.5 and 1 for the PBMCs. The features were extracted by the 

“MeasureObjectSizeShape” module with the “Calculate the advanced features” option and the 

“MeasureObjectIntensity” module. Then, the cells were tracked between frames using the “TackObjects” module 

with parameters: “Choose a tracking method = Distance, Maximum pixel distance to consider matches = 500”. 

The tracks of three 3mix-ALPS-timelapse cells (in the 1,008 cells linked with scRNA-seq data) and two PBMCs 
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(in the 346 cells linked with scRNA-seq data) were not completed for all 30 time-lapse images and were not 

included in the further analyses.  

     Third, 24 morphological and dynamical features which are defined by TrackMate 7 (version 7.7.2) (12) 

(Datasets S9 and S12) were extracted from the stitched time-lapse cell images at focal position 2 (see “Linking 

time-lapse image to each isolated single cell”) by cell detection and tracking using the “TrackMate 7” Plugin in 

Fiji(ImageJ) (13). After the images were inverted by the “Invert” module in Fiji, the cells in each image were 

detected using the “Thresholding detector” module in TrackMate 7 with an automatically generated intensity 

threshold and the “Simplify contours” function. Then, the cells were tracked between frames using the “Kalman 

tracker” module in TrackMate 7 with parameters: “Initial search radius = 500 (pixel), Search radius = 500 (pixel), 

Max frame gap = 0 (frame)”. The features were automatically calculated by TrackMate 7 after detection or 

tracking. The tracks of 60 3mix-ALPS-timelapse cells (in the 1,008 cells linked with scRNA-seq data) and 10 

PBMCs (in the 346 cells linked with scRNA-seq data) were not completed for all 30 time-lapse images and were 

not included in the further analyses. We note that the “Thresholding detector” were chosen since other available 

detectors (which do not use deep learning) in TrackMate 7 did not detect the cells correctly judged by eye, and 

the “Kalman tracker” were chosen since it tracked the highest number of cells that linked with scRNA-seq data 

among other available trackers in TrackMate 7.  

 

(8) Sorting-based single cell isolation 

A mixture of T cells, leukemia cells, and HPCs was prepared as described in the section “Automated single cell 

isolation using the ALPS” (Materials and Methods). Then, using BD FACS Aria III (BD Biosciences), 36 

leukemia cells, 36 T cells, and 24 HPCs were sorted in this order into one 96-well PCR plate (one cell in one well) 

based on the signals of EGFP (positive for leukemia cells and negative for the others), PE (positive for T cells and 

negative for the others), and Alx648 (positive for HPCs and negative for the others), respectively. Two plates 

were prepared. 

 

(9) Deep learning 

Cell type classification was performed for three-type-mixed cells and PBMCs respectively. For each classification, 

a 2D convolutional neural network (CNN) that extracts image-based features of the cells, combined with a 

recurrent neural network (RNN) that models the temporal information of the cells, was performed by two 

architectures respectively: a deep residual network (ResNet) (14) architecture combined with a long short-term 

memory (LSTM) (15) architecture (ResNet-LSTM classification architecture) and a LeNet architecture (16) with 

three convolutional layers combined with an LSTM architecture (LeNet-LSTM classification architecture). 

Regression of each of the 300 genes with high cell-to-cell variation (determined by the same method described in 

SI Appendix Text 6) using a ResNet architecture combined with an LSTM architecture (ResNet-LSTM regression 

architecture) was performed for three-type-mixed cells. For both classification and regression, the leave-one-out 

cross-validation strategy (17) was applied; cells in one plate were used for testing, and cells in all other plates 

were used for training. 

        The ResNet-LSTM classification architecture (SI Appendix Fig. S9A) was modified from the combined 

architecture (18) of ResNet-18 and LSTM, which was implemented via PyTorch (19): first, the pixel intensity of 

each frame (100 × 100 pixels) for the red, green and blue channels was normalized to the mean = [0.485, 0.456, 
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0.406] and standard deviation = [0.229, 0.224, 0.225], respectively, using the transform.Normalize function so 

that transfer learning (20) with the pretrained weights of ResNet-18 could be used in the next step. Second, each 

frame was processed through ResNet-18 to extract image features using the pretrained weights of ResNet-18. To 

transfer the extracted image features to the LSTM in the next step, the last two layers of ResNet-18 (the fully 

connected layer and the softmax output layer) were removed, and a max-pooling layer (21) with a kernel size of 

3 and a stride of 2 was added so that 512 features were output from each frame. Third, the output features of all 

30 frames (512 × 30) were input to the LSTM with 2 layers containing 100 hidden units. Fourth, the output of the 

last frame from the LSTM was connected with a number of units equal to the number of classes (i.e., number of 

cell types) by a fully connected layer.  

