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Mechanistic model of MAPK signaling reveals how
allostery and rewiring contribute to drug resistance
Fabian Fröhlich1,† , Luca Gerosa1,†,‡ , Jeremy Muhlich1 & Peter K Sorger1,*

Abstract

BRAF is prototypical of oncogenes that can be targeted therapeuti-
cally and the treatment of BRAFV600E melanomas with RAF and
MEK inhibitors results in rapid tumor regression. However, drug-
induced rewiring generates a drug adapted state thought to be
involved in acquired resistance and disease recurrence. In this arti-
cle, we study mechanisms of adaptive rewiring in BRAFV600E mela-
noma cells using an energy-based implementation of ordinary
differential equation (ODE) modeling in combination with pro-
teomic, transcriptomic and imaging data. We develop a method
for causal tracing of ODE models and identify two parallel MAPK
reaction channels that are differentially sensitive to RAF and MEK
inhibitors due to differences in protein oligomerization and drug
binding. We describe how these channels, and timescale separa-
tion between immediate-early signaling and transcriptional feed-
back, create a state in which the RAS-regulated MAPK channel can
be activated by growth factors under conditions in which the
BRAFV600E-driven channel is fully inhibited. Further development of
the approaches in this article is expected to yield a unified model
of adaptive drug resistance in melanoma.
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Introduction

Eukaryotic signal transduction allows cells to regulate their growth,

differentiation, and morphogenesis in response to external stimuli

(Ullrich & Schlessinger, 1990; Hunter, 2000). In its reliance on

receptor tyrosine kinase (RTK) autophosphorylation, assembly of

signaling complexes on receptor tails, and activation of mitogen

activated protein kinases (MAPKs; Box 1) signal transduction initi-

ated by the binding of epidermal growth factor (EGF) to the EGF

receptor (EGFR) is prototypical of growth-promoting signal trans-

duction systems. The MAPK cascade comprises the RAF, MEK and

ERK kinases, which regulate downstream factors such as ELK, ETS1

and AP1 transcription factors, as well as changes in cell motility and

morphology (Lavoie et al, 2020). EGFR signaling has also been stud-

ied extensively using dynamical systems analysis (Starbuck & Lauf-

fenburger, 1992; Kholodenko et al, 1999; Resat et al, 2003; Blinov

et al, 2006; Chen et al, 2009; Gerosa et al, 2020) leading to better

understanding of signal transduction in general as well as develop-

ment of new modeling methods.

Oncogenic mutations are common in signal transduction net-

works and the V600E mutation in BRAF is an exemplar of these

(Sanchez-Vega et al, 2018). In melanoma (Davies et al, 2002), thy-

roid cancer (Kebebew et al, 2007), colorectal cancer (Clarke &

Kopetz, 2015), and other tissues, BRAFV600E mutations cause consti-

tutive activation of the MAPK pathway and oncogenic transforma-

tion. In cutaneous melanoma, inhibitors of the BRAF (BRAFi) and

MEK (MEKi) kinases (e.g., vemurafenib and cobimetinib) are proto-

typical of highly effective targeted anti-cancer drugs (English &

Cobb, 2002; Samatar & Poulikakos, 2014). A combination of BRAFi

and MEKi is the current first-line treatment for metastatic melanoma

(Sullivan & Flaherty, 2012) and frequently results in rapid tumor

shrinkage. However, BRAFV600E tumors usually develop resistance

to RAFi/MEKi therapy within months to years, reducing long-term

survival. The frequent and rapid rise of drug resistance in mela-

noma and the innate refractoriness of other MAPK-driven cancers to

existing drugs has spurred extensive work aimed at understanding

resistance mechanisms. Blocking the emergence of drug-resistant

states is widely thought to be the key to achieving better patient out-

comes with RAFi/MEKi drugs and precision oncology in general.

Resistance to MAPK inhibition occurs over a range of timescales.

Adaptive resistance, which is reversible and does not involve acqui-

sition or selection for mutations, can be observed within a few days

of drug exposure (Fallahi-Sichani et al, 2017; Marin-Bejar

et al, 2021; Oren et al, 2021). In cultured cells, adaptive resistance

can last for months, giving rise to persister cells in which oncogenic

BRAF signaling remains strongly inhibited but cells continue to

grow, albeit more slowly than in the absence of drugs (Lito

et al, 2012). In patients and in cultured cells, acquisition of recurrent

mutations, commonly in RTKs or components (or regulators) of the

MAPK cascade, leads to reactivation of MAPK signaling and unre-

strained cell growth (Long et al, 2014; Shi et al, 2014). The relation-

ship between adaptive and acquired resistance is not fully
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understood and is an area of active investigation (Shaffer

et al, 2017; Schuh et al, 2020). However, it has been proposed that

DNA replication may be less faithful, or DNA damage responses less

effective, in adapted than drug-naı̈ve cells, leading to an accumula-

tion of resistance mutations (Shaffer et al, 2017; Russo et al, 2019;

Schuh et al, 2020).

A paradox of the drug adapted state in BRAFV600E mutant mela-

noma is that MAPK activity is essential for proliferation of this cell

type and yet oncogenic BRAF signaling remains strongly inhibited.

Analysis of cell-average MAPK levels led to the suggestion that par-

tial MAPK rebound (to ~5 to 20% of the kinase activity in drug-

naı̈ve cells) is sufficient for cell survival and proliferation (Lito

et al, 2012). However, more recent single-cell studies show that

adapted cells experience sporadic MAPK pulses of ~90 min duration

and that these pulses are sufficient for cyclin D transcription and

passage of a subset of cells into S phase (Gerosa et al, 2020). Pulses

appear to arise from growth factors that act in an autocrine/para-

crine manner by binding to EGFR and other RTKs expressed on per-

sister cells. This finding raises a further question: how precisely can

oncogenic MAPK signaling be repressed while receptor-mediated

MAPK signaling remains active? The accepted explanation is that

the cell signaling has become “rewired” in adapted cells (Lee

et al, 2012; Ding et al, 2018; Wei et al, 2020).

