
nature methods

https://doi.org/10.1038/s41592-022-01711-zArticle

Local shape descriptors for neuron
segmentation

In the format provided by the
authors and unedited

https://doi.org/10.1038/s41592-022-01711-z

1

Supplementary Note

Contents

A Main text 1
A.1 Introduction 1

A.1.1 Neuron Segmentation Methods . 1
A.1.2 Contributions 2

A.2 Results . 2
A.2.1 Metrics for Neuron Segmentation 2
A.2.2 Datasets 3
A.2.3 Neuron Segmentation Accuracy . 3

A.3 Discussion 4
A.3.1 Metric Evaluation 4
A.3.2 Auxiliary Learning for Bound-

ary Prediction 4
A.3.3 Auto-Context Refinement 5
A.3.4 Masking 5

A.4 Conclusions and Future Directions 5

B Local Shape Descriptors 5

C Min-Cut Metric 6

D Zebrafinch 6
D.1 Training 6

D.1.1 Data 6
D.1.2 Networks 6
D.1.3 Pipeline 7

D.2 Prediction 7
D.3 Segmentation 7

D.3.1 Watershed 7
D.3.2 Agglomeration 7
D.3.3 Segment 7

D.4 Evaluation 7

E FIB-SEM volumes 8
E.1 Training 8

E.1.1 Data 8
E.1.2 Networks 8
E.1.3 Pipeline 8

E.2 Prediction 8
E.3 Segmentation 8

E.3.1 Watershed 8
E.3.2 Agglomeration 8
E.3.3 Segment 8

E.4 Evaluation 8

F Throughput 9

G Extended Experiments 9
G.1 Serial Section Data (ssTEM) 9
G.2 Ablations 9
G.3 Non-EM Data: Epithelial Cells 9

A Main text
A.1 Introduction
A.1.1 Neuron Segmentation Methods
Neuron reconstruction is an instance segmentation problem. Unlike
semantic segmentation, in which the goal is to assign every voxel to
a specific class, instance segmentation assigns all voxels belonging

to the same object a unique label. Since those labels can not
be predicted directly, alternative local representations are sought,
which permit extraction of globally unique labels in a subsequent
processing step.

The most straight forward local representation is to label pixels
as either foreground or background, and then perform a connected
component analysis limited to foreground pixels to extract unique
objects. However, in the case of 3D neuron segmentation this
approach often fails to distinguish voxels in finer neurites, where
the axial resolution of the data is lower (Ciresan et al., 2012). To
deal with those situations, several methods have centered around
the prediction of affinities (i.e., the labeling of edges between
neighboring voxels as “connected” or “cut”), rather than labeling
the voxels themselves (Turaga et al., 2010; Funke et al., 2019).

Affinities effectively increase the resolution of the prediction,
but otherwise inherit the advantages and disadvantages of voxel-
wise boundary labeling: Both can be computed locally during
training and inference, which allows for trivial parallelization.
However, segmentations extracted from those predictions are sen-
sitive to small errors: A few incorrectly assigned voxels (or edges
between voxels) can label a boundary as foreground, resulting in
two segments becoming falsely merged during post-processing.

Those so-called merge errors are the notorious failure modes
of neuron segmentation methods. Merge errors have generally been
considered worse than split errors, since they have the potential to
propagate throughout a dataset. Even if just two neurons are merged
together, the resulting segmentation can be difficult to resolve
for proofreaders, if the neurons in question have several contact
sites. This has been a particular concern for the first generation of
proof-reading tools, which did not provide algorithmic help to split
wrongly merged objects. In those situations, the origin point of a
false merge would first need to be found before the objects can be
separated; a task akin to searching for a needle in a haystack.

To avoid those merge errors, Briggman et al. (2009) intro-
duced Malis, a loss function that penalizes topological errors
by minimizing the Rand Index. The Rand Index naturally favors
split errors over merge errors and thus helped to bias boundary
predictions to split instead of merge in ambiguous situations. Funke
et al. (2019) expanded this method by constraining the loss to a
positive and negative pass, and by providing a maximal spanning
tree formulation of the loss, which allows for a quasi-linear and
exact computation of the loss during training.

More recent methods do not explicitly focus on merge errors,
which is a possible consequence of improved proofreading tools
that allow users to separate objects with just a few interactions. Lee
et al. (2017) found that using an increased affinity neighborhood
acts as an auxiliary learning objective to improve direct neighbor
affinities. This work demonstrates that auxiliary learning helps to
make better use of local context in the receptive field of the neural
network. The nature of this auxiliary learning approach is similar
to the LSDs proposed here.

All affinity-based methods have in common that they need a
subsequent agglomeration step to produce a final segmentation.
Methods such as watershed variants (Wolf et al., 2018) and
constrained agglomeration (Beier et al., 2017) successfully demon-
strated an increase in robustness of the resulting segmentation to
small errors in the predicted affinities.

Not all neuron segmentation methods are based on boundary
predictions. The most notable exception are Flood-Filling Networks
(FFN), the current state of the art in terms of segmentation
quality (Januszewski et al., 2018). FFN eliminated the need for a

2

multi-step segmentation process by using a recurrent convolutional
neural network to fill neurons iteratively in an end-to-end fashion.
Given seed points within neurons, the algorithm predicts which
voxels belong to the same object as the seeds. This approach has
been proven to be successful on very large volumes, although it
is computationally more expensive than its affinity-based counter-
parts.

More recently, another promising alternative to boundary pre-
diction has been proposed by Lee et al. (2021), which uses metric
learning to produce dense voxel embeddings. The embeddings
of voxels that belong to the same object are encouraged to be
close in embedding space, while the embeddings of voxels of
different objects are pushed away from each other. Clustering of the
embeddings then reveals a segmentation. Since object similarity or
dissimilarity can only be discerned locally, the method is applied in
a block-wise fashion and the segmentations of neighboring blocks
are stitched together to process a whole volume.

A.1.2 Contributions
We introduce LSDs as an auxiliary learning task for affinity pre-
dictions and demonstrate that segmentation results are competitive
with the current state of the art, albeit two orders of magnitude more
efficient to compute. LSDs are 10-dimensional vectors, computed
for each voxel, which encode local object properties. We engineered
LSDs to describe features that could be leveraged to improve
boundary detection. Specifically, they consist of three parts: the
local size of the object (1D), the offset to the local center of
mass (3D), and the local directionality (6D) (described in detail
in Methods and Supplementary Section B).

We conducted a large comparative study of recent neuron
segmentation algorithms. Specifically, we evaluated four of the
aforementioned methods against three LSD-based methods on the
following datasets:

• Zebrafinch: A region consisting of ∼106µm3 (∼663 gi-
gavoxels) of songbird neural tissue, imaged using serial block-
face EM at 9x9x20 nanometer (xyz) resolution (Januszewski
et al., 2018). 0.02% of the full dataset was used to train
networks (dense segmentations), 12 manually traced neuron
skeletons (13.5 mm) were used for validation and 50 skeletons
(97 mm) were used for testing.

• Hemi-brain: Three volumes containing ∼1650µm3,
∼4750µm3, and ∼10360µm3 (∼33 total gigavoxels) of raw
data, cropped from the ∼26 teravoxel dataset generated by
Scheffer et al. (2020). This volume was taken from the
central brain of a Drosophila and imaged with FIB-SEM at 8
nanometer isotropic resolution. 0.002% of the data was used
for training (dense segmentation), and 0.06% for testing using
a whitelist of proofread neurons.

• Fib-25: A ∼1.8 × 105µm3 (∼346 gigavoxels) volume from
the Drosophila visual system was imaged with FIB-SEM at
8 nm isotropic resolution (Takemura et al., 2015). 0.09% of
the data was used for training (dense segmentation). Testing
was restricted to a 13.8 gigavoxel region using a whitelist of
proofread neurons.

For each dataset, we compare LSD-based methods against three
previous affinity-based methods: (1) direct neighbor and (2) long-
range affinities with mean squared error (MSE) loss, and (3) direct
neighbor affinities with Malis loss. Each affinity-based method
(including our LSD methods) was trained in the same way and

uses the same network architecture (where possible). We used the
same segmentation extraction method (from Funke et al. (2019)) to
convert the predicted affinities into segmentations.

We further include a comparison against FFN segmentations,
which were made available to us by the authors of Januszewski et al.
(2018).

We make the training scripts and datasets used in this study
publicly available in a central repository1, in the hope that non-
affinity-based methods that we did not cover in this study (like the
recent deep metric learning proposed in Lee et al. (2021)) can be
compared in a similar manner.

We compare the aforementioned methods against three different
architectures that use LSDs as an auxiliary loss: a simple multitask
approach (MtLsd) and two auto-context approaches (AcLsd and
AcRLsd). We summarize those methods briefly in the following,
for a detailed description see Methods.

MtLsd uses a similar strategy to the long-range affinity neigh-
borhood proposed by Lee et al. (2017). The network is taught to
simultaneously predict LSDs and affinities (Figure 1.E).

AcLsd and AcRLsd use an auto-context learning strategy, as
proposed by Tu and Bai (2010). This strategy attempts to refine the
quality of a prediction by using a cascade of predictors. For voxel
classification, for example, the first pass of an auto-context classifier
predicts voxel labels from raw data. The second pass then uses those
predictions from the first pass as input2. We loosely adapted this
idea when designing our auto-context networks. We first taught a
network to predict LSDs from raw EM data. The predicted LSDs
were then passed into a second network in order to learn affinities
(Figure 1.E).

We generally observe an increase in affinity prediction accuracy
when training to predict LSDs in an auxiliary task. This increase is
most noticeable when using an auto-context setup. We evaluated all
methods using two commonly used neuron segmentation accuracy
metrics, Variation of Information (VOI) and Expected Run-Length
(ERL). We generally find on-par performance between LSD-based
methods and FFN under VOI, but inferior scores for LSD-based
methods under ERL.

We further investigated how VOI and ERL relate to proof-
reading effort given the capabilities of contemporary proof-reading
tools (Zhao et al., 2018; Dorkenwald et al., 2022) is a considerably
more reliable proxy for proof-reading effort than ERL (see Figure
4, Supplementary Figure 9, and Discussion). To this end, we
developed a novel metric, the Min-Cut Metric (MCM), to count the
number of split and merge operations needed to correct an automatic
segmentation. We find general ranking agreement between VOI and
MCM, but not between ERL and MCM, which likely stems from
ERL’s sensitivity to merge errors. Our results suggest that VOI can
serve as a proxy to measure proof-reading effort.

A.2 Results
A.2.1 Metrics for Neuron Segmentation
A.2.1.1 Variation of Information (VoI)

A metric to compare clusterings (Meilă, 2007), which became an
established metric to assess neuron segmentation accuracy. VoI
measures the disagreement between two segmentations in terms of
the average number of bits needed to guess the segment ID of a

1https://github.com/funkelab/lsd
2See https://www.ilastik.org/documentation/autocontext/autocontext for a

popular example of this strategy.

3

randomly chosen voxel in one segmentation, given only its label
in the other segmentation. This measurement is performed in both
directions, giving rise to the two additive components of VoI, a
measure for split and merge errors. Lower values are better, with
equivalent segmentations (up to label permutations) having a value
of zero.

A.2.1.2 Expected Run-Length (ERL)

Following the assumption that false merges are in practice harder
to correct than false splits, Januszewski et al. (2018) proposed to
measure accuracy in terms of the Expected Run Length (ERL),
which measures the expected length of an error-free path along
neurons in a volume. Notably, all paths contained in falsely merged
segments are considered erroneous, thus ERL emphasizes merge
errors disproportionally. An appealing aspect of ERL is that it
relates segmentation errors to cable length, a commonly used and
interpretable feature of neurons.

A.2.1.3 Min-Cut Metric (MCM)

A metric that assumes that a user can directly interact with
agglomerated fragments from an oversegmentation. In particular,
we assume that users can split segments by means of a min-
cut through the fragment graph between two selected fragments,
where edge costs correspond to the merge scores used during
agglomeration. In this context, the MCM reports the number of
split and merge operations needed to be performed by a human
annotator to obtain the desired segmentation.