        For training using the ResNet-LSTM classification architecture, the training data were divided into a training 

set (80%) and a validation set (20%). In total, 100 epochs of training with batch size 8 were performed, and the 

weights of the LSTM and the last fully connected layers were updated for each epoch using the Adam algorithm 

with a learning rate of 0.001 to decrease the training loss, which was calculated using the cross-entropy loss 

function. The weights of the network with the lowest loss among all 100 epochs in the performance on the 

validation set were chosen for the final test on the testing data. 

        The ResNet-LSTM regression architecture (SI Appendix Fig. S9C) and its training were basically the same 

as the ResNet-LSTM classification architecture except for the following modifications: the output of the last frame 

from the LSTM network was connected with a single unit by a fully connected layer, and the cross-entropy loss 

function was replaced by the mean-squared-error loss function. The log-transformed gene expression levels were 

used as input. 

        The LeNet-LSTM classification architecture (SI Appendix Fig. S9B) was modified from the architecture 

reported (22) for cell type classification based on time-lapse cell patches and was implemented via Keras (23). 

The architecture was sequentially composed of the following layers: an input layer (30 × 100 × 100 × 1, frames 

× height × width × channel (grayscale)), a convolutional layer with 32 filters and a kernel size of 9 using Rectified 

Linear Unit (ReLU) (24) activation, a BatchNormalization layer (25), a max-pooling layer with a kernel size of 2, 

a convolutional layer with 64 filters and a kernel size of 3 using ReLU activation, a BatchNormalization layer, a 

max-pooling layer with a kernel size of 2, a convolutional layer with 64 filters and a kernel size of 3 using ReLU 

activation, a max-pooling layer with a kernel size of 2, a dropout layer with a ratio of 0.25, a Flatten layer, a fully 

connected layer with 400 units using ReLU activation, a LSTM layer with 500 hidden units, a TimeDistributed 

layer, and a fully connected layer with a number of units equal to the number of classes (i.e., number of cell types) 

using softmax activation. For training, the training data were divided into a training set (85%) and a validation set 

(15%), and all gray values of the images were divided by the highest gray value of the imaging system (65,535). 

In total, 200 epochs of training with batch size 8 were performed, and the weights of the whole network were 

updated for each epoch using stochastic gradient descent with the default parameters to decrease the training loss, 

which was calculated using the categorical cross-entropy loss function. The weights of the network that achieved 

the highest-accuracy performance on the validation set among all 200 epochs were chosen for the final test on the 

testing data.  
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(10) Selected cells shown in Fig. 2C 

        For each cell type, three cells correctly predicted by deep learning and two cells incorrectly predicted were 

randomly selected from the all PBMCs. We performed this process five times and showed one of them as a typical 

example. For each cell in Fig. 2C, Plate_ID (PBMC-timelapse-plateX), Well_ID_in_Plate, and prediction result 

are as follows. CD4+ T cell 1-5: 3, 2, correct; 3, 31, correct; 7, 36, correct; 8, 6, incorrect; 8, 81, incorrect. CD8+ 

T cell 1-5: 2, 8, correct; 3, 77, incorrect; 6, 56, correct; 7, 48, correct; 8, 58, incorrect. B cell 1-5: 3, 11, correct; 

4, 31, correct; 5, 23, incorrect; 7, 68, incorrect; 8, 79, correct.      
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Figures 

 

 
Figure S1: Photo of ALPS. 

A cell picker was equipped on a Nikon microscope (Eclipse Ti2-E). The sample dish on the microscope was 

illuminated by blue LED light. A glass needle (magenta) located in the dish was controlled by an automated robot 

arm (orange). A 96-well plate on the motorized plate stage was illuminated by green LED light under a camera 

(sky blue) (Fig. 1A, Materials and Methods). 
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Figure S2: The number of cell(s) at day 0 (isolated by ALPS) and day 3 in each well in the same raw of a 

96-well plate (SI Appendix Text 3). 