In the absence of a new mutation, rewired networks are postu-

lated to transmit or propagate oncogenic signals by different combi-

nations or activity states of cell signaling proteins than drug-naı̈ve

networks. In some cases, rewiring is thought to involve a switch

from one mitogenic pathway to another, from MAPK to PI3K-AKT

signaling, for example, but in drug resistant melanoma, the same

MAPK components appear to be essential in the original and

rewired states. More generally, rewiring is one of the several con-

cepts in translational cancer biology that are intuitively plausible,

but have not yet been subjected to quantitative, mechanistic model-

ing and analysis.

One way to gain deeper insight into rewiring at a mechanistic

level is to perform the type of dynamical systems analysis that has

previously proven effective in the study of RTK-MAPK signaling

(Kholodenko et al, 1999; Chen et al, 2009; Schöberl et al, 2009;

Kholodenko, 2015; Rukhlenko et al, 2018). This commonly involves

constructing networks of ordinary differential equation (ODEs) to

represent the precise temporal evolution of signal transduction net-

works under different conditions. ODEs are a principled way to rep-

resent cellular biochemistry in a continuum approximation and,

with the addition of “compartments”, can also model the assembly

of multi-protein complexes and transport between cellular compart-

ments (Aldridge et al, 2006). In the case of the A375 melanoma cells

used in this study, quantitative proteomics shows that proteins in

the MAPK pathway are present at 102 to 104 molecules per cell

(Gerosa et al, 2020), so continuum mass-action models represent an

appropriate approximation (conversely, intrinsic noise is expected

to be low).

Combinatorial complexity represents a substantial challenge to

modeling even relatively restricted sets of signaling proteins. The

presence of multiple reversible, post-translational modifications,

protein–protein, and protein-small molecule interactions often

makes the number of distinct biochemical species 10–1,000 fold

greater than the number of gene products (Faeder et al, 2005;

Box 3). Rule-based modeling was developed specifically to address

this challenge and uses abstract representations of binding patterns

and reactions to describe combinatorically complex networks in a

compact programmatic formalism. Rules automatically generate

ODE networks describing diverse types of reactions and molecular

assemblies (Faeder et al, 2005; Hlavacek et al, 2006; Lopez

et al, 2013) for subsequent model calibration and exploration.

An additional challenge in modeling MAPK signaling is that it

involves allosteric regulation, in which the affinities of RAS, RAF

and small molecules for each other are determined by protein con-

formation and oligomerization state. In conventional ODE modeling,

a large number of parameters are necessary to describe the depen-

dency of such affinities on states of assembly. However, protein–
protein and protein–small molecule binding and unbinding does not

consume energy and thermodynamic formalisms that impose energy

conservation provide rigorous means to constrain the number of

binding parameters to a minimal, principled set (Box 3; Ollivier

et al, 2010; Sekar et al, 2016). The use of thermodynamics to derive

kinetic rates was pioneered by Arrhenius (1889) and subsequently

Box 1. The core of the MAPK pathway is a three-enzyme cascade comprising RAF–MEK–ERK kinases (HUGO: ARAF/BRAF/RAF1, MAP2K1/MAP2K2, and
MAPK1/MAPK3) that transduces signals from extracellular stimuli, most commonly growth factors and receptor tyrosine kinases (RTKs; Lavoie
et al, 2020). Three-enzyme cascades involving closely related kinases also transmit signals from cytokines and their receptors. Driving oncogenic muta-
tions are found in multiple components in or upstream of the MAPK pathway (Burotto et al, 2014), commonly KRAS (G12C/D/V, G13C/D), NRAS (Q61H/
K; Prior et al, 2012), BRAF (V600E/K) and less commonly MEK and ERK (Gao et al, 2018). BRAFV600E or closely related mutations (e.g., BRAFV600K) are
found in ~50% of cutaneous melanomas and RAF/MEK therapy is the first line treatment option for BRAF-mutant metastatic melanoma (Flaherty
et al, 2012). BRAF mutations are also found in ~10% of colorectal cancers and several other tumor types (Davies et al, 2002), but RAF/MEK therapy is
rarely effective in these settings.
The binding of growth factors to RTKs induces their intracellular auto-phosphorylation, followed by association of SH2 and SH3-containing proteins
with phosphorylated tyrosine residues on receptor tails. Subsequent signalosome assembly involves adaptor proteins such as GRB2, enzymes that
modify second messengers such as PI3Ks, and guanine nucleotide exchange factors (GEFs) such as SOS1 (Lemmon & Schlessinger, 2010). GEFs convert
one or more of the N, K, and H RAS GTPases (depending on cell type) into the active GTP-bound form, and GTP-bound RAS then activates the ARAF/
BRAF/RAF1 kinases by recruiting them to the plasma membrane and inducing their dimerization. BRAF/RAF1 homo- and heterodimers are the primary
mediators of MEK phosphorylation (ARAF has low kinase activity). Phosphorylated and active MEK then phosphorylates ERK on two proximate resi-
dues. Both phosphorylation steps are potentiated by the assembly of multi-protein complexes involving 14-3-3 and KSR scaffolding proteins (Lavoie &
Therrien, 2015). Active ERK phosphorylates transcription factors, cytoskeletal proteins, and other kinases and is the proximate functional output of the
MAPK cascade. Changes in the levels or activities of proteins such as DUSP4/6 phosphatases, which remove activating phosphorylation modifications,
and SPRY2/4 proteins, which sequester GRB2, as well as inhibitory phosphorylation of EGFR, SOS1 and RAF act as negative-feedback mechanisms and
enforce homeostatic control over MAPK activity.
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derived independently by Eyring (1935), Evans and Polanyi (1935),

but it is only recently that practical approaches have emerged for

using thermodynamic formalisms in reaction models (Olivier

et al, 2005; Honorato-Zimmer et al, 2015; Kholodenko, 2015;

Gawthrop & Crampin, 2017; Mason & Covert, 2018; Rukhlenko

et al, 2018; Klosin et al, 2020; Gollub et al, 2021). Applications of

these methods to signal transduction remain limited, in part because

of the complexity of relevant models, but Kholodenko and col-

leagues have pioneered the application of thermodynamic balance

to MAPK signaling (Rukhlenko et al, 2018).