Notably, a merge of two neurons can be resolved with a single
interaction, even if the neurons have several contact sites. The
min-cut solution will identify all necessary cuts to separate the
two selected fragments. For most commonly used agglomeration
algorithms (and the one used here), only one cut is necessary, as
connectivity on the fragment graph is defined by a single linkage
clustering (Funke et al., 2019).

This metric is of practical relevance since min-cuts on fragment
graphs are used to split merged objects in commonly used proof-
reading tools (Zhao et al., 2018; Dorkenwald et al., 2022). The
details of this metric are described in Supplementary Section C.

A.2.2 Datasets
A.2.2.1 Hemi-Brain

The so-called Hemi-brain is a FIB-SEM volume of the Drosophila
melanogaster central brain, imaged at 8nm isotropic resolution
(Scheffer et al., 2020), comprising a total of 26 teravoxels of
image data. We evaluate all investigated methods on regions
restricted to the Ellipsoid Body, a neuropil implicated in spatial
navigation, (Turner-Evans and Jayaraman, 2016), which contained
ample ground-truth data for evaluation.

We used eight volumes of densely annotated ground-truth
volumes containing ∼450µm3 of labeled data for training. Three
RoIs with ∼12µm, ∼17µm, and ∼22µm edge lengths were cropped
from the larger volume, and prediction was done directly on each
RoI.

Supervoxels were limited to the Ellipsoid Body using a mask3

and then agglomerated using the same two merge functions as in
the Zebrafinch dataset.

3Kindly provided by the Janelia FlyEM project team (https://janelia.org/
project-team/flyem)

We produced segmentations for each network over a range
of thresholds on the RoIs, and consolidated a single FFN
segmentation7. A densely labeled ground-truth volume was cropped
and filtered using a list of neuron IDs14 deemed to be completely
traced by expert proofreaders. Since the ground-truth is comprised
of voxel data rather than skeletons, we report only VoI. Further
details can be found in Supplementary Section E.

A.2.2.2 FIB-25

The Fib-25 dataset, produced by Takemura et al. (2015), is another
FIB-SEM volume imaged at 8nm resolution, containing ∼1.8 ×
105µm3 of raw data taken from the Drosophila visual system. Four
volumes with ∼160µm3 of labeled data14 were used for training.

We predicted on the full raw data and then restricted supervoxels
to an irregularly shaped neuropil mask7. Agglomeration was done
in the same fashion as the aforementioned volumes. We created
segmentations in two ways: for the first method, following the
procedure described in Januszewski et al. (2018), we segmented
neurons within the entire neuropil mask. For the second method,
we limited segmentation to two sub-RoIs contained within both the
neuropil mask and testing region (sections 5074–7950). The sub-
RoIs have a size of∼2.2×103µm3 and∼2.6×103µm3, respectively.
For FFN, we cropped the provided segmentation7 and relabeled
connected components.

Evaluation was limited to a list of proofread, voxel ground-
truth labels14 contained inside the testing region. Depending on
the segmentation method, connected components on both ground-
truth and segmentation volumes were either cropped and relabelled
or untouched. Since the ground-truth is comprised of voxel data
rather than skeletons, we report only VoI. Further details can be
found in Supplementary Section E.

A.2.3 Neuron Segmentation Accuracy
A.2.3.1 Hemi-Brain

We observe a similar variability of method rankings over RoI sizes
on the Hemi-brain dataset.

On the largest investigated RoI (22µm edge length), AcLsd
clearly performs best among all affinity-based methods (VoI sum
of 0.307 vs. 0.525 for the second best, see Extended Data Figure
2.C). As such, AcLsd is competitive with FFN (VoI sum 0.279),
with the notable difference of performing more merge errors, but
substantially less split errors than FFN.

On the 17µm RoI, AcLsd again performs better than all other
affinity-based methods and also better than FFN (VoI sum of 0.251
vs. 0.371, see Extended Data Figure 2.B). MtLsd is on par with
AcLsd on this RoI, which stands in contrast to its substantially
worse performance on the 22µm RoI. This observation further puts
into question to what extent the accuracy of a segmentation can be
extrapolated from smaller to larger RoI sizes.

These concerns become even more evident when turning to
the results on the smallest RoI of 12µm edge length. Here, AcLsd
performs worse than all other methods, with a substantial margin
to the best performing method, MtLsd (VoI sum 0.197 vs 0.085).
Even Baseline achieves very good results on this RoI (VoI sum
0.102), although it would be a poor choice in production given its
detrimental performance on the larger RoIs. We have to conclude
that the size of this RoI is likely not large enough to accurately
deduce whether the differences in method performance are due to
model accuracies or data biases.

https://janelia.org/project-team/flyem
https://janelia.org/project-team/flyem

4

A somewhat surprising result is the performance of AcRLsd
on this dataset. Although architecturally very similar to AcLsd
(the only difference is that AcRLsd receives raw data and LSDs
in the second pass, while AcLsd receives only LSDs), AcRLsd is
substantially worse on the two larger RoIs. This stands in contrast
to the results we obtained on the Zebrafinch dataset. Our results
do not allow us to say with confidence whether this artifact is
due to overfitting to the training data (which might be more likely
to happen for AcRLsd) or due to model noise introduced by the
random initialization during training.

A.2.3.2 FIB-25

We first evaluated all methods on the full testing RoI of the Fib-25
dataset (Extended Data Figure 2.D). On the full RoI, LSDs generally
do not perform well. We observe that the best auto-context method
(AcLsd) performs worse than the Baseline (VoI sum 1.413 vs
1.355). MtLsd achieves higher accuracy than both auto-context
networks. FFN exceeds all other methods (VoI sum 1.056)4, and
Malis is not far behind (VoI sum 1.061). Since those results are
not consistent with the results seen on the Zebrafinch and Hemi-
brain volumes, we visually inspected the segmentations. We found
a high rate of false merges occurring in the periphery of the testing
RoI, stemming from nuclei and boundaries of the imaged volume,
which are not contained in the training data. As such, the full testing
RoI of this dataset favors “conservative” methods, i.e., methods that
have higher split rates.

To test the plain neuropil segmentation accuracy, we further
cropped two RoIs (∼2.2 × 103µm3 and ∼2.6 × 103µm3) inside
the testing region, such that they contain only dense neuropil (see
Supplementary Section E.3.3 for details).

On the two sub RoIs, LSDs outperform other affinity-based
methods and are comparable to FFN, (Extended Data Figure 2.E,F).
Consistent with the Zebrafinch and Hemi-brain results, using an
auto-context approach seems to generate the best results. On sub
RoI 1, AcLsd slightly exceeds the accuracy of FFN (VoI sum:
0.625 vs 0.700, respectively). We observe similar results on sub
RoI 2 (VoI sum: 0.761 vs 0.780, respectively).

These results highlight the need for masking neuropil when
processing large volumes, as was done in the Zebrafinch dataset.
LR affinities perform poorly across RoIs, which might suggest that
an increased affinity neighborhood is sometimes not sufficient for
improving direct neighbor affinities.

A.3 Discussion
A.3.1 Metric Evaluation
An important but challenging task is finding a robust metric for
assessing the quality of a neuron segmentation. Ideally, such a met-
ric reflects the amount of time needed to proofread a segmentation.
Here, we presented results in terms of VoI and ERL, two commonly
used metrics for this task.

VoI directly reports the amount of split and merge errors. Being
a voxel-wise metric, however, VoI can be sensitive to slight, but
systematic, shifts in boundaries. At the same time, small topological
changes might go unnoticed, which is especially problematic in fine
neurites in the vicinity of synapses (Funke et al., 2017).

ERL reports the expected error-free path-length of a reconstruc-
tion with respect to skeleton ground-truth. Similar to VoI, ERL

4The authors of Januszewski et al. (2018) report a VoI split of 0.8837. While
we were able to replicate the reported VoI merge score of 0.053, we found VoI
split to be 1.003.

is not sensitive to small topological changes close to terminals.
Furthermore, ERL disproportionately punishes merge errors and
subsequently favors split-preferring methods, explained in Results
(Plaza and Funke, 2018). Additionally, we found that ERL increases
non-monotonically with varying volume sizes (Figure 4.B), which
is due to the fragmentation of skeletons in volumes that are not
large enough to contain entire neurons.

Consequently, neither method directly reflects the labor required
for proofreading a segmentation, which is arguably the relevant
quantity to optimize (Plaza, 2016; Funke et al., 2017). This quantity
depends on the available tools for proofreading, and in particular
on the amount of interactions needed to fix errors of different
kinds: False splits might be hard to find, but do require only one
interaction to merge. False merges, on the other hand, might be easy
to spot, but the number of interactions needed to fix them depends
greatly on the proofreading tool. Current proofreading tools (Zhao
et al., 2018; Dorkenwald et al., 2022) allow annotators to correct
merge errors with a few interactions. We therefore introduced the
MCM, a metric which uses graph cuts to emulate the amount of
interactions required to correct false merges in a segmentation. We
observed a linear growth of MCM with volume size (Figure 4.D),
which is a necessary condition for neuron segmentation metrics
that measure the amount of proofreading effort needed (assuming
an equal distribution of errors).

Unfortunately, MCM is computationally quite expensive. The
sequence of graph-cuts needed for the evaluation of merge errors
quickly becomes infeasible on large volumes. However, MCM
shows general ranking agreement with VoI, evaluated on 11 ran-
domly sampled sub-RoIs in Zebrafinch (Supplementary Figure 4)
and across different thresholds (Supplementary Figure 7). These
findings suggest that VoI can serve as a reasonable proxy to rank
methods based on their expected proofreading time.

Additionally, we find VoI to be a robust metric for the val-
idation of method parameters: For each affinity-based network,
the threshold minimizing VoI sum on the validation set is also
close to the best threshold on the testing set (Supplementary
Figure 5). This property is of practical relevance, as in any real-
world scenario hyperparameters have to be adjusted on a volume
that is substantially smaller than the target volume. Unfortunately,
ERL does not seem to exhibit this property to the same degree: the
best validation thresholds gradually diverge from the best testing
thresholds as scale increases (Supplementary Figure 6), which
makes it difficult to extrapolate segmentation accuracy from a
validation dataset.

A.3.2 Auxiliary Learning for Boundary Prediction

Surprisingly, we see that LR affinities do not perform as well
across the investigated datasets. While LR affinities share some
of the benefits of LSDs, they might not be as efficient as LSDs
in encoding higher-level features. For example, LR affinities have
blind spots (missing neighborhood steps), whereas LSDs are
spatially homogeneous. Additionally, we found LR affinities to be
detrimental when used with masking of glia and other structures.
It is likely harder to correlate nearest neighbor affinities with a
long-range neighborhood in the presence of masks.

While Lee et al. (2017) saw superhuman accuracy using an
increased affinity neighborhood on the SNEMI3D challenge, the
processed volume was relatively small (∼110µm3). Our results
suggest that it is hard to correlate accuracy on small volumes to

5

accuracy on large volumes (Figure 1.A)5. Additionally, we only
consider an increased affinity neighborhood and not other aspects
of the original LR implementation, such as residual modules in
the U-Net and inference blending, which might be essential for
further performance increases. Finally, the SNEMI3D dataset has
an anisotropy factor of ∼5, whereas the data we test on here has an
anisotropy factor of either ∼2 (Zebrafinch) or is isotropic (Hemi-
brain, Fib-25).

A.3.3 Auto-Context Refinement
It remains unclear whether auto-context is always necessary. While
it does consistently yield optimal results on large datasets, it
is likely unnecessary for small to intermediate sized volumes,
due to the increase in computation. Since the MtLsd network
still offers improved accuracy over Baseline affinities on every
investigated dataset, it is probably sufficient in the majority of cases.
In this context, a multi-task network can be considered the default
configuration while an auto-context approach should be considered
in complex cases where the former would otherwise fail. As always,
the optimal solution would ideally be chosen based on an available
validation set, as was done for the Zebrafinch.