(A) Mouse leukemia cells. (B) Human Jurkat cells. One cell was deposited by ALPS in the 1st, 3rd, 5th, 7th, 9th, and 

11th wells, and no cells were deposited in the 2nd, 4th, 6th, 8th, 10th, and 12th wells. 
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Figure S3: Images of the cells from 3mix-ALPS-random&target-multimode. 
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Four images (as column), bright-field image (top) and fluorescent images of GFP (green), PE (cyan), and Alx648 

(magenta) of each cell from 3mix-ALPS-random-multimode (3mix-random-plate1, 3, and 4 shown here, plate 2 

shown in Fig. 1C) or 3mix-ALPS-target-multimode (3mix-target-plate2, 3, and 4 shown here, plate 1 shown in 

Fig. 1D). Numbers on the left indicate the order of isolation. Image size, 26 µm × 26 µm. The contrast of the 

shown images was changed linearly. 
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Figure S4: The number of detected RNA molecules and detected genes of each well for the cells from 3mix-

ALPS-random-multimode (4 plates) and 3mix-ALPS-target-multimode (4 plates). 
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The order of the well IDs in each plate corresponded to the order of the 96 isolations. Open circles, ERCC Spike-

In RNA; filled circles, RNAs mapped to murine genomes. (A and B) The numbers of detected RNA molecules 

(A) and detected genes (B) in the wells in which one cell was isolated and the sequencing quality was high (SI 

Appendix Text 6). (C) The numbers of detected RNA molecules in wells where no cell was picked and deposited. 

The small number of detected RNA molecules in these wells suggested that the contamination of RNA molecules 

by ALPS&RNA-seq was low. 
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Figure S5: Violin plots showing the expression distributions of three cell marker genes in the three clusters 

of the cells from 3mix-ALPS-random&target-multimode. 

The cell type of each cluster was determined by the following marker genes: T cells were identified by the 

expression of Cd8b1 because we introduced this gene into this cell line; leukemia cells were identified by the 

expression of Cd3e and without the pronounced expression of Cd8b1 and Cd34 (26); HPCs were identified by the 

expression of Cd34 (27). 
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Figure S6: Comparison of the scRNA-seq results among different isolation methods. 

(A and B) Violin plots showing the numbers of detected RNA molecules (A) and the numbers of detected genes 

(B) of single cells from 3mix-ALPS-random-multimode, 3mix-ALPS-target-multimode, and 3mix-ALPS-
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timelapse, of three-type-mixed cells isolated by a sorter (3mix_FACS), and of PBMCs. (C) PCA of single cells 

from 3mix-ALPS-random-multimode, 3mix-ALPS-target-multimode, and 3mix-FACS. (D-F) Comparison of 

average RNA expression levels of detected genes between the cells from 3mix-ALPS-random-multimode (ALPS-

1: 3mix-random-plate1; ALPS-2: 3mix-random-plate2) and 3mix-FACS (FACS-1: 3mix-FACS-plate1; FACS-2: 

3mix-FACS-plate2) for T cells (D), leukemia cells (E), and HPCs (F). The RNA expression levels were averaged 

from the first 16 cells in each plate for each cell type. r, Pearson coefficient calculated in log scale. 
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Figure S7: Whole-genome expression and time-lapse images linked for the same cell from 3mix-ALPS-

timelapse. 

(A) t-SNE visualization of the cells from 3mix-ALPS-timelapse. Colors represent cell types determined by gene 

expression. Numbers correspond to the cells shown in (C). (B) Violin plots showing the expression distributions 

of three cell marker genes in the three clusters of the cells from 3mix-ALPS-timelapse. Cell types for the three 

clusters were determined as in SI Appendix Fig. S5. (C) Examples of bright-field time-lapse images of the cells 

from 3mix-ALPS-timelapse. ◎ indicates that the cell type was correctly predicted in deep learning classification, 

and Ä indicates that it was not. Images of four successfully predicted cells and one unsuccessfully predicted cell 

from the 1st well of the 3mix-timelapse-plate1 for each type are shown (one cell was skipped because another cell 

was present in some frames, though it was successfully predicted). Image size, 32 µm × 32 µm. The contrast of 

the shown images was changed linearly. 
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Figure S8: Violin plots showing the expression distributions of selected cell marker genes in PBMC 

subpopulations obtained by clustering. 