Model calibration and non-identifiability represents a final chal-

lenge in modeling networks of readily reversible reactions. Model

calibration (estimating parameter values that minimize the devia-

tion from experimental data) is compute-intensive (Fröhlich

et al, 2017) and even after calibration, parameters can assume wide

ranges, a property known as non-identifiablity (Chis et al, 2011;

Raue et al, 2011; Kreutz et al, 2012; Wieland et al, 2021). When

models are combinatorically complex and non-identifiable, it can be

difficult to quantify fluxes, explain how signaling state arise and

trace how species of interest are created by upstream reactions and

consumed downstream. This complicates the quantification of sig-

nal propagation through the reaction network, a prerequisite for the

investigation of concepts of such as network rewiring.

In this article, we described a second-generation MAPK Adaptive

Resistance Model (MARM2.0) that seeks to explain the rewiring of

EGFR/MAPK signaling occurring in drug adapted BRAFV600E mela-

noma cells. MARM2.0 builds on a large body of structural, biochem-

ical and theoretical work on EFGR/MAPK signaling and feedback

regulation (Solit et al, 2006; Poulikakos et al, 2010; Lito et al, 2012,

2013; Hatzivassiliou et al, 2013; Haling et al, 2014; Yao et al, 2015)

and is constructed using rule-based modeling in PySB with

thermodynamic balance. By developing and applying a new

approach to causal tracing that facilitates the analysis of “signal

flow” in large ODE model, we show how rewiring alters the organi-

zation and amplification/attenuation characteristics of multiple

reaction channels operating in parallel in the MAPK cascade. We

describe how rewiring, in conjunction with a timescale separation

between signal transduction and transcriptional feedback, generates

a drug adapted state in which the RAS-regulated MAPK channel can

be active under conditions in which the BRAFV600E-driven channel

is fully inhibited. Additionally, we show that how the concept of a

reaction channel provides an intuitive explanation for resistance to

RAF and MEK inhibitors individually and in combination in differ-

ent BRAF mutant cancers.

Results

A structure-based model of EGFR and ERK signaling

The MAPK signaling cascade (Box 1) and its immediate regulators

constitute no more than two dozen unique gene products, but the

binding of these proteins to each other gives rise to a remarkably

large number of molecular species, many of which have distinct

activities. Moreover, the complexity of the MAPK cascade increases

substantially when we consider states that are bound and unbound

to drugs. For example, BRAF/CRAF can exist in monomeric, homo-

and heterodimeric forms, with either one or two subunits bound to

RAFi, each with or without RAS-GTP bound as an activator. Drug

binding occurs preferentially to some BRAF oligomers and not

others (Box 2), and can strongly influence association with

upstream and downstream factors. To recapitulate the responses of

Box 2. Multiple small molecule inhibitors targeting individual MAPK kinases are FDA approved, but combinations of RAF and MEK inhibitors are the
most widely used clinically. A subtle relationship exists between the mechanism of action of these drugs, kinase conformation, and formation of
mutli-protein complexes. In the absence of upstream stimuli, RAF kinases are found in cells as monomers; activation by RAS-GTP causes dimerization.
Some activating BRAF mutations (Yao et al, 2015) and splice variants (Poulikakos et al, 2011) also promote dimerization, but BRAFV600E/K kinases are
constitutively activated without requiring dimerization. Whether RAF is present as a monomer, heterodimer or homodimer profoundly influences the
enzyme’s sensitivity to inhibition (Yao et al, 2015). The FDA-approved RAF inhibitors vemurafenib, dabrafenib, and encorafenib are ATP-competitive
type I½ kinase inhibitors (Roskoski, 2016) that preferentially bind to the alpha-C helix-out, DFG-in conformation assumed by BRAFV600E/K; this state dif-
fers from the alpha-C helix-in (and DFG-in) state found in activated wild-type RAF (Karoulia et al, 2017), whereas binding of type I½ BRAF inhibitors
to BRAFV600E/K inactivates the enzyme, binding to wild-type RAF monomers promotes kinase dimerization and activation, leading to amplification of
MAPK signaling, a phenomenon termed paradoxical activation (Hall-Jackson et al, 1999; Hatzivassiliou et al, 2010; Poulikakos et al, 2010). To prevent
this, “paradox breaker” RAF inhibitors such as PLX8394 have been developed (Zhang et al, 2015; Tutuka et al, 2017; Yao et al, 2019). These are type I½
inhibitors that, by virtue of locking the R506 side-chain in the out conformation, do not promote dimerization (Karoulia et al, 2017). Both regular and
paradox breaker type I½ inhibitors have a lower affinity for the 2nd protomer in a RAF dimer, which typically assumes the inactive alpha-C helix-in,
DFG-out conformation. Thus, the structural differences between monomers and dimers (rather than mutations in the ATP binding pocket) are the
basis of the selectivity of clinically approved RAF inhibitors for cells transformed by BRAF mutant kinases. However, the inability of type I½ inhibitors
to fully inhibit homo- and hetero-dimer RAF kinases is a primary mechanism of drug resistance in cancers with sustained RAS-GTP signaling, including
EGFR-driven signaling in BRAFV600E/K colorectal cancer. In contrast, so-called “panRAF” type II inhibitors, such as the Phase 1 compound LY3009120
(Peng et al, 2015) and preclinical compound AZ-628 (Noeparast et al, 2018), bind RAF in the alpha-C helix-in, DFG-out conformation and inhibit both
RAF protomers with similar potency. These inhibitors can achieve more complete MAPK suppression but appear to cause additional toxicity, presum-
ably by interfering with MAPK activity in non-cancer cells. Multiple type II inhibitors are currently under clinical investigation for solid tumors (Yen
et al, 2021), including melanoma, but, so far, none have been approved for use in humans.
FDA-approved MEK inhibitors such as cobimetinib, trametinib and binimetinib, are type III non-ATP competitive (allosteric) inhibitors that lock the
MEK kinase in a catalytically inactive state, limit movement of the activation loop, and decrease phosphorylation by RAF (Wu & Park, 2015). Most of
these MEK inhibitors are more potent at preventing ERK activation by BRAFV600E/K than by RAF acting downstream of mutant RAS (Hatzivassiliou
et al, 2013; Lito et al, 2014) or RTKs (Gerosa et al, 2020). The reasons for this are not fully understood, but are thought to be inhibitor specific and
include mechanisms such as the lower affinity of MEK inhibitors for phosphorylated when compared with unphosphorylated MEK, and differences in
RAF–MEK binding (Hatzivassiliou et al, 2013; Pino et al, 2021).
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cells to RAFi in a mechanistic computational model, it is necessary

for the allosteric interactions that control association of RAF with

upstream and downstream factors and with RAFi to be described in

detail (Rukhlenko et al, 2018).