A.3.4 Masking
In addition to using masks during post-processing, masking of
irrelevant structures can be incorporated in the training process.
The Zebrafinch training volumes already had some glial processes
masked out. We trained all networks to predict zero affinities in
these regions (see Supplementary Figure 12 for a visualization). We
then discarded fragments with close to zero affinity values during
agglomeration. Methods which succeeded in learning to mask these
areas (Baseline, MtLsd, AcLsd, AcRLsd) produced better results
than those that did not (Malis, LR).

A.4 Conclusions and Future Directions
Although adding LSDs as an auxiliary learning task substantially
increases accuracy, it is unclear whether different shape descriptors
could lead to further improvements. The LSDs proposed here were
subjectively engineered based on features that we expected to
be important to encode object shape. Future experiments could
incorporate different features or focus on learning an optimal
embedding rather than a hand-designed one. In that context, we note
that it is not clear whether each component of the LSD embedding
contributes equally to the improvement of affinity predictions.

Currently, we only use LSDs as an auxiliary learning task.
As a result, affinities are still required to produce a segmentation.
Whether this is really needed is an open question, since the pre-
dicted LSDs already identify objects reliably. An interesting future
direction would be to use the predicted local shape information
directly for fragment agglomeration. As an intermediate step, LSDs
can serve to provide a second source of information for identifying
errors in a segmentation. Once a segmentation is generated, LSDs
could be calculated on the labels and then compared with the initial
LSD predictions. The difference between the two would likely
highlight regions containing errors (Supplementary Figure 16.C).

LSDs were designed for the goal of neuron segmentation but
might also be applicable to other instance segmentation problems.
As an example, we found that the LSDs improve segmentations on
plant epithelial cells (Supplementary Figure 16.E, Supplementary

5Also shown by the authors of Januszewski et al. (2018) in supplementary
tables 4 and 5.

Table 8) and perform well on cell bodies and mitochondria (Sup-
plementary Figure 16.A,B). Since the LSDs are computed inside a
Gaussian constrained to each object, the vectors allow for smooth
transitions on both spherical and elongated shapes. In general, we
believe that objects that have a blob-like structure such as other
organelles and various cell types would likely benefit from LSDs.
Furthermore, the direction vectors of the LSDs provide insight into
neuropil vs. tract regions of the brain (Supplementary Figure 16.D).
These predictions could be leveraged in order to generate better
tissue masks. While the LSDs presented here were conceived for a
specific instance segmentation task, it would be interesting to see
the LSDs extended and applied to other microscopy problems.

B Local Shape Descriptors

We define the notational shorthand

f𝑖𝑘 (𝑣) = 𝑣𝑘 b𝑖 (𝑣) 𝑘 ∈ {𝑥, 𝑦, 𝑧} (1)
f𝑖𝑘𝑙 (𝑣) = 𝑣𝑘𝑣𝑙 b𝑖 (𝑣) 𝑘, 𝑙 ∈ {𝑥, 𝑦, 𝑧}, (2)

and use those to rewrite

m𝑖
𝑘
(𝑣) =

(
𝑣𝑘 b𝑖 ∗w

) (𝑣)(
b𝑖 ∗w

) (𝑣) 𝑘 ∈ {𝑥, 𝑦, 𝑧}

c𝑖
𝑘𝑙
(𝑣) =

(
𝑣𝑘𝑣𝑙 b𝑖 ∗w

) (𝑣)(
b𝑖 ∗w

) (𝑣) − m𝑖
𝑘
(𝑣) m𝑖

𝑙
(𝑣) 𝑘, 𝑙 ∈ {𝑥, 𝑦, 𝑧}

(3)
as follows:

m𝑖
𝑘 (𝑣) = (f𝑖𝑘 ∗w) (𝑣)/s𝑖 (𝑣) 𝑘 ∈ {𝑥, 𝑦, 𝑧} (4)

c𝑖𝑘𝑙 (𝑣) = (f𝑖𝑘𝑙 ∗w) (𝑣)/s𝑖 (𝑣) − m𝑖
𝑘 (𝑣) m𝑖

𝑙 (𝑣) 𝑘, 𝑙 ∈ {𝑥, 𝑦, 𝑧}. (5)

It can be seen that (4) is equal to the local center of mass, limited
both by the object mask b and the local window w:

m𝑖
𝑘 (𝑣) = (f𝑖𝑘 ∗w) (𝑣)/s𝑖 (𝑣)

=
1

s𝑖 (𝑣)
∑︁
𝑣′∈Ω

f𝑖𝑘 (𝑣′) w(𝑣 − 𝑣′)

=
1

s𝑖 (𝑣)
∑︁
𝑣′∈Ω

𝑣′𝑘 b𝑖 (𝑣′) w(𝑣 − 𝑣′)

Similarly, the computation of the local covariance of voxel coor-
dinates is equivalent to a convolution of the local window w with
f𝑖𝑘𝑙 (𝑣). The local covariance is defined as:

c𝑖𝑘𝑙 (𝑣) =
1

s𝑖 (𝑣)
∑︁
𝑣′∈Ω

(𝑣′𝑘 − �̄�𝑘) (𝑣′𝑙 − �̄�𝑙) b𝑖 (𝑣′) w(𝑣 − 𝑣′)

=
1

s𝑖 (𝑣)
∑︁
𝑣′∈Ω

(𝑣′𝑘 − m𝑖
𝑘 (𝑣)) (𝑣′𝑙 − m𝑖

𝑙 (𝑣)) b𝑖 (𝑣′) w(𝑣 − 𝑣′)

=
1

s𝑖 (𝑣)
∑︁
𝑣′∈Ω

(
𝑣′𝑘𝑣

′
𝑙 − 𝑣′𝑘 m𝑖

𝑘 (𝑣) − 𝑣′𝑙 m𝑖
𝑘 (𝑣) + m𝑖

𝑘 (𝑣) m𝑖
𝑙 (𝑣)

) ·
· b𝑖 (𝑣′) w(𝑣 − 𝑣′)

6

Rearranging terms reveals that c𝑖
𝑘𝑙
(𝑣) can efficiently be computed

via a convolution as well:

c𝑖𝑘𝑙 (𝑣) =
1

s𝑖 (𝑣)

(∑︁
𝑣′∈𝑣

𝑣′𝑘𝑣
′
𝑙 b𝑖 (𝑣′) w(𝑣 − 𝑣′)−

m𝑖
𝑙 (𝑣)

∑︁
𝑣′∈𝑣

𝑣′𝑘 b𝑖 (𝑣′) w(𝑣 − 𝑣′)−

m𝑖
𝑘 (𝑣)

∑︁
𝑣′∈𝑣

𝑣′𝑙 b𝑖 (𝑣′) w(𝑣 − 𝑣′)+

m𝑖
𝑘 (𝑣) m𝑖

𝑙 (𝑣)
∑︁
𝑣′∈𝑣

b𝑖 (𝑣′) w(𝑣 − 𝑣′)
)

c𝑖𝑘𝑙 (𝑣) =
1

s𝑖 (𝑣)

(∑︁
𝑣′∈𝑣

𝑣′𝑘𝑣
′
𝑙 b𝑖 (𝑣′)︸ ︷︷ ︸

f𝑖
𝑘𝑙
(𝑣′)

w(𝑣 − 𝑣′)−

m𝑖
𝑙 (𝑣) (f𝑖𝑘 ∗w) (𝑣)︸ ︷︷ ︸

m𝑖
𝑘
(𝑣) s𝑖 (𝑣)

−

m𝑖
𝑘 (𝑣) (f𝑖𝑙 ∗w) (𝑣)︸ ︷︷ ︸

m𝑖
𝑙
(𝑣) s𝑖 (𝑣)

+

m𝑖
𝑘 (𝑣) m𝑖

𝑙 (𝑣) s𝑖 (𝑣)
)

=
1

s𝑖 (𝑣)

(
(f𝑖𝑘𝑙 ∗w) (𝑣) − s𝑖 (𝑣) m𝑖

𝑙 (𝑣) m𝑖
𝑘 (𝑣)

)
=(f𝑖𝑘𝑙 ∗w) (𝑣)/s𝑖 (𝑣) − m𝑖

𝑙 (𝑣) m𝑖
𝑘 (𝑣)

C Min-Cut Metric
The Min-Cut Metric (MCM) measures the number of edit op-
erations that need to be performed by a human annotator in a
hypothetical proofreading tool that allows to: (1) merge wrongly
split segments and (2) split wrongly merged segments by means of
a min-cut6. To this end, we assume that the segmentation to interact
with results from an agglomeration of fragments (or “supervoxels”).
In particular, we assume that a fragment graph 𝐺 = (𝑉, 𝐸, 𝑠) is
available, where each node 𝑣 ∈ 𝑉 corresponds to a fragment and
edges (𝑢, 𝑣) ∈ 𝐸 are introduced between neighboring fragments.
Each edge 𝑒 ∈ 𝐸 has an associated merge score 𝑠(𝑒), which denotes
under which agglomeration threshold the two incident fragments
are to be merged into the same segment. A segmentation of the
fragment graph is induced by a merge score threshold 𝜃. Let
𝐸𝜃 = {𝑒 ∈ 𝐸 | 𝑠(𝑒) ≤ 𝜃} be the set of filtered edges. Each
connected component in the graph 𝐺 𝜃 = (𝑉, 𝐸𝜃) then corresponds
to one segment. We will refer to the segment ID of a fragment under
a given threshold 𝜃 as 𝑙𝜃 (𝑣).

For the MCM metric, we assume ground-truth is available in
the form of skeletons. Let 𝑇 be the set of ground-truth skeletons,
with each 𝑡 ∈ 𝑇 being a set of skeleton nodes. We will refer to
the skeleton ID of a skeleton node 𝑎 as 𝑠(𝑎) and the fragment
underlying the skeleton node as 𝑙𝜃 (𝑎).

Given a segmentation 𝑙𝜃 , MCM first simulates the splitting of all
wrongly merged structures as given by ground-truth skeletons. For
that, we first identify merging segments, i.e., segments that contain
nodes from more than one skeleton. For each merging segment, we
iteratively perform a series of min-cuts through the fragment graph,

6Also referred to as “cleaving”.

until the skeletons are separated. For that, we repeatedly find a pair
of skeleton nodes 𝑎 and 𝑏, such that

1) 𝑠(𝑎) ≠ 𝑠(𝑏) (the skeleton nodes belong to different skeletons),
2) 𝑙𝜃 (𝑎) = 𝑙𝜃 (𝑏) (the underlying fragments belong to the same

segment), and
3) the Euclidean distance between 𝑎 and 𝑏 is minimized.

We then perform a min-cut on the fragment graph, with 𝑢 and
𝑣 as the source and sink, respectively, and the capacity 𝑐(𝑒) of
edges 𝑒 in the fragment graph set proportional to −𝑠(𝑒), such that
edges with a high merge score are cheaper to cut. Once the min-
cut is found, all edges of the cut are removed from 𝐸𝜃 and the
segmentation is updated accordingly. For a visualization of this
procedure, see Extended Data Figure 1.A. This procedure aims
to mimic a proofreader, who identified a merge and consequently
picked two close locations on either side of the merge to perform a
split operation.

In some cases, a min-cut can fail to separate all nodes of the
merged skeletons with a single cut from two selected nodes. In this
case, the procedure is repeated until all skeletons are separated,
leading to additional split errors (see Extended Data Figure 1.B for
an example).

After all skeletons are separated, the remaining split errors are
counted. For that, we assume that each split requires one merge
operation to be fixed. More generally, we identify the segments
underlying each skeleton 𝑡: Let 𝐿 (𝑡) = {𝑙𝜃 (𝑎) | 𝑎 ∈ 𝑡} be the set
of segments underlying a skeleton. The number of required merge
operations is then recorded as 1 − |𝐿 (𝑡) |.

D Zebrafinch
D.1 Training
D.1.1 Data
33 volumes of densely labeled neurons7 were used for training.
Each volume was padded with raw data. 30 volumes had raw
dimensions of ∼7, 4.95, 4.95µm (zyx) and label dimensions of
∼3, 1.35, 1.35µm. The remaining 3 volumes had raw dimensions of
∼6.6, 5.9, 5.9µm and label dimensions of ∼2.6, 2.3, 2.3µm. Some
regions containing glial processes were already set to zero and
incorporated during network training (Supplementary Figure 11.A).
A labels mask (1 inside labels RoI, null outside) was generated and
used during training.