The cell types for these cell subpopulations were determined as follows (28–30): CD4+ T cells were identified by 

the expression of Trac, Trbc1 and Cd3d and without the pronounced expression of Nkg7 and Ccl5; CD8+ T cells 

were identified by the expression of Trac, Trbc1, Cd3d, Nkg7, and Ccl5; B cells were identified by the expression 

of Cd19 and Ms4a1. 
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Figure S9: Schematic of the deep learning architectures (details in SI Appendix Text 9) used for 

classification and regression.  

The LeNet architecture was drawn using NN-SVG (31). 
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Figure S10: Volcano plot showing the differential gene expression between the cell types of 3mix-ALPS-

timelapse cells. 

The padj and log2FoldChange were calculated using DESeq2 (32); the genes whose detected number of molecules 

was ≥10 in at least one cell were considered as detected genes. Horizontal dotted line, padj = 0.05; vertical dotted 

line, log2FoldChange = -1 or 1. The number of differentially expressed genes (red dots)/the number of detected 

genes (all dots) and the proportion of differentially expressed genes (in the parentheses) are shown.   
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Figure S11: Deep learning-based classification for time-lapse imaged cells from 3mix-ALPS-timelapse. 

(A) Weighted F1 score for predicting scRNA-seq-determined cell types using ResNet-LSTM. RNA-seq, cell types 

were determined by scRNA-seq. Random, cell types were labeled randomly ((B) as well). 16, 64, 256, and All 
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cells, 16, 64, 256, and all cells were randomly selected from 15 plates for training (cells in one plate were used 

for testing). The p value was calculated by the Kruskal-Wallis rank sum test ((B and C) as well). (B) Accuracy 

and weighted F1 score for predicting scRNA-seq-determined cell types using LeNet-LSTM. (C) Accuracy and 

weighted F1 score for predicting scRNA-seq-determined cell types by ResNet-LSTM using different numbers of 

frames. 
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Figure S12: Conventional image analysis of cells from 3mix-ALPS-timelapse. 
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(A) PCA of the cells with 24 morphological and dynamical features (Dataset S7) obtained by NIS-Elements. For 

each cell, the average value of the 30 images for each feature was used. For each feature, the average value of 

each cell was divided by the median of the average values of all cells and was transformed to the log2 scale. For 

the “Tangential acceleration” feature, the negative average values (2.8% of the cells) were set as the minimum of 

the positive average values before division. Colors correspond to the three clusters obtained by Kmeans clustering. 

95% confidence ellipse for each cluster is shown. (B) The feature-determined clusters in (A) were assigned as the 

three cell types respectively in any possible one-to-one correspondence. The accuracy of each correspondence 

was calculated as the number of cells matched with their scRNA-seq-determined cell types divided by the total 

number of cells. (C) PCA of the cells with 82 morphological and dynamical features (Dataset S8) obtained by 

CellProfiler 4. The features were averaged and normalized using the same strategy as (A). Before averaging, all 

values of the “Orientation” feature were added by 90o to rescale the range from -90o ~ 90o to 0o ~ 180o, and for 

each of the “TrajectoryX”,“TrajectoryY”, “Central Moment”, “Hu Moment”, “Normalized Moment” and “Inertia 

Tensor” features, the minimum value was subtracted from all values. Colors and ellipses are the same as (A). (D) 

The accuracies for the clustering in (C) calculated using the same strategy as (B). (E) PCA of the cells with 24 

morphological and dynamical features (Dataset S9) obtained by TrackMate 7 in Fiji(ImageJ). The features were 

averaged and normalized using the same strategy as (A). Before averaging, all values of the “Ellipse Theta” feature 

were added by π to rescale the range from - π ~ π to 0 ~ 2π, and the minimum value of the “Ellipse X0” or “Ellipse 

Y0” feature was subtracted from all values of the “Ellipse X0” or “Ellipse Y0” feature. Colors and ellipses are the 

same as (A). (F) The accuracies for the clustering in (E) calculated using the same strategy as (B).   
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Figure S13: Sub-clusters of 3mix-ALPS-timelapse cells represent biological states within each cell type. 
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(A) t-SNE visualization of the cells from 3mix-ALPS-timelapse which were clustered into six sub-clusters. Each 

cell type contains two sub-clusters (T cell-1, T cell-2, Leukemia cell-1,  Leukemia cell-2, HPC-1, and HPC-2). 