To accomplish this, we generated a compartmentalized ODE

model of MAPK signaling (the MAPK Adaptive Resistance Model

MARM2.0) that extends a simpler and recently published model

(MARM1.0). MARM1.0 was used in an experimental study we

recently published (Gerosa et al, 2020) that uses modeling as an

explanatory tool but does not involve any model analysis. Such

analysis is the focus of the current article and its updated model.

MARM2.0 was calibrated using data described in Gerosa et al with

the addition of drug-response data that is unique to the current

study. Moreover, both MARM1.0 and MARM2.0 build on an earlier

model of RAF-RAFi interaction developed by Kholodenko (2015),

but with the inclusion of more proteins and complexes. Model

expansion was greatly facilitated by the use of rule-based BNG mod-

els in the domain-specific Python language PySB (Blinov et al, 2004;

Lopez et al, 2013). More specifically, MARM1.0 & 2.0 extend the

RAF–MEK–ERK model of Kholodenko with the addition of upstream

activation and multiple feedback mechanisms relevant to acquired

resistance to RAF inhibitors (Lito et al, 2012) and a more detailed

description of MAPK enzymes themselves (Fig 1A). Compared with

MARM1.0, MARM2.0 is compartmentalized (compartments: extra-

cellular space, plasma membrane, cytoplasm and endosomal mem-

brane), it adds EGFR-CBL interaction and endosomal recycling, and

includes mRNA species in the description of transcriptional feed-

back control; it also accounts for the direct inhibitory action of ERK

on RAF, a reaction omitted in MARM1.0. In total, MARM2.0 has 17

distinct molecular species: 11 proteins, three mRNA species and

three small molecule inhibitor classes. Proteins include EGFR,

BRAF, CRAF, MEK and ERK, the dual specificity phosphatase DUSP,

guanine nucleotide exchange factor SOS1, GTPase RAS, E3 ubiquitin

ligase CBL, adaptor protein GRB2, and RTK negative regulator SPRY

(ellipses in Fig 1A). EGF, RAFi, panRAFi and MEKi, (depicted as col-

ored circles and rounded boxes in Fig 1A) are optionally present

and values for kinetic and energetic parameters can be set so that

the inhibitors can correspond to any of 10 different small molecules

that are used as human therapeutics or pre-clinical tools. These

comprise the RAFi compounds vemurafenib, dabrafenib, PLX8394,

the panRAFi (Box 2) compounds LY3009120 and AZ628, and MEKi

compounds cobimetinib, trametinib, selumetinib, binimetinib and

PD0325901.

To maintain model tractability, we lumped together paralogs,

combined phosphorylation sites having similar functions, and sim-

plified other aspects of EFGR regulation, which exhibits particularly

high combinatorial complexity (Blinov et al, 2006). MARM2.0

nonetheless has over 105 biochemical reactions, illustrating how

transient binding (binding interactions are summarized in Fig 1B)

among a few kinases, their regulators, and inhibitory drugs gener-

ates an elaborate biochemical network. With respect to paralogs, we

made the following assumptions: “RAS” stands in for KRAS, NRAS,

and HRAS, “MEK” for MAP2K1 and MAP2K2, “ERK” for MAPK1

and MAPK3, “DUSP” for DUSP4 and DUSP6, and “SPRY” for SPRY2

and SPRY4 (lumping of paralogs is depicted in Fig 1A by thick outli-

nes). This is equivalent to assuming that all paralogs have the same

kinetic rate constants. In some cases, paralogs are known to be very

similar (e.g., MAPK1, MAPK3) but in other cases they are

functionally distinct (e.g., KRAS, NRAS and HRAS). The three RAS

paralogs are expressed at similar levels in A375 cells and we did not

distinguish among them because we do not yet have relevant train-

ing data. However, MARM could easily be modified for future stud-

ies that focus on differences between RAS species. We did not lump

BRAF and CRAF into a single RAF species due to the unique role

that BRAFV600E plays as an oncogene; ARAF was omitted due to its

low kinase activity. We also lumped together multi-site phosphory-

lation of EGFR (on Y1068, Y1086, Y1173, etc.), MEK (MAP2K1:

S218, S222; MAP2K: S222, S226) and ERK (MAPK1: T185, Y187;

MAPK3: T202, Y204) as single post translational modifications for

each protein. The underlying phosphorylation reactions were imple-

mented as two-step reactions comprising substrate binding and

phosphorylation steps. Finally, mRNA species were included for

DUSP, EGFR and SPRY to model transcriptional feedback with dis-

tinct, lumped translation rates for each species (depicted by dark

green arrows in Fig 1A). This made it possible to calibrate models

on time-course and dose–response transcriptomic data.

To model RTK-induced MAPK activation, we focused on EGFR

autophosphorylation at Y1068, Y1086 and Y1173, which creates

GRB2 binding sites (Batzer et al, 1994) as well as EGFR ubiquitina-

tion by CBL (Alwan et al, 2003) and subsequent endocytosis and re-

cycling. EGFR endocytosis and recycling rates were dependent on

EGFR levels, as previously described (Starbuck & Lauffen-

burger, 1992; Resat et al, 2003). The “addition” of EGF to MARM2.0

promotes EGFR dimerization and trans-phosphorylation, recruit-

ment of GRB2-SOS1 complexes to phospho-tyrosine residues on

receptor tails and consequent GTP loading and activation of RAS.