D.1.2 Networks
All methods used the U-Net architecture described in Funke et al.
(2019). Networks consisted of three layers and were downsampled
by a factor of [1,3,3] in the first two layers and [3,3,3] in the last
layer. The reverse was done for the upsampling path. 12 initial
feature maps were used and features were multiplied by a factor of 5
between layers. The resulting data was further convolved and passed
through a sigmoid activation to get from 12 output feature maps8 to
either 3 (affinities) or 10 feature maps (LSDs). All networks used an
MSE loss, minimized with an Adam optimizer. The Malis network
was trained to 10k iterations using MSE to initialize affinities and
was then switched to Malis loss for the remainder of training.

Non auto-context networks had an input shape (raw) of
[84,268,268] and output shape (labels, LSDs, affinities) of
[48,56,56] (voxels, zyx). Auto-context networks had an input

7Kindly provided by the authors of Januszewski et al. (2018)
8MtLsd network had 14 output feature maps to account for 13 final feature

maps from the affinities (3) and LSDs (10)

7

shape (raw) of [120,484,484], an intermediate shape (predicted
LSDs) of [84,268,268], and an output shape (labels, affinities) of
[48,56,56] (see Supplementary Figure 13.A for visualization of
auto-context training shapes on Fib-25). The predicted LSDs used
in the intermediate shape were taken from a pre-trained network
which predicted LSDs from raw. Non auto-context networks were
trained to 400k iterations. Auto-context networks were trained to
∼200k iterations following the 400k iterations of LSD training. See
Supplementary Table 9 for a breakdown of the MtLsd network as
an example.

All networks used a single voxel affinity neighborhood [1,1,1].
The LR network used three additional neighborhood steps of
[3,3,3], [5,9,9] and [15,27,27]. The computed LSDs used a sigma
of 120 nm and a downsampling factor of two.

D.1.3 Pipeline
Each training batch was randomly picked from one of the 33 training
volumes. For each batch, the raw data was first normalized and
padded with zeros. Labels were padded with the maximum padding
required to contain at least 50% of ground-truth data assuming a
worst case rotation of 45◦. Data was randomly sampled from each
dataset using a labels mask to ensure every batch contained at least
50% of ground-truth data. Data was then augmented with elastic
transformations, random mirrors + transposes, and intensities (see
Supplementary Table 9 for augmentation hyper-parameters used for
example MtLsd network). The following was done to the respective
networks:

• Baseline, LR - Label boundaries were first eroded by a single
voxel. Ground truth affinities were calculated on the labels
using the pre-defined affinity neighborhoods and a scale array
was created to balance loss between class labels. Training:
[raw + gt affs] → pred affs.

• Malis - Label boundaries were eroded. If training loss was in
Malis phase (i.e. after 10k iterations), connected components
were relabelled before calculating ground-truth affinities. If
training loss was in MSE phase (i.e. before 10k iterations),
labels were subsequently balanced. Training: [raw + gt affs]
→ pred affs.

• LSDs - Ground truth LSDs were calculated on the labels using
the pre-defined sigma and downsampling factor. Training: [raw
+ gt LSDs] → pred LSDs.

• MtLsd - Label boundaries were eroded. Ground truth LSDs
were calculated followed by ground-truth affinities. Labels
were then balanced. Training: [raw + gt LSDs + gt affs] →
[pred LSDs + pred affs].

• AcLsd, AcRLsd - Label boundaries were eroded, ground-
truth affinities were calculated, and labels were balanced.
LSDs were then predicted in a slightly larger region and used as
input to train the affinities. Training: [raw + gt LSDs] → pred
LSDs → pred affs. For AcRLsd, cropped raw was incorporated
in the second pass, in addition to predicted LSDs.

This process was repeated for a pre-defined number of iterations
(generally until loss convergence).

D.2 Prediction
Prediction was done in a block-wise fashion restricted to the
Benchmark Roi. Individual workers used Gunpowder9 to predict

9http://funkey.science/gunpowder

output data (i.e. affinities or LSDs) and were distributed throughout
the volume with DaisyNguyen et al. (2022). Block size was chosen
with respect to how much data could fit in GPU memory. Most
networks had a smaller block size in order to fit on 2080 RTX GPUs
(∼12 GB RAM). While this increased the total number of blocks
to process, the amount of workers available to use was sufficient
to minimize total processing time. The auto-context networks were
too large to fit on 2080 RTX GPUs and were therefore run on Tesla
V100 GPUs. While there were less V100’s available, the block
size could be greatly increased (∼32 GB RAM), decreasing the
total amount of blocks to process. LSDs were physically written
to file before use in the auto-context networks. This was done for
visualization; prediction could be adapted to generate LSDs on the
fly. All networks wrote affinities to file and then subsequently used
them for segmentation.

D.3 Segmentation
D.3.1 Watershed
Seeded watershed10 was done on the affinities generated during
prediction. Both non-masked and neuropil-masked supervoxels
were produced. Due to data anisotropy, supervoxels were extracted
for each section separately. An epsilon agglomeration was used
to agglomerate fragments to a predefined threshold (0.1). This
was done to decrease the number of RAG nodes during the full
agglomeration step. Supervoxels which had an average affinity value
lower than a pre-defined threshold (0.05) were filtered out of the
RAG and set to zero in the resulting datasets. A block size of 3.6µm3

and context of [12,27,27] voxels (zyx) were used.

D.3.2 Agglomeration
Supervoxels were agglomerated using hierarchical region
agglomeration10 in which edges with lower affinity scores are
merged earlier. We empirically chose to use both 50 and 75 quantile
merge functions since they produced the best results in Funke et al.
(2019). The same block size and context as watershed were used.

D.3.3 Segment
The center point of the Benchmark Roi was used to grow sub
RoIs. The first sub RoI was created by growing the center point
in each dimension (positive and negative) by the block size used
during watershed and agglomeration. This resulted in 10.8µm edge
lengths (3.6µm + (3.6 x 2)). This RoI was again grown by the
block size to produce an RoI with 18µm edge lengths (10.8µm +
(3.6 x 2)). This was repeated for a total of 10 RoIs (in addition to
the Benchmark Roi). Segmentations were created for each RoI by
cropping the RAG and relabelling connected components on the
graph11. This was done over a range of thresholds for each network
(threshold range = [0 - 1], step size = 0.02, total thresholds = 50).
Segmentations were created for both masked and non-masked data
and both merge functions.

D.4 Evaluation
Manually traced skeletons7 (12 validation, 50 testing) were used
for evaluation. For each sub RoI, skeletons were cropped, either
masked to neuropil or not masked, and connected components were
relabelled11. For affinity-based methods, fragment ids were first
mapped to skeleton ids in each block. This mapping was then used

10https://github.com/funkey/waterz
11https://github.com/funkelab/funlib.segment

http://funkey.science/gunpowder
https://github.com/funkey/waterz
https://github.com/funkelab/funlib.segment

8

to assign segment ids to skeleton ids for each threshold, using the
lookup tables generated in Supplementary Section D.3.3. A site
mask was used to restrict segments to the skeleton nodes. The
resulting node - segment mapping was used to compute12 ERL,
NERL and VoI.

Additionally, on the first three sub RoIs, the MCM was cal-
culated using masked skeletons and segmentations. For the FFN,
a single segmentation7 was used to generate the node - segment
mappings. The full segmentation was downloaded13 and cropped
to each sub RoI, either masked or not masked, and connected
components were relabelled. Only ERL, NERL and VoI were
calculated as there were no supervoxels to use for the MCM. For all
affinity-based methods, we repeated these steps using the validation
skeletons on the benchmark RoI. The optimal thresholds indicated
in test set plots were determined by the thresholds which minimized
VoI (for VoI and MCM plots) and maximized ERL (for ERL plots).

E FIB-SEM volumes

E.1 Training

E.1.1 Data

Hemi-brain: 8 volumes of densely labeled neurons14 were used for
training. Volumes were taken from various neuropils15 contained
within the dataset generated in (Scheffer et al., 2020). The Lobula
Plate and Lateral Horn volumes contained ∼4µm3 of raw data
and ∼2µm3 of labeled data, while the others contained ∼6µm3 of
raw data and ∼4µm3 of labeled data (Supplementary Figure 11.B).

Fib-25: 4 volumes of densely labeled neurons14 were used for
training. The labels were not padded with raw as was done in the
Zebrafinch and Hemi-brain volumes. Two volumes contained
∼4µm3 of raw / labeled data, and two volumes contained 2µm3 of
raw / labeled data (Supplementary Figure 11.C). Label masks were
generated for all volumes, as done in the Zebrafinch.

E.1.2 Networks

Networks consisted of same architecture as Zebrafinch networks
except downsampling was isotropic with a factor of [2,2,2] in the
first two layers and [3,3,3] in the last layer. Features were multiplied
by a factor of 6 between layers.

Non auto-context networks had an input shape (raw) of
[196,196,196] and output shape (labels, LSDs, affinities) of
[92,92,92]. Auto-context networks had an input shape (raw)
of [304,304,304], an intermediate shape (predicted LSDs) of
[196,196,196], and an output shape (labels, affinities) of [92,92,92].
Non auto-context networks were trained to 400k iterations. Auto-
context networks were trained to ∼300k iterations following 400k
iterations of LSD training. See Supplementary Table 10 for a
breakdown of the MtLsd network as an example.

All networks used a single voxel affinity neighborhood [1,1,1].
The LR network used three additional neighborhood steps of
[3,3,3], [5,5,5] and [13,13,13]. The computed LSDs used a sigma
of 80 nm and a downsampling factor of two.

12https://github.com/funkelab/funlib.evaluate
13https://github.com/seung-lab/cloud-volume
14Kindly provided by the Janelia FlyEM project team (https://janelia.org/

project-team/flyem)
15Ellipsoid Body: 2, Protocerebral Bridge: 2, Fan-Shaped Body: 2,

Lobula Plate: 1, Lateral Horn: 1

E.1.3 Pipeline

All networks were trained following the same pipeline as the
Zebrafinch networks using either 8 (Hemi-brain) or 4 (Fib-
25) ground-truth volumes. The augmentations were computed
isotropically, in contrast to the Zebrafinch networks (see Sup-
plementary Table 10 for augmentation hyper-parameters used for
example MtLsd network). For Fib-25 training, affinities and LSDs
were masked at the boundaries to ensure that prediction on the
irregularly shaped Fib-25 volume did not include boundary artifacts
(Supplementary Figure 13.B).

E.2 Prediction

For the Hemi-brain, prediction was restricted to the three RoIs
described in Section A.2.2.1. For Fib-25, prediction was done on
the full Fib-25 volume (including the background). The process
was the same as in the Zebrafinch.

E.3 Segmentation

E.3.1 Watershed

Fragment extraction was performed isotropically and used no
epsilon agglomeration step or mean affinity filtering, in contrast to
the Zebrafinch. A block size of 3µm3 and context of 31 voxels were
used. For the Hemi-brain, watershed was done on each predicted
RoI and restricted using an Ellipsoid Body mask14. For Fib-25,
an irregularly shaped tissue mask7 was used16.

E.3.2 Agglomeration

Agglomeration was done using the same merge functions on the
Zebrafinch. The same block size and context from watershed
were used.

E.3.3 Segment

For the Hemi-brain, segmentations were created for the three
processed RoIs. For Fib-25, segmentations were created for the
full Fib-25 RoI and two sub RoIs. The same threshold range from
the Zebrafinch was used.