(B) Volcano plot (in the same format as Fig. S10)  showing the differential gene expression between the sub-

clusters, HPC-1 and HPC-2, and the Metascape bar graph for viewing top non-redundant enrichment clusters with 

statistical significances. (C) Same as (B) for sub-clusters, T cell-1 and T cell-2. (D) Same as (B) for sub-clusters, 

Leukemia cell-1 and Leukemia cell-2.  
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Figure S14: Deep learning-based classification using ResNet-LSTM for the different biological states of 

3mix-ALPS-timelapse cells. 

(A) Accuracy for predicting scRNA-seq-determined cell states for T cells and leukemia cells respectively using 

ResNet-LSTM. (B) Weighted F1 score for predicting scRNA-seq-determined cell states for T cells, leukemia cells, 

and HPCs respectively using ResNet-LSTM. For all figures, RNA-seq, cell states were determined by scRNA-

seq; Random, cell states were labeled randomly; the p value was calculated by the Kruskal-Wallis rank sum test. 
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Figure S15: Volcano plot showing the differential gene expression between the cell types of PBMCs. 

Shown in the same format as Fig. S10.   
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Figure S16: Deep learning-based classification of time-lapse imaged PBMCs. 

(A) Weighted F1 score for predicting scRNA-seq-determined cell types using ResNet-LSTM. RNA-seq, cell types 

were determined by scRNA-seq. Random, cell types were labeled randomly. Two types, PBMCs were clustered 

into T cells and B cells. Three types, PBMCs were clustered into CD4+ T cells, CD8+ T cells, and B cells. The p 

value was calculated by the Kruskal-Wallis rank sum test. (B and C) Accuracy and weighted F1 score for 

predicting scRNA-seq-determined cell types using LeNet-LSTM. 
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Figure S17: Conventional image analysis of PBMCs. 

(A) PCA of the cells with 24 morphological and dynamical features (Dataset S10). For each cell, the average 

value of the 30 images for each feature was used. For each feature, the average value of each cell was divided by 

the median of the average value of all cells and was transformed to the log2 scale. For the “Tangential acceleration” 
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feature, the negative average values (0.58% of the cells) were set as the minimum of the positive average values 

before division. Colors correspond to the three clusters obtained by Kmeans clustering. 95% confidence ellipse 

for each cluster is shown. (B) The feature-determined clusters were assigned as the three cell types respectively 

in any possible one-to-one correspondence. The accuracy of each correspondence was calculated as the number 

of cells matched with their scRNA-seq-determined cell types divided by the total number of cells. (C) PCA of the 

cells with 82 morphological and dynamical features (Dataset S11) obtained by CellProfiler 4. The features were 

averaged and normalized using the same strategy as (A). Before averaging, all values of the “Orientation” feature 

were added by 90o to rescale the range from -90o ~ 90o to 0o ~ 180o, and for each of the 

“TrajectoryX”,“TrajectoryY”, “Central Moment”, “Hu Moment”, “Normalized Moment” and “Inertia Tensor” 

features, the minimum value was subtracted from all values. Colors and ellipses are the same as (A). (D) The 

accuracies for the clustering in (C) calculated using the same strategy as (B). (E) PCA of the cells with 24 

morphological and dynamical features (Dataset S12) obtained by TrackMate 7 in Fiji(ImageJ). The features were 

averaged and normalized using the same strategy as (A). Before averaging, all values of the “Ellipse Theta” feature 

were added by π to rescale the range from - π ~ π to 0 ~ 2π, and the minimum value of the “Ellipse X0” or “Ellipse 

Y0” feature was subtracted from all values of the “Ellipse X0” or “Ellipse Y0” feature. Colors and ellipses are the 

same as (A). (F) The accuracies for the clustering in (E) calculated using the same strategy as (B). 
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Figure S18: Out-of-sample R2 and Pearson’s r for measured versus predicted gene expression for each of 

300 variant genes of the cells from 3mix-ALPS-timelapse. 
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(A) Distribution of the median out-of-sample R2 from the 16 predictions. (B) Distribution of the median Pearson’s 

r from the 16 predictions. (C) Out-of-sample R2 of the 14 genes that showed the highest median out-of-sample R2. 