Receptors are then subjected to endocytosis leading to either their

degradation or recycling. GTP-loaded RAS (RAS-GTP) promotes

RAF dimerization and initiates the RAF–MEK–ERK (MAPK) cascade

(Box 1). When BRAFV600E is present, it constitutively phosphory-

lates MEK in the absence of upstream signals. Phosphorylated MEK

(pMEK) phosphorylates ERK (pERK), which indirectly upregulates

expression of proteins that act as negative regulators of RTK signal

transduction (these intermediate steps are represented as lumped

reactions). Multiple negative regulatory mechanisms are known,

and we modeled five of them. Three involved transcriptionally-

mediated changes in protein abundance for (i) EGFR itself, (ii)

DUSP, which antagonize ERK signaling by dephosphorylating the T

and Y residues in the T-Y-X motif in the ERK activation loop (Saha

et al, 2012) and (iii) SPRY, which has multiple biochemical activi-

ties, among which we modeled sequestration and inactivation of

GRB2 (Lao et al, 2006). Two involved phosphorylation mediated

changes in protein–protein interactions, namely (iv) SOS1 binding

to GRB2 and (v) RAF dimerization. SOS1 is phosphorylated on

S1134 and S1161 sites by RSK creating a 14-3-3 docking site, which

sequesters the protein in an inactive conformation (Corbalan-Garcia

et al, 1996; Kamioka et al, 2010). RSK is transcriptionally and post-

translationally activated by ERK, but we represented this with a sin-

gle pERK dependent phosphorylation reaction and a phosphoryla-

tion dependent energy pattern that modulates SOS1-GRB2 affinity.

CRAF and BRAF are phosphorylated by ERK on multiple residues,

decreasing their affinity for RAS and other RAF molecules (Dough-

erty et al, 2005; Ritt et al, 2010). Guided by previous models of this

process (Rukhlenko et al, 2018), we implemented a single, pERK

dependent phosphorylation of RAF monomers that involves energy

patterns that control the affinity between RAF monomers and
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between RAF and RAS (Box 4). To describe allosteric drug interac-

tions involving RAFi and panRAFi, we included energy patterns for

RAFi-RAF2 trimers and RAFi2-RAF2 tetramers. For MEKi, we

included a phosphorylation dependent energy pattern for MEKi-

MEK interaction (Box 2) but no energy patterns for allosteric RAF–
MEK-MEKi complexes. This means that we did not model disruption

of RAF–MEK interaction by MEKi since it has been reported that this

is not the mechanism determining the potency of the MEK inhibitors

in our study (Pino et al, 2021). Instead, we used a scaling factor

(whose value was determined during model calibration) to encode a

reduction in the rate of phosphorylation of MEK-MEKi complexes,

when compared with apo-MEK, by BRAFV600E. This approach cap-

tures MEKi-mediated inhibition of MEK phosphorylation by

BRAFV600E in cell lines by one or more of the several structurally
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Figure 1. Thermodynamic model of EGFR and ERK signaling.

A Schematic overview of processes described in the model.
B Summary of model species and oligomerization in the model. Coloring of tiles indicates percentage with respect to total of monomer species (per row). Columns for

the drug and growth factor perturbations RAFi, panRAFi, MEKi and EGF are highlighted according to the respective color in (A).
C Statistics of model rules, reactions and parameters. Catalysis includes (de-) phosphorylation, GTP-exchange and (de-)ubiquitination. Other parameters include initial

conditions and scaling factors and background intensities.
D Number of experiments and sizes of respectively resized models according to the multi-model optimization scheme. A plus on the bottom indicates that the respec-

tive perturbation was applied in the corresponding experiment, color as in (A/B).
E Comparison of gradient computation time for the full-model and multi-model optimization approach. Central band shows media, box extends from lower to upper

quartile values and whiskers show full range excluding outliers (points more than 1.5 interquartile ranges away from lower and upper quartiles).
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related mechanisms reported in the literature. A comprehensive

description of these implementations, and of MARM2.0 more gener-

ally, is provided in the Code EV1 as a Jupyter Notebook (Model

Documentation.ipynb).

MARM 2.0 includes 68 rules and 91 free parameters (kinetic

rates, energies, scaling factors, etc.; total 115 free parameters when

MARM2.0 is instantiated for all of 10 small molecule RAF/MEK inhi-

bitors). Six rules described transcript turnover, seven protein turn-

over, 24 phosphorylation, 23 binding and three sets of two rules

each described GTP/GDP exchange, ubiquitination, and transloca-

tion between cellular compartments (Fig 1C). For example, the bind-

ing rule “Rule(‘BRAF_and_uMEK_bind_and_dissociate’, BRAF

(mek=None) + MEK(phospho=‘u’, raf=None) ¦ BRAF(mek=1) %

MEK(phospho=‘u’, raf=1), . . .)” describes binding of BRAF to

unphosphorylated MEK (uMEK), a prerequisite for MEK phosphory-

lation. Binding requires MEK to be unphosphorylated (phos-

pho = ‘u’), but does not specify any dependence on RAS, BRAF,

CRAF or RAFi. Implementation of PySB rules generated > 7,700

molecular species and > 100,000 biochemical reactions with most

proteins participating in > 4,000 species, a reflection of the combi-

natorial complexity described above. Binding rules accounted for

> 85% of all reactions in the model (96,874 of 108,754 reactions

total) and > 90% (21/23) of these binding rules were formulated as

“energetic rules” with binding affinities expressed in terms of nor-

malized Gibbs free energy differences (ΔG; Box 3). Binding and

unbinding rates were then computed according to the Arrhenius

law. To facilitate programmatic model formulation within an

energetic framework, we implemented support for the eBNG frame-

work (Hogg, 2013; Harris et al, 2016) in PySB. This enabled specifi-

cation of allosteric interactions using differences in free energy

differences (ΔΔG, Box 3), which is a principled way of establishing

context dependent binding and unbinding rates (with the balance

encoded by the parameter ϕ).

ODE description of ERK pulsing enabled use of population
average and Perturbational experiments to describe the behavior
of single cells