E.4 Evaluation

Hemi-brain: dense ground-truth14 and an FFN segmentation7

were available for the entire Hemi-brain. Both volumes were
downloaded17

,
18 and cropped to the three established RoIs. The

cropped datasets were then constrained to the Ellipsoid Body. The
ground-truth was filtered using a whitelist of proofread ids. Con-
nected components were relabelled and boundaries were slightly
eroded. Fib-25: dense ground-truth14 and an FFN segmentation7

were already cropped to the testing RoI. The ground-truth was
already filtered with a whitelist and boundaries were already eroded.
Both volumes were further cropped to the two sub RoIs and
connected components were relabelled. For affinity-based methods,
VoI was calculated between the consolidated ground-truth and
segmentations over all thresholds on each RoI. For the FFN, VoI
was calculated on the single segmentation for each RoI.

https://github.com/funkelab/funlib.evaluate
https://github.com/seung-lab/cloud-volume
https://janelia.org/project-team/flyem
https://janelia.org/project-team/flyem

9

F Throughput
For each affinity-based network, we calculated the amount of
floating point operations (FLOPs) for the processing of one block19

using TensorFlow’s Profiler20 (see Supplementary Table 11 for
a breakdown by operation). From the computed FLOPs and the
block size, we derived FLOPs/µm. For FFN, FLOPs are reported
for the full Zebrafinch RoI in Januszewski et al. (2018), which we
divided by the full RoI volume to get FLOPs/µm.

We chose to use FLOPs rather than runtime to evaluate the
computational cost of each method. The runtime for affinity based-
methods is likely to be a noisy measurement because it does not
consider data input/output (I/O). For each block, data loading
is first done on the CPU before being transferred to the GPU,
making the throughput dependent on factors such as chunk size
and compression. Runtime is also likely dependent on factors
relating to a given compute cluster (such as the file system and
networking). A lot more effort could be spent on optimizing the
runtime performance, and it is not clear how much effort was spent
on optimizing FFN in this regard. FLOPs therefore provides a more
reliable readout of computational performance when considering
the operations required for each method. For the processing of
future petabyte-sized datasets, it will be imperative to optimize for
both network architecture and data I/O.

G Extended Experiments
G.1 Serial Section Data (ssTEM)
To test the efficacy of LSDs on both ssTEM and mouse neural tissue,
we used the publicly available data from (Microns Consortium et al.,
2021). To train the networks, we used 38 volumes (∼908µm3 total,
∼24µm3 average) taken from three datasets (Basil, Minnie, Pinky).
Several volumes were excluded from training and testing due to
overlap. The volumes were either imaged at 40x4x4 or 40x8x8
nanometer resolution (zyx). We therefore chose to downsample
volumes by a factor of 2 laterally to ensure consistency. Networks
were trained similarly to the Zebrafinch networks with added
missing and shifted section augmentations.

Due to the anisotropy of the data and valid padding of the
networks, we opted to use 2D convolutions in the lowest level of the
U-Net. We trained Baseline, LR, MtLsd, AcLsd, and AcRLsd
networks and omitted Malis following the results on the block
face datasets. A foreground mask was provided (zero in missing
or broken sections) and used to ensure that predictions persisted
through these regions.

Evaluation was done on 4 test volumes (∼232µm3 total,
∼58µm3 average). Watershed and agglomeration was done similarly
to the Zebrafinch (with the exception of a neuropil mask).
Ground truth neurons were relabelled between missing sections
to gauge neuropil performance since we did not engineer ssTEM-
specific preprocessing (improved alignment, duplicated section
augmentations, etc.)

Our results suggest that the LSDs also work well on serial
section data and would likely benefit from the same processing as
other methods. They look qualitatively reasonable (Supplementary
Figure 1) and when considering pure neuropil, they seem to

16Mask contains some background and cell bodies
17https://github.com/janelia-flyem/dvid
18https://github.com/janelia-flyem/neuclease
19One block is defined as the largest output volume that can be predicted by

a network in one pass on the respective GPU it was evaluated on.
20https://www.tensorflow.org/guide/profiler

outperform baseline methods (Supplementary Table 6). Consistent
with the other datasets, using an autocontext network produces
the highest accuracy (AcLsd VoI of 0.639). Due to the small size
of these datasets, it is difficult to extrapolate accuracy to larger
volumes but we expect that the LSDs would generally help to
improve Baseline affinities.

G.2 Ablations
In order to see how important each component of the LSDs is,
we ran an ablation experiment in which we limited the embedding
to each possible combination of components for both an MtLsd
network and AcLsd network. Networks were trained on the Hemi-
brain training data and tested on the 12 µm RoI.

We expected that the MtLsd networks would not be sub-
stantially affected by removing components since they still learn
the affinities in the same pass. We found that to generally be
true, with the results not indicative of a single superior and
inferior combination (Supplementary Table 7). Conversely, we
hypothesized that the AcLsd networks would be highly dependent
on which components of the LSDs were fed into the second pass.
We found that, generally speaking, any combination of LSDs will
generate reasonable results but using only the size component as
input to the second pass produces poor results (Supplementary
Table 7). This is illustrated in Supplementary Figure 2, where it
is clear that the affinities and subsequent segmentations do benefit
from a combination of components that is not limited to the size of
the neural process. It is also not clear how much the numbers are
due to random training noise.

G.3 Non-EM Data: Epithelial Cells
We tested the LSDs on the publicly available plant epithelial ovule
dataset from Wolny et al. (2020). We used 20 volumes for training
(∼6706µm3 total, ∼335µm3 average). All volumes were cropped in
the z dimension to sections that contained labels (i.e, volume ends
that were completely background were removed). We implemented
networks as done for the ssTEM extended experiment, but found
results to be poor when using hierarchical agglomeration due to
the challenging nature of the data. To overcome this, we decided
to use the mutex watershed (Wolf et al., 2018). To this end, we
did not consider Baseline affinities since a long range affinity
neighborhood is required for the mutex watershed. Additionally,
we found MtLsd results using a long range affinity neighborhood
to be qualitatively poor, likely due to the network trying to learn
too much simultaneously.

We therefore limited our evaluation to LR affinities as a baseline,
and an AcLsd network. In contrast to the Zebrafinch, Fib-
25, and Hemi-brain experiments, our long range neighborhood
also consisted of diagonal affinities as they are useful for the
mutex watershed. We used 7 volumes for testing (∼2466µm3 total,
∼352µm3 average). Following the mutex watershed, we filtered out
small objects (500 voxels minimum size) and expanded the labels
to fill the intermediate space between objects. Since some of the
ground truth was not fully labeled, we restricted our segmentations
to a foreground mask generated from the ground truth. Finally,
we relabelled connected components. Results suggest that the
LSDs are useful for non-EM data, and seem to work especially
well when combined with the mutex watershed (Supplementary
Table 8), a promising indication for future work. The results are
also qualitatively appealing (Supplementary Figure 16.E).

https://github.com/janelia-flyem/dvid
https://github.com/janelia-flyem/neuclease
https://www.tensorflow.org/guide/profiler

10

a b c d

e f g h

Supplementary Figure 1: LSD results on example ssTEM data. A. Raw EM data, scale bar = 1 µm. B. Affinities computed from second
pass of AcLsd network. C. Segmentation produced from affinities. D. Segmentation overlayed with raw data. E,F,G,H. Mean offset,
diagonal entries of covariance, off-diagonal entries of covariance, and size components of LSDs.

Dataset Imaging Method Tissue Resolution (xyz) Training Data Testing Data

Zebrafinch SBFSEM songbird 9x9x20 nm 33 dense volumes (∼ 200 𝜇𝑚3) 50 skeletons (97 mm)
Hemi-brain FIBSEM Drosophila 8x8x8 nm 8 dense volumes (∼ 450 𝜇𝑚3) 3 whitelisted volumes (∼ 1.7 × 104 𝜇𝑚3)

Fib-25 FIBSEM Drosophila 8x8x8 nm 4 dense volumes (∼ 160 𝜇𝑚3) 1 whitelisted volume (∼ 7.7 × 103 𝜇𝑚3)

Supplementary Table 1: Overview of datasets used in study

(A) Validation = Best VoI Sum
Method VoI Split VoI Merge VoI Sum ERL (µm) NERL

Baseline 1.115 2.741 3.856 9.147 0.038
LR 2.072 2.286 4.358 9.517 0.040
FFN 1.068 1.188 2.256 16.747 0.070

MtLsd 0.625 2.794 3.420 8.855 0.037
AcLsd 1.192 1.222 2.414 12.886 0.054

AcRLsd 0.944 1.346 2.290 12.667 0.053

(B) Validation = Best ERL
Method VoI Split VoI Merge VoI Sum ERL (µm) NERL

Baseline 0.757 4.586 5.343 9.113 0.038
LR 0.905 4.851 5.756 9.044 0.038
FFN 1.068 1.188 2.256 16.747 0.070

MtLsd 0.670 2.578 3.247 11.352 0.047
AcLsd 0.533 2.021 2.554 11.419 0.047

AcRLsd 0.803 1.436 2.239 13.470 0.056

Supplementary Table 2: Best results on Zebrafinch Benchmark Roi

11

Method VoI Split VoI Merge VoI Sum

Baseline 0.062 0.040 0.102
LR 0.070 0.061 0.131

Malis 0.144 0.036 0.180
FFN 0.129 0.046 0.175

MtLsd 0.048 0.037 0.085
AcLsd 0.191 0.006 0.197

AcRLsd 0.078 0.009 0.087

(A) 12 µm Region of Interest

Method VoI Split VoI Merge VoI Sum

Baseline 0.394 0.725 1.118
LR 0.284 1.040 1.324

Malis 0.523 0.065 0.588
FFN 0.347 0.024 0.371

MtLsd 0.211 0.056 0.267
AcLsd 0.161 0.090 0.251

AcRLsd 0.165 0.404 0.568

(B) 17 µm Region of Interest

Method VoI Split VoI Merge VoI Sum

Baseline 0.345 1.466 1.811
LR 0.143 0.729 0.873

Malis 0.437 0.162 0.599
FFN 0.242 0.036 0.279

MtLsd 0.166 0.470 0.636
AcLsd 0.126 0.181 0.307

AcRLsd 0.162 0.363 0.525

(C) 22 µm Region of Interest

Supplementary Table 3: Accuracy on Hemi-brain dataset. Tables show best network scores in bold for each RoI.

Method VoI Split VoI Merge VoI Sum

Baseline 1.222 0.133 1.355
LR 1.603 0.257 1.867

Malis 0.997 0.065 1.061
FFN 1.003 0.053 1.056

MtLsd 0.975 0.161 1.136
AcLsd 1.222 0.189 1.411

AcRLsd 1.138 0.275 1.413

(A) Full Region of Interest

Method VoI Split VoI Merge VoI Sum

Baseline 0.716 0.168 0.884
LR 1.089 0.268 1.357

Malis 0.774 0.105 0.879
FFN 0.624 0.076 0.700

MtLsd 0.687 0.09 0.777
AcLsd 0.502 0.123 0.625

AcRLsd 0.568 0.131 0.699

(B) Sub Region of Interest (1)

Method VoI Split VoI Merge VoI Sum

Baseline 0.927 0.112 1.039
LR 1.207 0.282 1.489

Malis 0.946 0.042 0.988
FFN 0.701 0.079 0.780

MtLsd 0.795 0.115 0.910
AcLsd 0.662 0.099 0.761

AcRLsd 0.691 0.186 0.877

(C) Sub Region of Interest (2)

Supplementary Table 4: Accuracy on Fib-25 dataset. Tables show best network scores in bold, for each RoI.

(A) Prediction
Method Workers Total Process Time (seconds) Throughput (𝜇𝑚3/ GPU seconds) teraFLOPs

LSDs 100 (2080Ti) 7,090 1.093 437,000
Baseline 60 (2080Ti) 8,449 1.528 437,000

LR 60 (2080Ti) 10,596 1.218 440,000
Malis 60 (2080Ti) 8,522 1.515 437,000
FFN 1,000 (P100) 11,054 0.07 70,500,000

MtLsd 60 (2080Ti) 9,193 1.404 440,000
AcLsd 15 (V100) 43,972 1.174 874,000

AcRLsd 24 (V100) 37,837 0.854 874,000

(B) Segmentation (MtLsd example)
Method Workers Total Process Time (seconds) Throughput (𝜇𝑚3/ CPU seconds)

Watershed 100 CPUs 7,780 0.996
Agglomeration 100 CPUs 19,859 0.390

Supplementary Table 5: Computational costs on Zebrafinch Benchmark Roi.