RNAseq, the gene expression levels were determined by scRNA-seq; Random, the gene expression levels were 

out of order from scRNA-seq results ((D) as well). The p values calculated by the Kruskal-Wallis rank sum test 

are shown ((D) as well). (D) Pearson’s r of the 14 genes as c. Both the out-of-sample R2 and Pearson’s r obtained 

by the correctly linked datasets of cell images and gene expression levels were significantly higher than those 

obtained by incorrectly linked datasets, indicating that the deep learning model used here for predicting the gene 

expression levels of these 14 genes from the cell images achieved robust generalization. 
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Figure S19: PCA of the cells from each plate of 3mix-ALPS-timelapse with predicted (open circle) and 

measured (closed circle) expression levels of 300 genes.  
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Colors correspond to the three different cell types determined by the measured whole transcriptome. Lines link 

the predicted and measured expressions of the same cell. Plate 1-16 represent 3mix-timelapse-plate1-16. 3mix-

timelapse-plate5 is shown in Fig. 4C. 
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Figure S20: Calibration of the aspiration volume of one volume unit (i.e., a minimum handling volume) of 

the automated syringe pump in ALPS. 

(A) The total fluorescence intensities of fluorescent beads in a solution depending on the solution volume. The 

fluorescent bead solution (F8823, Thermo Fisher Scientific) was diluted 100,000 times with Milli-Q water and 

vortexed at 3,200 rpm for 10 s (Vortex Genie 2, Scientific Industries). Then, 0.5 µl, 1 µl, and 2 µl of the diluted 

solution was aspirated and dispensed by a P-2 Pipetman (Gilson) at the center of a well in a 96-well glass bottom 

plate (Greiner Bio-One), which covered a circular area with a 1 - 2.2 mm radius. The dispensed solution was dried 

at room temperature for 3 h. The dried fluorescent beads in each well were imaged using a Nikon microscope 

with GFP illumination (1% of the CoolLED) (Materials and Methods), 1 ms exposure time, and a 20× objective. 

The sum of the fluorescence intensities of the pixels in the circle area (2.5 mm radius) after background subtraction 

was calculated. The background was determined as the average intensity of a ring area (2.5 – 3.5 mm radius) in 

the well. Each volume was measured three times. After fitting using y = a1x (cyan line), the total intensity of beads 

in 1 µl of diluted solution was determined: a1 = 1.9 ± 0.2 ´ 107 / µl. (B) The total fluorescent bead intensities in a 

solution depending on the number of volume units used in aspiration by the syringe pump. The original bead 

solution was diluted 1,000 times with Milli-Q water. The diluted bead solution was aspirated by the pump using 

5, 8, 15, and 30 units from a glass bottom dish (D35-27-1.5-U, Matsunami) and deposited using 8, 12, 23, and 45 

units, respectively, at the center of a well in a 96-well glass bottom plate, where 2 µl of Milli-Q water had been 

added in advance. The beads solution was dried and imaged as in (A). Each number of units was measured six 

times. (C) The volume of aspirated solution depending on the volume units. The volume of aspirated solution was 

calculated based on the parameter a1. After fitting using y = a2x (magenta line), one aspiration volume unit of the 

pump was determined: a2 = 0.57 ± 0.05 nl/unit. 
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Figure S21: Schematic for library generation, purification, and sequencing in ALPS&RNA-seq (SI 

Appendix Text 4). 

Sequences of polyT14V_A/T/G/C, TSO, well-position barcode primers, and plate barcode primers are listed in 

Dataset S13. Read 1, Read 2, Index 1, and Index 1 were sequenced in an Illumina platform; for Index 1 and Read 

2, the customized sequencing primers I1_primer and R2_primer were used (Dataset S13). 
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Figure S22: The total detected RNA molecules depending on the coverage (the average number of reads 

per unique molecular barcode). 