Imaging studies have established that the A375 BRAFV600E mela-

noma cell line used in this study enters a drug adapted condition

within 24 h of exposure to RAFi and/or MEKi and that this state

is retained for at least 2–4 days, allowing it to be approximated

as pseudo steady state (Gerosa et al, 2020). Unless explicitly

stated otherwise, data were collected after a 24 h period of drug

adaptation and model simulations were pre-equilibrated to these

conditions. Once adapted to RAFi, BRAFV600E melanoma cells

experience transient pulses of ERK activity at irregular intervals,

consistent with a stochastic regulatory mechanism (Gerosa

et al, 2020). In principle, BNG/PySB models can be instantiated

as stochastic, agent-based systems to represent such stochastic

fluctuations (Sneddon et al, 2011). However, the reactions in

MARM2.0 involve sufficiently abundant proteins (~102 to 106

copies per cell) that intrinsic stochasticity is not expected to arise

spontaneously. Thus, the irregular pulsing by drug adapted A375

Box 3. Changes in protein assembly and conformation, often mediated by post-translational modification, are the structural basis for much of signal
transduction. For example, generating the active conformation of CRAF requires both N-terminal phosphorylation and association with a second RAF
family member to stabilize the active state. Because formation of protein–protein interactions does not consume energy, a strict relationship exists
between conformation and binding affinity (Tsai & Nussinov, 2014): when binding increases the stability of a specific conformational state, that state
will also have higher binding affinity for its interacting partner. Since this relationship is transitive, binding affinities can be coupled through confor-
mational states, giving rise to long-range, higher-order dependencies in oligomeric complexes. Such higher-order dependencies can create ultrasensi-
tive responses, which are often involved in cell fate decisions or homeostasis.
A conformational state is defined by a specific local minimum in the Gibbs free energy landscape. The relative stability of a conformational state S
can be expressed as free energy difference ΔGc with respect to a reference state S0. Stabilizing or destabilizing conformational states is equivalent to
changes in this free energy difference (i.e., ΔΔGcÞ. Similarly, binding reactions can be characterized by the difference ΔGb between the Gibbs free ener-
gies of binding educts and binding products, which is proportional to the logarithm of their dissociation constant K : ΔGb ¼ �RTlog Kð Þ, where R is the
gas constant and T is the temperature. Energy conservation guarantees that a ligand (L)-induced change to the free energy of a conformational state
S (ΔΔGc) is equal to the difference ΔΔGb in the affinity of L for S when compared with S0. This equilibrium description can be extended to dynamic
behavior by means of the Arrhenius Equation (Arrhenius, 1889), which defines reaction propensities according to the free energy of the transition state
(Sekar et al, 2016). Such an energy-based formulation enforces Wegscheider–Lewis cycle conditions on kinetic parameters (Wegscheider, 1911), ensur-
ing detailed balance for equilibrium states, but also constraining dynamics of non-equilibrium processes. By ensuring energy conservation, the effective
number of parameters needed to describe multimeric oligomerization processes is reduced (Kholodenko, 2015) and rigorous constraints are placed on
the structures of models describing species that adopt multiple conformational states.
Energy conservation provides a natural framework for the specification of structure-based kinetic models that include allosteric interactions (Rukh-
lenko et al, 2018) and has been incorporated into a rule-based modeling form as energy-BioNetGen (eBNG; Sekar et al, 2016). In eBNG, allosteric inter-
actions are encoded using energy patterns that permit specification of ΔΔGb . For example, a kinetic model for the binding of RAF inhibitors (RAFi in
text, I in figure) to RAF kinases (RAF in text, R in figure; Box 4A) can be constructed using one rule for RAF dimerization (turquoise) and another for
drug binding to RAF (black), which generates 12 reversible reactions (Box 4B). Allostery for drug binding to the 1st or 2nd protomer of a RAF dimer is
imposed using the thermodynamic factors f (orange) and g (purple), which change ΔΔGb via two energy patterns. The contribution of these thermody-
namic factors to kinetic rates is exemplified by the relationship between Gibbs free energies and rate constants for RAF dimerization that are RAFi-
dependent (Box 4C; no RAFi, black; one RAFi, orange; two RAFi purple). The parameter ϕ, controls whether ΔΔGb influences educt states (ϕ = 0) or
product states (ϕ = 1, depicted in C) or a mixture (0 < ϕ < 1). Using PySB, all 12 reactions depicted in Box 4B can be specified using two rules and
four energy-patterns (Box 4D). Thus, PySB code automatically generates symbolic reaction rates that parameterize the reaction network according to
allosteric effects whose magnitudes are set by the thermodynamic factors f and g (Box 4E). In this way, models of complex drug-protein interactions,
such as resistance mediated by formation of RAF dimers, can be easily parameterized in terms of the baseline equilibrium constant for RAF dimeriza-
tion (KRR). We illustrated this by simulations with f = 0.001 and g = 1,000 (Box 4F) which represent a type I½ RAF inhibitor that avidly binds the 1st

RAF protomer but has a 106-fold lower affinity for the 2nd protomer in a RAF dimer.
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cells appears to originate not in the noise of intracellular reac-

tions, but instead in the spatially restricted release of growth fac-

tors acting in an autocrine and paracrine manner (Gerosa

et al, 2020). In the absence of better understanding of these

extracellular processes, they are difficult to represent computa-

tionally. Moreover, calibration of stochastic models is

substantially more difficult than for deterministic models (Fröhlich

et al, 2016).

Fortunately, experiments showed that addition of any of several

different exogenous growth factors to RAFi- or MEKi-adapted cells

generates synchronous ERK pulses having the same dynamics and

drug sensitivities as asynchronous pulses arising spontaneously

Box 4.

(A) Protein structures of monomeric and dimeric BRAFV600E protomers bound to vemurafenib. (B) Binding diagram for RAF and RAFi molecules. Formulas
next to reaction arrows indicate the dissociation constants of the respective reactions. Arrow color indicates type of reaction (black: RAF dimerization,
turquoise: RAFi binding). Dashed line color indicates the thermodynamic parameters that modulate the respective reactions (orange: f, purple: g). (C) Illus-
tration of relationship between Gibbs free energies and kinetic rates for RAF dimerization. Modulation of kinetic rates through a context specific energy
patterns that depends on the number of bound RAFi molecules is indicated in orange (one RAFi bound, parameter f) and purple (two RAFi bound, param-
eter g). Energies are normalized by the factor 1/RT, where R is Gas constant and T is the temperature. The diagram shows the specific situation of ϕ ¼ 1,
where only reaction product stability is modulated. (D) PySB code to define the rules and energy-patterns that describe the diagram in (B). (E) Table of
context dependent forward and reverse reaction rates. k is the binding rate, kr is the unbinding rate, with corresponding PySB rule indicated as subscript.
(F) Model simulations for different values of KRR with f = 0.001 and g = 1,000.
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(Gerosa et al, 2020). Because single cells are much more similar to

each other during ligand-induced than spontaneous pulsing,

induced pulses are more amenable to characterization using stan-

dard transcriptional profiling and protein mass spectrometry meth-

ods. A further advantage is that synchronous pulses can be modeled

at the population level by an ODE-model that is a reasonable simu-

lacrum of single cell biology. In the current work, we used data from

pulses generated by growth factors to provide insight into sponta-

neous pulses; consequently, we focused only on mechanisms down-

stream of receptor activation. Future work will be required to

understand the origins and spatial distributions of ligands in the

micro-environment of drug adapted cells undergoing asynchronous

and spontaneous pulsing.