Volume Baseline LR MtLsd AcLsd AcRLsd
basil v001 0.235 0.206 0.186 0.210 0.445
basil v004 0.775 0.789 0.830 0.658 0.979

minnie v024 1.594 1.978 1.823 1.440 1.963
pinky v104 0.244 0.229 0.2355 0.248 0.245

Avg. ± SD 0.712 ± 0.554 0.800 ± 0.719 0.769 ± 0.659 0.639 ± 0.495 0.908 ± 0.666

Supplementary Table 6: Best Variation of Information (Sum) per network on four testing volumes from microns data (lower is better).
Best method per volume is shown in bold.

12

Component MtLsd AcLsd
Off-Diagonals of Covariance 0.1295 0.0268
Off-Diagonals of Covariance + Size 0.0332 0.0613
Full LSDs 0.0373 0.0261
Mean Offsets 0.0406 0.0344
Mean Offsets + Off-Diagonals of Covariance 0.0727 0.0457
Mean Offsets + Off-Diagonals of Covariance + Size 0.1681 0.0439
Mean Offsets + Diagonals of Covariance 0.0412 0.0299
Mean Offsets + Diagonals of Covariance + Off-Diagonals of Covariance 0.0465 0.0256
Mean Offsets + Diagonals of Covariance + Size 0.0258 0.0294
Mean Offsets + Size 0.0835 0.0749
Diagonals of Covariance 0.0491 0.0329
Diagonals of Covariance + Off-Diagonals of Covariance 0.0374 0.1168
Diagonals of Covariance + Off-Diagonals of Covariance + Size 0.0414 0.0421
Diagonals of Covariance + Size 0.0758 0.0295
Size 0.0463 0.8444

Supplementary Table 7: Best Variation of Information (Sum) per component combination for both networks (lower is better).

a b c

d e f

g h

i j

Supplementary Figure 2: Results from best autocontext ablation components (left of dashed line) and worst components (right of dashed
line) on Hemi-brain cutout. A, G. Raw EM data, scale bar = 500 nm. B,C,D. Mean offset, orthogonals, and diagonals of LSDs in best
ablation. Best performing ablation did not include a size component. E, F. Affinities and segmentation produced from best ablation. H.
Size (and sole) component of LSDs in worst ablation. I, J. Affinities and segmentation produced from worst ablation. Autocontext using
just the size component as input causes large gaps in the affinities resulting in a false merge (blue arrows).

Volume LR AcLsd
N 522 1.881 1.388
N 593 1.644 1.740
N 441 1.462 1.196
N 435 1.671 1.495
N 590 1.474 1.636
N 511 1.153 1.290
N 294 2.021 1.604

Avg. ± SD 1.615 ± 0.266 1.478 ± 0.182

Supplementary Table 8: Best Variation of Information (Sum) for each network over seven testing volumes (lower is better).

13

Parameter Value
Input feature maps 12
Layer fmap scale 5
Downsampling factors [[1,3,3],[1,3,3],[3,3,3]]
Output feature maps 14
Input shape [84,268,268]
Output shape [48,56,56]
Loss MSE
Optimizer Adam
Learning rate 0.5 × 10−4

𝛽1 0.95
𝛽2 0.999
𝜖 1 × 10−8

Iterations 400,000

Augmentation Parameter Value
Elastic control point spacing (4,4,10)

jitter sigma (0, 2, 2)
subsample 8

Rotation axis x,y,z
angle in [0, 2𝜋]

Section Defects slip probability 0.05
shift probability 0.05
max misalign 10

Mirror axes x,y,z
Transpose axes x, y
Intensity scale in [0.9, 1.1]

shift in [−0.1, 0.1]

Supplementary Table 9: Training parameters and augmentations9 of MtLsd network on Zebrafinch dataset.

Parameter Value
Input feature maps 12
Layer fmap scale 6
Downsampling factors [[2,2,2],[2,2,2],[3,3,3]]
Output feature maps 14
Input shape [196,196,196]
Output shape [92,92,92]
Loss MSE
Optimizer Adam
Learning rate 0.5 × 10−4

𝛽1 0.95
𝛽2 0.999
𝜖 1 × 10−8

Iterations 400,000

Augmentation Parameter Value
Elastic 1 control point spacing (40,40,40)

jitter sigma (0, 0, 0)
subsample 8

Rotation 1 axis x,y,z
angle in [0, 2𝜋]

Section Defects 1 slip probability 0
shift probability 0
max misalign 0

Mirror axes x,y,z
Transpose axes x,y,z
Elastic 2 control point spacing (40,40,40)

jitter sigma (2, 2, 2)
subsample 8

Rotation 2 axis x,y,z
angle in [0, 2𝜋]

Section Defects 2 slip probability 0.01
shift probability 0.01
max misalign 1

Intensity scale in [0.9, 1.1]
shift in [−0.1, 0.1]

Supplementary Table 10: Training parameters and augmentations9 of MtLsd network on FIB-SEM datasets.

(A) Hist Quant 50

0 1 2 3 4 5 6 7 8

·105

0

1

2

3

4

5

6

7

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(B) Hist Quant 75

0 1 2 3 4 5 6 7 8

·105

0

2

4

6

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
) Baseline

LR
Malis
MtLsd
AcLsd

AcRLsd

Supplementary Figure 3: VoI Sum vs RoI on masked (solid) and non-masked (dashed) Zebrafinch data.

14

Operation FLOPs

unet layer 2 left 1/convolution 940584960000
unet layer 2 right 0/convolution 786542400000
unet layer 3 left 1/convolution 419904000000
unet layer 1 left 1/convolution 416320819200

unet layer 2 right 1/convolution 338411520000
unet layer 1 right 0/convolution 226738828800
unet layer 2 left 0/convolution 208980000000
unet layer 0 left 1/convolution 164826316800
unet layer 3 left 0/convolution 123832800000

unet layer 1 right 1/convolution 105305702400
unet layer 1 left 0/convolution 87354028800

unet layer 0 right 0/convolution 84455094528
gradients/unet up 3 to 2/conv3d transpose grad/Conv3D 83980800000

unet layer 0 right 1/convolution 46982799360
gradients/unet up 2 to 1/conv3d transpose grad/Conv3D 22560768000

unet layer 0 left 0/convolution 14151319488
gradients/unet up 1 to 0/conv3d transpose grad/Conv3D 7020380160

embedding 0/convolution 1242931200
affs 0/convolution 372879360

unet layer 0 left 0/BiasAdd 262061472
gradients/unet layer 0 left 0/BiasAdd grad/BiasAddGrad 262061460

gradients/AddN 3 254361600
unet layer 0 left 1/BiasAdd 254361600

gradients/unet layer 0 left 1/BiasAdd grad/BiasAddGrad 254361588
unet layer 1 left 0/BiasAdd 134805600

gradients/unet layer 1 left 0/BiasAdd grad/BiasAddGrad 134805540
unet layer 1 left 1/BiasAdd 128494080

gradients/AddN 2 128494080
gradients/unet layer 1 left 1/BiasAdd grad/BiasAddGrad 128494020

unet layer 3 left 1/kernel/Initializer/random uniform 60750000
mean squared error/num present 44390399

mean squared error/SquaredDifference 88780800
unet layer 0 right 0/BiasAdd 65165968

gradients/unet layer 0 right 0/BiasAdd grad/BiasAddGrad 65165954
unet layer 2 left 0/BiasAdd 64500000

gradients/unet layer 2 left 0/BiasAdd grad/BiasAddGrad 64499700
unet layer 0 right 1/BiasAdd 62146560

gradients/AddN 62146560
gradients/unet layer 0 right 1/BiasAdd grad/BiasAddGrad 62146546

unet up 1 to 0/BiasAdd 58503168
gradients/unet up 1 to 0/BiasAdd grad/BiasAddGrad 58503156

unet layer 2 left 1/BiasAdd 58060800
gradients/AddN 1 58060800

gradients/unet layer 2 left 1/BiasAdd grad/BiasAddGrad 58060500
embedding 0/BiasAdd 44390400

gradients/mean squared error/Mul grad/mul 44390400
gradients/mean squared error/Mul grad/mul 1 44390400

gradients/mean squared error/SquaredDifference grad/Neg 44390400
gradients/mean squared error/SquaredDifference grad/mul 44390400

mean squared error/Mul 44390400
gradients/mean squared error/SquaredDifference grad/mul 1 44390400

gradients/mean squared error/SquaredDifference grad/sub 44390400
mean squared error/Sum 44390399

gradients/embedding 0/BiasAdd grad/BiasAddGrad 44390390
gradients/mean squared error/Mul grad/Sum 1 39951360

unet up 2 to 1/BiasAdd 37601280
gradients/unet up 2 to 1/BiasAdd grad/BiasAddGrad 37601220

unet layer 1 right 0/BiasAdd 34990560
gradients/unet layer 1 right 0/BiasAdd grad/BiasAddGrad 34990500

unet layer 1 right 1/BiasAdd 32501760
gradients/unet layer 1 right 1/BiasAdd grad/BiasAddGrad 32501700

unet up 3 to 2/BiasAdd 27993600
gradients/unet up 3 to 2/BiasAdd grad/BiasAddGrad 27993300

mean squared error 1/SquaredDifference 26634240
mean squared error 1/num present 13317119

unet layer 3 left 0/kernel/Initializer/random uniform 12150000
unet up 3 to 2/kernel/Initializer/random uniform 12150000

unet layer 2 right 0/BiasAdd 24276000
gradients/unet layer 2 right 0/BiasAdd grad/BiasAddGrad 24275700

unet layer 2 right 1/BiasAdd 20889600
gradients/unet layer 2 right 1/BiasAdd grad/BiasAddGrad 20889300
gradients/mean squared error 1/SquaredDifference grad/mul 13317120
gradients/mean squared error 1/SquaredDifference grad/Neg 13317120

Operation FLOPs

gradients/mean squared error 1/SquaredDifference grad/mul 1 13317120
mean squared error 1/Mul 13317120

gradients/mean squared error 1/Mul grad/mul 1 13317120
gradients/mean squared error 1/Mul grad/mul 13317120

affs 0/BiasAdd 13317120
gradients/mean squared error 1/SquaredDifference grad/sub 13317120

mean squared error 1/Sum 13317119
gradients/affs 0/BiasAdd grad/BiasAddGrad 13317117

unet layer 2 right 0/kernel/Initializer/random uniform 4860000
unet layer 3 left 0/BiasAdd 7644000

gradients/unet layer 3 left 0/BiasAdd grad/BiasAddGrad 7642500
unet layer 3 left 1/BiasAdd 5184000

gradients/unet layer 3 left 1/BiasAdd grad/BiasAddGrad 5182500
unet layer 2 right 1/kernel/Initializer/random uniform 2430000
unet layer 2 left 1/kernel/Initializer/random uniform 2430000
unet layer 2 left 0/kernel/Initializer/random uniform 486000

unet layer 1 right 0/kernel/Initializer/random uniform 194400
unet up 2 to 1/kernel/Initializer/random uniform 162000

unet layer 1 right 1/kernel/Initializer/random uniform 97200
unet layer 1 left 1/kernel/Initializer/random uniform 97200
unet layer 1 left 0/kernel/Initializer/random uniform 19440

unet layer 0 right 0/kernel/Initializer/random uniform 9072
unet up 1 to 0/kernel/Initializer/random uniform 6480

unet layer 0 right 1/kernel/Initializer/random uniform 5292
unet layer 0 left 1/kernel/Initializer/random uniform 3888
unet layer 0 left 0/kernel/Initializer/random uniform 324

embedding 0/kernel/Initializer/random uniform 140
affs 0/kernel/Initializer/random uniform 42

gradients/Slice 1 grad/sub 5
gradients/Slice 1 grad/sub 1 5

gradients/Slice 2 grad/sub 5
gradients/Slice 2 grad/sub 1 5

gradients/Slice grad/sub 5
gradients/Slice grad/sub 1 5

mean squared error 1/Greater 1
unet up 1 to 0/mul 1

unet up 3 to 2/mul 2 1
unet up 3 to 2/mul 1 1

unet up 3 to 2/mul 1
unet up 3 to 2/add 2 1
unet up 3 to 2/add 1 1

unet up 3 to 2/add 1
unet up 2 to 1/mul 2 1
unet up 2 to 1/mul 1 1

unet up 2 to 1/mul 1
unet up 2 to 1/add 2 1
unet up 2 to 1/add 1 1

unet up 2 to 1/add 1
unet up 1 to 0/mul 2 1
unet up 1 to 0/mul 1 1

gradients/mean squared error 1/div grad/RealDiv 2 1
Adam/mul 1 1

add 1
gradients/mean squared error/div grad/Neg 1

gradients/mean squared error/div grad/RealDiv 1
gradients/mean squared error/div grad/RealDiv 1 1
gradients/mean squared error/div grad/RealDiv 2 1

gradients/mean squared error/div grad/mul 1
gradients/mean squared error 1/div grad/Neg 1

gradients/mean squared error 1/div grad/RealDiv 1
gradients/mean squared error 1/div grad/RealDiv 1 1

unet up 1 to 0/add 2 1
gradients/mean squared error 1/div grad/mul 1

mean squared error/Equal 1
mean squared error/Greater 1

mean squared error/div 1
mean squared error 1/Equal 1

Adam/mul 1
mean squared error 1/div 1

unet up 1 to 0/add 1
unet up 1 to 0/add 1 1

Total 4083673765073

Supplementary Table 11: FLOPs breakdown by operation for MtLsd network on Zebrafinch dataset.