To confirm that the number of reads per unique barcode was sufficient, we randomly sampled a fraction (1%, 

3.3%, 10%, 33%, and 100%) of the reads in the results of the sequencing run for the cells from 3mix-ALPS-

random&target-multimode and three-type-mixed cells isolated by FACS and counted the total number of detected 

molecules for each cell (each line). The results showed that the total number of detected molecules of each cell 

was basically saturated when the average number of reads per unique molecular barcode was more than 1.5. In 

our measurement, the average number of reads per unique barcode in each cell was mostly (99.6%) > 1.5. The 

results from 3mix-random-plate1 are shown here, and coverages for all cells are presented in Datasets S3 and S5. 
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Figure S23: The number of clusters (unique molecular barcodes) depending on the number of random 

bases designed in the molecular barcodes. 

We trimmed random bases in the sequenced barcodes of the HiSeq sequencing run (for the cells from 3mix-ALPS-

random&target-multimode and three-type-mixed cells isolated by FACS) from the 3’ end and counted the number 

of clusters as a function of the number of remaining random bases. The results showed that having more than 14 

random bases did not further increase the number of clusters, indicating that the 18 random bases we used were 

sufficient for measuring approximately 4 ´ 107 molecules in a single HiSeq sequencing run. 
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Tables 

Table S1:  Comparison of the methods which performed whole transcriptome analysis on microscopically 

observed single live cells 

(1) Methods with cell imaging in microwells 

Literature Method  
name 

Live-cell label-free 
imaging with 
quantitative 
analysis 

Single-cell 
whole 
transcriptome 
analysis 

High-throughput 
data acquisition 

Image-based 
deep learning 
based on live-
cell images and 
single-cell whole 
transcriptome 

K. Lane, et 
al., Cell 
Syst. 2017 
(33) 

 △ 
Eclipse Ti 
fluorescence 
microscope (Nikon) 
was used 
Cells were isolated 
(captured*) and 
imaged in 
microwells** 
(Fluidigm C1 chip) 

○ 
Library 
preparation 
was performed 
using 
Fluidigm C1 
chip 
 

○ 
96 cells can be 
measured in one 
Fluidigm C1 chip  

Not performed  

J. Yuan, 
et.al., 
Genome 
Biol 2018 
(34) 

SCOPE-
Seq  

△ 
Eclipse Ti-U 
microscope (Nikon) 
was used 
Cells were isolated 
and imaged in 
PDMS*** 
microwells**(chip)  

○ 
Library 
preparation 
was performed 
using chip and 
beads  

○ 
2,352 RNA-Seq 
expression profiles 
were measured using 
one microwell array 
device and 1,133 of 
them were linked to 
imaging data 

Not performed 

Z. Liu, et 
al., Sci. 
Rep. 2020 
(35)  

SCOPE-
seq2 

△ 
Eclipse Ti2 
microscope (Nikon) 
was used 
Cells were isolated 
and imaged in 
PDMS*** 
microwells**(chip)  

○ 
Library 
preparation 
was performed 
using chip and  
beads 
 

○ 
>9,000 cells were 
profiled in one 
microwell array 
device and > 4,100 of 
them were linked to 
imaging data  

Not performed 

○: Enough, △: Not enough 

* The capture of Fluidigm C1 chip is cell size- and shape-dependent (36). 

** It is often difficult to culture an isolated single cell in a microwell and to quantitatively analyze a bright-field 

cell image taken from a microwell. For example, the Fluidigm C1 chip paper listed in the table mentioned that 

Fluidigm C1 chip is not suitable for cells that cannot be cultured in isolation. Moreover, all three listed papers on 

SCOPE-Seq, SCOPE-seq2, and Fluidigm C1 chip did not show any quantitative analysis for bright-field cell 

images. The Fluidigm C1 chip paper also mentioned that they were unable to perform a fold-change detection of 

fluorescence in cell images. 