To further constrain MARM2.0, we used targeted proteomics

with calibration peptides to measure the absolute abundances of

two phospho-proteins (Fig EV1A) and all 11 protein species

(Fig EV1B); data were collected at five vemurafenib concentrations

yielding 55 data points for model calibration. In addition, we

extracted relative abundances for three mRNA species (Fig EV1C)

from genome-wide transcript profiling performed at eight vemu-

rafenib concentrations and seven timepoints following EGF stimula-

tion (yielding 45 calibration data points). Immunofluorescence

imaging of pERK and pMEK provided the greatest amount of data

(847 data points) and involved 234 different experimental condi-

tions each having a different concentration of one or more of the fol-

lowing perturbations: EGF, RAFi, panRAFi or MEKi. Imaging data

had single cell resolution, but population averages were used for

model calibration, since we aimed to model the behavior of an aver-

age single cell. Training data were complimented with 2,209

immunofluorescence data points in 1,647 conditions for model vali-

dation (Dataset EV1), which are described in greater detail below.

Rule-Based modeling enables efficient calibration through Multi-
Model optimization

To calibrate MARM2.0 on experimental data, we used gradient-

based numerical optimization, which performs well for large models

(Villaverde et al, 2019). Optimization is nonetheless challenging for

a model with as many reactions as MARM2.0: weighted least

squares minimization of an objective function required simulation

for each of the 234 training conditions for every evaluation of the

objective function, and this took minutes to perform. Optimization

required hundreds of evaluations of the objective function and its

derivatives, resulting in calibration runtimes on the order of weeks

to months even on a cluster computer. However, we found that it

was possible to exploit patterns in the perturbational data to sub-

stantially reduce the number of species in a condition-specific man-

ner, thereby accelerating calibration (Fröhlich et al, 2019; St€adter

et al, 2021): in our calibration dataset, 122 conditions involved one

perturbation (RAFi, panRAFi or MEKi individually), 111 conditions

involved two perturbations (RAFi or MEKi followed by addition of

EGF) and only one involved no perturbation, (Fig 1D, top). In the

absence of a perturbing agent, all model species involving that agent

(e.g., RAF bound to RAFi, Fig 1B) as well as a subset of downstream

species (e.g., pEGFR activated by EGF) have zero concentrations

and need not be modeled. To automatically generate, compile and

track sub-models omitting zero concentration species for a diverse

range of perturbations, we created routines that exploited the

programmatic features of PySB (Lopez et al, 2013) and BNGL net-

work generation (Blinov et al, 2004; see MultiModelFitting in Mate-

rials and Methods). This yielded models having up to 1.5 times

fewer parameters than MARM2.0 itself (60–85 parameters compared

to 91; Fig 1D, middle) and up to 68-fold fewer species (113–1,612
species compared to 7,774; Fig 1D, bottom). Multi-model objective

calibration was performed using pyPESTO (a python reimplementa-

tion of the Parameter Estimation Toolbox; Stapor et al, 2018) allow-

ing consistent generation of a full model based on calibration of

sub-models; this is an exact approach that does not reduce the accu-

racy of the objective function or gradient evaluation. Overall, we

found that using PySB to match model structure to data structure

reduced median gradient evaluation time ~33-fold (from 46 to 1.4 h

on a single compute core; Fig 1E), which for MARM2.0 extrapolated

to a reduction of ~24 weeks in real time and ~450 years in CPU time

(assuming 103 cores with a computational budge of 5 days each).

Since multiple rounds of model refinement and calibration were

necessary over the course of the current work, a 33-fold improve-

ment in calibration time had a major impact. We expect that multi-

model objective calibration will be broadly useful with other models

involving perturbational datasets.

Following calibration, MARM2.0 quantitatively captured the

effects of RAFi and MEKi treatment on baseline pERK levels in the

drug adapted state and during transient EGF stimulation. Relatively

few parameters converged on unique values (Fig EV2) due to the

known non-identifiability of biochemical models having explicit for-

ward and back reactions (Gutenkunst et al, 2007) as well as incom-

plete convergence of the optimizer due to limitations in the

computational budget. We therefore used parameter sets from the

5% of optimization runs having the lowest value of the objective

function (50 parameter sets) to generate a set of dynamical trajecto-

ries that approximated the impact of parametric uncertainty on sim-

ulations. For a large fraction of data points (34.3%), we found that

80% of simulated trajectories fell within experimental error bounds

(Figs 2 and EV1), demonstrating good agreement between the cali-

brated model with experimental data. This does not constitute a rig-

orous quantification of parameter uncertainty (Fröhlich et al, 2014),

but does account for correlation in parameter values (Eydgahi

et al, 2013) and was the only practical approach given the number

of parameters and species in MARM2.0.

Causal decomposition untangles intertwined BRAFV600E and RAS
driven signaling

When cells were adapted to RAFi (vemurafenib unless otherwise

noted) for 24 h, steady-state pERK levels decreased with drug con-

centrations. In striking contrast, the amplitude of pERK pulses gen-

erated by adding exogenous EGF increased with RAFi concentration

(Fig 2A, left). Thus, EGF (and other growth factors applied in a simi-

lar manner) induced pERK in proportion to the degree of BRAFV600E

inhibition. When MEKi (cobimetinib unless otherwise noted) was

used over a dose range, a biphasic response was observed: below

~0.1 μM MEKi EGF-induced pERK levels increased with MEKi con-

centration but above ~0.1 μM MEKi they fell (Fig 2A, right). In all

cases, the effects of EGF were transient and pERK levels returned to

their drug adapted baseline levels within 1–2 h. The calibrated

MARM2.0 model recapitulated all of these phenomena and we

therefore sought a molecular explanation via model analysis.
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Experimentally determined pMEK and pERK levels measure the

sum of active MAPK kinases generated by oncogenic and chroni-

cally active BRAFV600E and by transiently active EGFR (Fig 2B). To

decompose these two sources of MAPK activity, we defined a “RAS

reaction channel,” which encompasses all reactions initiated by

(RAS-GTP)2-RAF2 oligomers, and a “BRAFV600E reaction channel”

encompassing all MAPK reactions downstream of the BRAF

oncogene. We use “reaction channel” in this sense to describe a set

of proteins and protein–protein interactions that transduce a signal

via post-translational modifications and/or formation of multi-

protein assemblies. Because assemblies formed during immediate

early signal transduction are typically transient (due to relatively

low affinities), and modifications are reversible, a single protein

species can participate in multiple reaction channels, but any
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Figure 2. Causal decomposition of RAS and BRAFV600E channels.