15

0 0.5 1 1.5 2

Baseline

AcLsd

MtLsd

AcRLsd

LR

Malis

FFN

Variation of Information (Sum)

N
et

w
or

k

5 10 15 20 25

Baseline

AcLsd

MtLsd

AcRLsd

LR

Malis

FFN

Expected Run Length (µm)

N
et

w
or

k

0 20 40 60 80 100 120 140

Baseline

AcLsd

MtLsd

AcRLsd

LR

Malis

Splits and merges needed
N

et
w

or
k

Supplementary Figure 4: Metric distribution across randomly sampled non-masked sub RoIs in the Zebrafinch. N=11 RoIs. All box
plots show lines at the median and quartiles.

16

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(A) 11 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(B) 18 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(C) 25 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(D) 32 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(E) 40 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(F) 47 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(G) 54 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(H) 61 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(I) 68 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

Baseline
LR

Malis
FFN

MtLsd
AcLsd

AcRLsd

(J) 76 µm RoI

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(K) Benchmark Roi

Supplementary Figure 5: VoI Sum vs threshold across Zebrafinch RoIs. Points correspond to thresholds which minimized VoI Sum on
the validation dataset.

17

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(A) 11 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(B) 18 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(C) 25 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(D) 32 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(E) 40 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(F) 47 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(G) 54 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(H) 61 µm RoI

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(I) 68 µm RoI

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
) Baseline

LR
Malis
FFN

MtLsd
AcLsd

AcRLsd

(J) 76 µm RoI

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Threshold

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(K) Benchmark Roi

Supplementary Figure 6: ERL vs threshold across Zebrafinch RoIs. Points correspond to thresholds which maximized ERL on the
validation dataset.

18

Hist Quant 50

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
) Baseline

LR
Malis
MtLsd
AcLsd

AcRLsd

(A) VoI Sum vs threshold 11 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(B) VoI Sum vs threshold 18 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(C) VoI Sum vs threshold 25 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1,000

1,200

1,400

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(D) MCM Sum vs threshold 11 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1,000

2,000

3,000

4,000

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(E) MCM Sum vs threshold 18 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2,000

4,000

6,000

8,000

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(F) MCM Sum vs threshold 25 µm RoI

Hist Quant 75

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(G) VoI Sum vs threshold 11 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(H) VoI Sum vs threshold 18 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

Threshold

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

(I) VoI Sum vs threshold 25 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1,000

1,200

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(J) MCM Sum vs threshold 11 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1,000

1,500

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(K) MCM Sum vs threshold 18 µm RoI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1,000

1,500

2,000

2,500

3,000

Threshold

Sp
lit

sa
nd

m
er

ge
sn

ee
de

d

(L) MCM Sum vs threshold 25 µm RoI

Supplementary Figure 7: VoI serves as a reasonable proxy for evaluating large volumes. Comparison between VoI and MCM on
Zebrafinch on first three RoIs. Similarities are consistent on both Hist Quant 50 (top two rows) and Hist Quant 75 merge functions
(bottom two rows). VoI plots are cropped to the threshold range used in the MCM.

19

0 1 2 3 4 5 6 7 8

·105

0

1

2

3

4

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

Baseline
LR

Malis
FFN

MtLsd
AcLsd

AcRLsd

0 1 2 3 4 5 6 7 8

·105

0

1

2

3

4

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

um
)

Baseline
LR

Malis
FFN

MtLsd
AcLsd

AcRLsd

(A) RoI size vs VoI sum

0 1 2 3 4 5 6 7 8

·105

0

10

20

30

40

Region of Interest (µm3)

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

0 1 2 3 4 5 6 7 8

·105

0

10

20

30

40

Region of Interest (µm3)

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

(B) RoI size vs ERL

0 1 2 3 4 5 6 7 8

·105

0

0.5

1

1.5

2

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

pl
it)

0 1 2 3 4 5 6 7 8

·105

0

0.5

1

1.5

2

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(S

pl
it)

(C) RoI size vs VoI split

0 1 2 3 4 5 6 7 8

·105

0

0.5

1

1.5

2

2.5

3

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(M

er
ge

)

0 1 2 3 4 5 6 7 8

·105

0

0.5

1

1.5

2

2.5

3

Region of Interest (µm3)

Va
ria

tio
n

of
In

fo
rm

at
io

n
(M

er
ge

)
(D) RoI size vs VoI merge

Supplementary Figure 8: Demonstration of ERL sensitivity. When transitioning from a ∼61µm3 to a ∼68µm3 RoI, the VoI Sum increases
as expected (A). This is not the case when considering ERL. All networks, with the exception of FFN and AcLsd, show decreases (B).
Breaking VoI Sum into false splits (C.) and merges (D.) shows consistent increases across all networks. However, not all networks reflect
this change when considering ERL. This can be best explained by the fact that ERL is more sensitive to different types of merges. In this
example, AcRLsd likely merged a small fragment into a larger neuron while AcLsd likely merged two smaller fragments together. While
both cases would produce a similar increase in VoI, the ERL in the former is drastically reduced. This is not reflective of the fact that
both cases would require a single split to resolve in the context of a contemporary proofreading tool.

0 1 2 3 4 5 6 7 8

·105

101

102

Region of Interest (µm3)

Ex
pe

ct
ed

Ru
n

Le
ng

th
(µ

m
)

Baseline
LR

Malis
FFN

MtLsd
AcLsd

AcRLsd
Max ERL

Supplementary Figure 9: RoI size vs ERL. Grey dotted line shows maximum possible ERL for each RoI. Y-axis is on a log scale

20

a

b

c

d

Image Conv Down Up Input Skip

196

Raw

196 192

12

96 92

72

46 42

43
2

14 10
25

92

30 26
43

2

52 48
72

96 92

12 3

LSD[0:3]

3

LSD[3:6]

3

LSD[6:9]

1

LSD[9:10]

196

Raw

196 192

12

96 92

72

46 42

43
2

14 10
25

92

30 26
43

2

52 48
72

96 92

14

3

LSD[0:3]

3

LSD[3:6]

3

LSD[6:9]

1

LSD[9:10]

3

A�nities

304

Raw

Predict

196 192

12

96 92

72

46 42

43
2

14 10
25

92

30 26
43

2

52 48
72

96 92

12 3

A�nities

304

Raw

196

Crop

Predict

196 192

12

96 92

72

46 42

43
2

14 10
25

92

30 26
43

2

52 48
72

96 92

12 3

A�nities

Supplementary Figure 10: Network architectures used on FIB-SEM datasets (2D representations). All architectures use the U-Net proposed
in Funke et al. (2019). Legend on bottom right. A. Network to generate the LSDs used in auto-context setups. An extra convolution is used
to get to 10 feature maps for the embedding. B. MtLsd network - both affinities and LSDs are learnt. Number of output feature maps is
increased from 12 to 14 to account for the 13 feature maps needed for the affinities and embedding. C. AcLsd network - the output from
A is used to predict embedding from raw input. The predicted embedding is then passed in to learn affinities. D. AcRLsd network - same
as C, but incorporates cropped raw as input in addition to the embedding.

21

a b c

Raw
EM

Ground
Truth

Supplementary Figure 11: Example training data. A. Zebrafinch labels were heavily padded with raw data and some glia were set to
zero (scale bar = ∼ 1 µm). B. Padding was used to a lesser extent for Hemi-brain volumes. Example taken from Ellipsoid Body. C. No
padding was used for Fib-25 volumes.

b

c

Raw EM Ground Truth Ground Truth
Affinities

Predicted
Affinities

Ground Truth
LSDs

Predicted
LSDs

a

Supplementary Figure 12: Example training batches. Masked-out regions were factored into the training loss on the Zebrafinch dataset
(A). Conversely, the Hemi-brain and Fib-25 volumes used no masking during training (B,C, respectively). Scale bar = ∼300 nm.

22

a

b

Raw EM Predicted LSDs Predicted Affinities

Supplementary Figure 13: Example auto-context training batches on Fib-25. A. Batch in which no boundary masking is needed. The
first pass predicts LSDs in an intermediate RoI to provide context for affinity prediction in the second pass. B. Batch requires boundary
masking. The combination of elastic deformation and zero padding simulates the tissue irregularities seen in the full Fib-25 volume. In
these background areas, LSDs and affinities are taught to predict zero. Scale bar = ∼ 1 µm.

23

a b

c

Supplementary Figure 14: Masks used in study. A. Zebrafinch mask removed cell bodies, myelin, blood vessels and background. Scale
bar = ∼10 µm. Inset scale bar = ∼3 µm. B. Hemi-brain mask restricted volumes to Ellipsoid Body neuropil. Scale bar = ∼ 10 µm. Inset
scale bar = ∼2 µm. C. Fib-25 used an irregularly shaped tissue mask, mostly limited to neuropil. Scale bar = ∼8 µm. Inset scale bar = ∼1
µm.

24

2

total roi

cropped roi

1

2 3

4

5

1

2

3

1

2 3
4

56

1

3

45

ground truth segmentation

relabel

a

b

c

relabel

Supplementary Figure 15: Potential side effects of cropping data. Ground truth (left) shows 5 correctly labeled neurons. Example
Segmentation (right) shows 3 labeled neurons as a result of false merges. Bottom squares show results from relabeling connected
components inside the cropped RoI. A. Correctly segmented neuron in total RoI would be counted as a false merge inside cropped
RoI. This is fixed by relabelling connected components and the merge/split scores are unaffected. B. A falsely merged neuron inside the
cropped RoI is caused by a false merge outside of the cropped RoI and should not be counted. Relabelling doesnt resolve the touching
boundaries and the merge score is subsequently overestimated. C. Incorrectly segmented neuron in total RoI is counted as correct in
cropped RoI after relabelling. Merge score is underestimated.

25

a

b c

d

X

Z

X

Y

X

Y

1

2

3

4

5

1

2

3

Z

Y
X

e

ZX

Y

Supplementary Figure 16: Other potential uses of LSDs. A. Nuclei segmentation on full zebrafish brain (Hildebrand et al., 2017).
Columns from left to right: raw, LSD offset vectors, LSD direction vectors (covariance), LSD direction vectors (Pearson’s), size,
resulting segmentation. Scale bars from top to bottom: ∼ 150µm, 20µm, 5µm. B. Mitochondria segmentation on cropout from Fib-25.
Inset shows LSD predictions and corresponding segmentation. Bottom image shows 3D reconstructions of a random sample (n=1000)
in predicted RoI. Scale bars from top to bottom: ∼ 3µm, 750nm, 4µm. C. Error mapping. Example predicted LSDs between two
neurons (1). If the resulting segmentation is correct (2), segmentation LSDs do not differ from predicted LSDs. If the resulting
segmentation is incorrect (3), segmentation LSDs (4) might differ from the predicted LSDs. The difference (5) could expose errors
in a segmentation. D. Predicted direction vectors (covariance) on single section of full adult fly brain. Mushroom body pedunculi
(1), optic chiasm (2), cell rind (3) highlight directionality. Scale bar = ∼ 150µm. E. Predicted LSD mean offset component on plant
epithelial cell data.