*** Some studies mentioned that PDMS microwell prevents high resolution imaging (37, 38).  
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(2) Methods with cell imaging in dish 

Literature Method  
name 

Live-cell label-free 
imaging with 
quantitative 
analysis 

Single-cell 
whole 
transcriptom
e analysis 

High-throughput 
data acquisition 

Image-based 
deep learning 
based on live-
cell images and 
single-cell whole 
transcriptome 

M. Saint, 
et al., Nat. 
Microbiol. 
2019 (39) 

 ○ 
MSM-400 tetrad-
dissection 
microscope (Singer 
Instrument) was 
used 
Cells were cultured 
and imaged in dish 

○ 
Library 
preparation 
was performed 
in tube 

△ 
Manual cell imaging 
and  isolation were 
performed 

Not performed 

This study ALPS&
RNA-seq 

○ 
Eclipse Ti2 
microscope (Nikon) 
was used 
Cells were cultured 
and imaged in dish 

○ 
Library 
preparation 
was performed 
in tube 

○ 
Automated cell 
imaging and isolation 
were performed 

Performed  
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Datasets 

 

Dataset S1: The detailed failure cases for T cell isolations by ALPS with different cell densities.   

 

Dataset S2: The success rate of each plate by APLS&RNA-seq for all three-type-mixed cells and PBMCs 

experiments.  

  

Dataset S3: Total detected RNA molecules, total detected genes, sequencing coverage, cell type in three-

types mixed cells experiments.  

Cell_ID corresponds to the Cell_ID in Dataset S4.  

 

Dataset S4: The number of detected RNA molecules for each gene of each cell in three-types mixed cells 

experiments.  

 

Dataset S5: Total detected RNA molecules, total detected genes, sequencing coverage, cell type in PBMC 

experiments.  

Cell_ID corresponds to the Cell_ID in Dataset S6.  

 

Dataset S6: The number of detected RNA molecules for each gene of each cell in PBMC experiments. 

 

Dataset S7: Morphological and dynamical features of the cells from 3mix-ALPS-timelapse obtained by 

NIS-elements. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S3.  

 

Dataset S8: Morphological and dynamical features of the cells from 3mix-ALPS-timelapse obtained by 

CellProfiler 4. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S3.  

 

Dataset S9: Morphological and dynamical features of the cells from 3mix-ALPS-timelapse obtained by 

TrackMate 7. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S3.  

 

Dataset S10: Morphological and dynamical features of the PBMCs obtained by NIS-elements. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S5. 

 

Dataset S11: Morphological and dynamical features of the PBMCs obtained by CellProfiler 4. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S5.  

 

Dataset S12: Morphological and dynamical features of the PBMCs obtained by TrackMate 7. 

Plate_ID and Well_ID_in_Plate correspond to the Plate_ID and Well_ID_in_Plate in Dataset S5.  
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Dataset S13: Sequences of primers used in all experiments.  
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Movies 

Movie S1: A demonstration movie of automated single cell isolation using ALPS from top view.  

Left side, the Nikon microscope; right side, the motorized stage for the displacement of a 96-well plate (Materials 

and Methods). Weak green light of the microscope: bright field illumination; blue light: GFP fluorescent 

illumination; strong green light of the microscope: PE fluorescent illumination; red light: Alx648 fluorescent 

illumination; green light on the stage, bright field illumination by LED. The movie was recorded from the step-

(auto-2) to the step-(auto-7) with two rounds of isolation using the program used for multi-mode imaging and 

random selection (Materials and Methods) (acceleration and deceleration time of the arm was from the time-lapse 

experiment).  

 

Movie S2: A movie of the picking and depositing by ALPS.  

Left side, live imaging under the microscope; middle, current state (e.g., preview of captured image, current stage 

position) of the running program in NIS-Elements; right side, live imaging of a well of the 96-well plate. The 

movie was a clip from the step-(auto-2) of the 7th to the step-(auto-7) of the 8th of the T cell isolation (T-cell-

plate2, Dataset S1). Red square, 139 µm × 99 µm. 

 

Movie S3: A movie of picking and depositing a 1 µm bead using ALPS.  

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

40 µm. The deposited bead was around “2 o’clock”.  

 

Movie S4: A movie of picking and depositing a 3 µm bead using ALPS.  

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

40 µm.  

 

Movie S5: A movie of picking and depositing a 45 µm bead using ALPS.  

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

75 µm. 

 

Movie S6: A movie of picking and depositing a 350 µm bead using ALPS. 

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

~400 µm. 

 

Movie S7: A movie of picking and depositing an intestinal organoid using ALPS.  

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

~400 µm. 

 

Movie S8: A movie of picking and depositing a crypt using ALPS.  

Left side, live imaging under the microscope; right side, live imaging of a well of the 96-well plate. Needle size, 

40 µm. 
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