26

References

Beier, T., Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D. D.,
Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., et al.
(2017). Multicut brings automated neurite segmentation closer to
human performance. Nature methods, 14(2):101–102.

Briggman, K., Denk, W., Seung, S., Helmstaedter, M., and Turaga,
S. C. (2009). Maximin affinity learning of image segmentation. In
Advances in Neural Information Processing Systems, volume 22.
Curran Associates, Inc.

Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J.
(2012). Deep Neural Networks Segment Neuronal Membranes in
Electron Microscopy Images. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems 25, pages 2843–2851. Curran Associates, Inc.

Dorkenwald, S., McKellar, C. E., Macrina, T., Kemnitz, N., Lee, K.,
Lu, R., Wu, J., Popovych, S., Mitchell, E., Nehoran, B., Jia, Z.,
Bae, J. A., Mu, S., Ih, D., Castro, M., Ogedengbe, O., Halageri,
A., Kuehner, K., Sterling, A. R., Ashwood, Z., Zung, J., Brittain,
D., Collman, F., Schneider-Mizell, C., Jordan, C., Silversmith, W.,
Baker, C., Deutsch, D., Encarnacion-Rivera, L., Kumar, S., Burke,
A., Bland, D., Gager, J., Hebditch, J., Koolman, S., Moore, M.,
Morejohn, S., Silverman, B., Willie, K., Willie, R., Yu, S.-c., Murthy,
M., and Seung, H. S. (2022). Flywire: online community for whole-
brain connectomics. Nature Methods, 19(1):119–128.

Funke, J., Klein, J., Moreno-Noguer, F., Cardona, A., and Cook, M.
(2017). TED: A Tolerant Edit Distance for segmentation evaluation.
Methods, 115:119–127.

Funke, J., Tschopp, F., Grisaitis, W., Sheridan, A., Singh, C., Saalfeld,
S., and Turaga, S. C. (2019). Large Scale Image Segmentation
with Structured Loss Based Deep Learning for Connectome Re-
construction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(7):1669–1680.

Hildebrand, D. G. C., Cicconet, M., Torres, R. M., Choi, W., Quan,
T. M., Moon, J., Wetzel, A. W., Scott Champion, A., Graham, B. J.,
Randlett, O., Plummer, G. S., Portugues, R., Bianco, I. H., Saalfeld,
S., Baden, A. D., Lillaney, K., Burns, R., Vogelstein, J. T., Schier,
A. F., Lee, W.-C. A., Jeong, W.-K., Lichtman, J. W., and Engert,
F. (2017). Whole-brain serial-section electron microscopy in larval
zebrafish. Nature, 545(7654):345–349. Number: 7654 Publisher:
Nature Publishing Group.

Januszewski, M., Kornfeld, J., Li, P. H., Pope, A., Blakely, T., Lindsey,
L., Maitin-Shepard, J., Tyka, M., Denk, W., and Jain, V. (2018).
High-precision automated reconstruction of neurons with flood-
filling networks. Nature Methods, 15(8):605.

Lee, K., Lu, R., Luther, K., and Seung, H. S. (2021). Learning and
Segmenting Dense Voxel Embeddings for 3D Neuron Reconstruc-
tion. IEEE Transactions on Medical Imaging, 40(12):3801–3811.
Conference Name: IEEE Transactions on Medical Imaging.

Lee, K., Zung, J., Li, P., Jain, V., and Seung, H. S. (2017). Su-
perhuman Accuracy on the SNEMI3d Connectomics Challenge.
arXiv:1706.00120 [cs].

Meilă, M. (2007). Comparing clusterings—an information based
distance. Journal of Multivariate Analysis, 98(5):873–895.

Microns Consortium, ., Bae, J. A., Baptiste, M., Bodor, A. L., Brittain,
D., Buchanan, J., Bumbarger, D. J., Castro, M. A., Celii, B., Cobos,
E., Collman, F., Costa, N. M. d., Dorkenwald, S., Elabbady, L., Fahey,
P. G., Fliss, T., Froudarakis, E., Gager, J., Gamlin, C., Halageri, A.,
Hebditch, J., Jia, Z., Jordan, C., Kapner, D., Kemnitz, N., Kinn,
S., Koolman, S., Kuehner, K., Lee, K., Li, K., Lu, R., Macrina, T.,
Mahalingam, G., McReynolds, S., Miranda, E., Mitchell, E., Mondal,
S. S., Moore, M., Mu, S., Muhammad, T., Nehoran, B., Ogedengbe,
O., Papadopoulos, C., Papadopoulos, S., Patel, S., Pitkow, X.,
Popovych, S., Ramos, A., Reid, R. C., Reimer, J., Schneider-Mizell,
C. M., Seung, H. S., Silverman, B., Silversmith, W., Sterling, A.,
Sinz, F. H., Smith, C. L., Suckow, S., Takeno, M., Tan, Z. H.,
Tolias, A. S., Torres, R., Turner, N. L., Walker, E. Y., Wang, T.,
Williams, G., Williams, S., Willie, K., Willie, R., Wong, W., Wu,
J., Xu, C., Yang, R., Yatsenko, D., Ye, F., Yin, W., and Yu, S.-c.
(2021). Functional connectomics spanning multiple areas of mouse

visual cortex. Technical report, bioRxiv. Section: New Results Type:
article.

Nguyen, T., Malin-Mayor, C., Patton, W., and Funke, J. (2022). Daisy:
block-wise task dependencies for luigi.

Plaza, S. M. (2016). Focused Proofreading to Reconstruct Neural
Connectomes from EM Images at Scale. In Carneiro, G., Mateus,
D., Peter, L., Bradley, A., Tavares, J. M. R. S., Belagiannis, V.,
Papa, J. P., Nascimento, J. C., Loog, M., Lu, Z., Cardoso, J. S.,
and Cornebise, J., editors, Deep Learning and Data Labeling for
Medical Applications, Lecture Notes in Computer Science, pages
249–258, Cham. Springer International Publishing.

Plaza, S. M. and Funke, J. (2018). Analyzing Image Segmentation for
Connectomics. Frontiers in Neural Circuits, 12.

Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-y.,
Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard,
J., Berg, S., Clements, J., Hubbard, P. M., Katz, W. T., Umayam,
L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T.,
Kainmueller, D., Kawase, T., Khairy, K. A., Leavitt, L., Li, P. H.,
Lindsey, L., Neubarth, N., Olbris, D. J., Otsuna, H., Trautman, E. T.,
Ito, M., Bates, A. S., Goldammer, J., Wolff, T., Svirskas, R., Schlegel,
P., Neace, E., Knecht, C. J., Alvarado, C. X., Bailey, D. A., Ballinger,
S., Borycz, J. A., Canino, B. S., Cheatham, N., Cook, M., Dreher,
M., Duclos, O., Eubanks, B., Fairbanks, K., Finley, S., Forknall,
N., Francis, A., Hopkins, G. P., Joyce, E. M., Kim, S., Kirk, N. A.,
Kovalyak, J., Lauchie, S. A., Lohff, A., Maldonado, C., Manley,
E. A., McLin, S., Mooney, C., Ndama, M., Ogundeyi, O., Okeoma,
N., Ordish, C., Padilla, N., Patrick, C. M., Paterson, T., Phillips,
E. E., Phillips, E. M., Rampally, N., Ribeiro, C., Robertson, M. K.,
Rymer, J. T., Ryan, S. M., Sammons, M., Scott, A. K., Scott, A. L.,
Shinomiya, A., Smith, C., Smith, K., Smith, N. L., Sobeski, M. A.,
Suleiman, A., Swift, J., Takemura, S., Talebi, I., Tarnogorska, D.,
Tenshaw, E., Tokhi, T., Walsh, J. J., Yang, T., Horne, J. A., Li,
F., Parekh, R., Rivlin, P. K., Jayaraman, V., Costa, M., Jefferis,
G. S., Ito, K., Saalfeld, S., George, R., Meinertzhagen, I. A., Rubin,
G. M., Hess, H. F., Jain, V., and Plaza, S. M. (2020). A connectome
and analysis of the adult Drosophila central brain. eLife, 9:e57443.
Publisher: eLife Sciences Publications, Ltd.

Takemura, S.-y., Xu, C. S., Lu, Z., Rivlin, P. K., Parag, T., Olbris, D. J.,
Plaza, S., Zhao, T., Katz, W. T., Umayam, L., Weaver, C., Hess,
H. F., Horne, J. A., Nunez-Iglesias, J., Aniceto, R., Chang, L.-A.,
Lauchie, S., Nasca, A., Ogundeyi, O., Sigmund, C., Takemura, S.,
Tran, J., Langille, C., Le Lacheur, K., McLin, S., Shinomiya, A.,
Chklovskii, D. B., Meinertzhagen, I. A., and Scheffer, L. K. (2015).
Synaptic circuits and their variations within different columns in the
visual system of Drosophila. Proceedings of the National Academy
of Sciences of the United States of America, 112(44):13711–13716.

Tu, Z. and Bai, X. (2010). Auto-Context and Its Application to High-
Level Vision Tasks and 3D Brain Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(10):1744–
1757. Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M.,
Briggman, K., Denk, W., and Seung, H. S. (2010). Convolutional
Networks Can Learn to Generate Affinity Graphs for Image Seg-
mentation. Neural Computation, 22(2):511–538. Conference Name:
Neural Computation.

Turner-Evans, D. B. and Jayaraman, V. (2016). The insect central
complex. Current Biology, 26(11):R453–R457.

Wolf, S., Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe,
U., and Hamprecht, F. A. (2018). The Mutex Watershed: Efficient,
Parameter-Free Image Partitioning. In Ferrari, V., Hebert, M., Smin-
chisescu, C., and Weiss, Y., editors, Computer Vision – ECCV 2018,
volume 11208, pages 571–587. Springer International Publishing,
Cham. Series Title: Lecture Notes in Computer Science.

Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V.,
Louveaux, M., Wenzl, C., Strauss, S., Wilson-Sánchez, D., Lym-
bouridou, R., Steigleder, S. S., Pape, C., Bailoni, A., Duran-Nebreda,
S., Bassel, G. W., Lohmann, J. U., Tsiantis, M., Hamprecht, F. A.,
Schneitz, K., Maizel, A., and Kreshuk, A. (2020). Accurate and
versatile 3D segmentation of plant tissues at cellular resolution.

27

eLife, 9:e57613. Publisher: eLife Sciences Publications, Ltd.
Zhao, T., Olbris, D. J., Yu, Y., and Plaza, S. M. (2018). NeuTu: Software

for Collaborative, Large-Scale, Segmentation-Based Connectome
Reconstruction. Frontiers in Neural Circuits, 12.

	SpringerNature_NatMeth_1711_ESM.pdf
	Main text
	Introduction
	Neuron Segmentation Methods
	Contributions

	Results
	Metrics for Neuron Segmentation
	Datasets
	Neuron Segmentation Accuracy

	Discussion
	Metric Evaluation
	Auxiliary Learning for Boundary Prediction
	Auto-Context Refinement
	Masking

	Conclusions and Future Directions

	Local Shape Descriptors
	Min-Cut Metric
	Zebrafinch
	Training
	Data
	Networks
	Pipeline

	Prediction
	Segmentation
	Watershed
	Agglomeration
	Segment

	Evaluation

	FIB-SEM volumes
	Training
	Data
	Networks
	Pipeline

	Prediction
	Segmentation
	Watershed
	Agglomeration
	Segment

	Evaluation

	Throughput
	Extended Experiments
	Serial Section Data (ssTEM)
	Ablations
	Non-EM Data: Epithelial Cells