A Time course of pre- and post-stimulation pERK levels. Colors denote different concentrations of vemurafenib (RAFi) and cobimetinib (MEKi). Solid lines show median
simulation values and shading indicates 80% percentiles over 50 best parameter sets.

B Toggling of reaction channels via their upstream activators BRAFV600E (blue) or EGF (orange) during the two phases of pulsatile reactivation shown in (A): drug
adaptation (left) and transient stimulation (right).

C Schematic for tracing of causal history using synthetic sites.
D, E (D) Rules affected by causal decomposition (E) Comparison of experimental data and decomposed model simulations (pMEK, pERK) at 5 min after EGF stimulation.

Median (over 50 best parameter sets) simulations are shown as stacked areas with color indicating reaction channel (blue: BRAFV600E, orange: RAS). Shading
indicates 80% percentiles over 50 best parameter sets. Experiments were performed in A375 cell lines in 5% FBS medium following 24 h of drug adaptation. Cells
were stimulated with EGF at a final concentration of 100 ng/ml. Data are shown as point-ranges with average over technical replicates (n = 2) as point and esti-
mated standard deviation (over all datapoints) as a line. Data from different experiments (biological replicates) are shown separately.
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specific molecule is assumed to be part of a single channel at speci-

fic point in time. In principle, a signaling network may be decom-

posable into reaction channels based on a variety of criteria and we

chose the most obvious one: the origin of the signal (i.e., the most

upstream activating event). In MARM2.0, this is constitutively

active BRAFV600E for the BRAFV600E reaction channel and ligand

bound RTKs (represented in our models by EGFR) for the RAS reac-

tion channel. We then tracked individual MEK and ERK phosphory-

lation events based on whether they could be traced back to

BRAFV600E or RAS-GTP. These definition of reaction channels is

related to the known dichotomy between RAFi-sensitive monomeric

and RAFi-resistant dimeric RAF signaling (Baljuls et al, 2013); how-

ever, since MARM2.0 allows BRAFV600E dimerization and binding to

RAS-GTP, but requires formation of complete (RAS-GTP)2-RAF2
dimers for activation by RAS, MEK phosphorylation by oncogene-

containing dimers (BRAFV600E2, BRAFV600E-CRAF, (RAS-GTP)-

BRAFV600E2 and (RAS-GTP)-BRAFV600E-CRAF) is attributed to the

BRAFV600E channel. Only phosphorylation by (RAS-GTP)2-RAF2
dimers, the normal physiological tetramer, is attributed to the RAS

channel. Thus, our formulation of reaction channels recapitulates

the causal dependency of ERK activity on upstream signaling events

rather than precisely subdividing the system based on postulated

resistance mechanisms.

In agent-based modeling, it is straightforward to keep track of

the upstream origins of a single molecule or event and thereby

generate causal traces or “stories” (Boutillier et al, 2018), but ODE

models only describe the properties of ensembles of molecules. To

perform causal decomposition, i.e., to apply causal tracing of reac-

tion channels to ODE models, we applied an in silico labeling strat-

egy that involved adding a virtual “tag” to pMEK (Fig 2C,

Materials and Methods Section Causal Signal Decomposition) at

the time of its generation by (RAS-GTP)2-RAF2 (orange, top left

panel) or BRAFV600E (blue, bottom left panel). The tag was copied

from pMEK to pERK upon ERK activation (blue/orange, top right

panel) and removed during dephosphorylation (blue/orange, bot-

tom right panel). Implementing this approach required modifica-

tion of only of a few PySB rules (Fig 2D) and did not change

model dynamics.

For causal decomposition of MARM2.0 under a range of condi-

tions, computational labeling of both pMEK and pERK was neces-

sary, since the two active forms do not have the same

proportionality (degree of amplification) in the two reaction chan-

nels: in the BRAFV600E channel, the MEK phosphorylation rate is

lower when MEKi is bound to uMEK, generating a higher ratio of

apo-pMEK to pMEK-MEKi than in the RAS channel, in which the

MEK phosphorylation rate is independent of MEKi binding. The ori-

gins of this phenomenon are described in greater detail below. Since

MEKi inhibits the catalytic activity of pMEK, amplification from

pMEK to pERK is higher in the BRAFV600E than the RAS channel.

The value of causal decomposition was illustrated when we

investigated the experimentally observed pMEK levels that remained

roughly constant over a 105-fold range of RAFi concentrations (as

monitored at the 5-min peak of an EGF-induced pulse, Fig 2E left).

Causal decomposition showed that this unexpected behavior arose

from a steady reduction in the activity of the BRAFV600E channel

(blue) with increasing RAFi and a simultaneous and offsetting

increase in signaling in the RAS channel (orange). This was true of

all three RAFi and five MEKi tested (Fig EV3) and represents a

classic case of pathway rewiring that is obscured at the level of total

MAPK activity.

Slow transcriptional feedbacks imprint drug adapted state and
unravel cyclic causal dependencies

Experimental data (Pratilas et al, 2009; Lito et al, 2012; Gerosa

et al, 2020) and model trajectories show that DUSP (blue), SPRY (or-

ange), and EGFR (green) proteins (dark colors) and mRNA (light

colors) levels are substantially lower in cells adapted to RAFi for

24 h when compared with drug-naı̈ve cells (Figs 3A left and EV2B

and F). This is consistent with the known role of MAPK activity in

promoting the expression of negative (feedback) regulators. How-

ever, it raises the question: why is pERK only transiently activated

by EGF in drug adapted cells if feedback is suppressed? When we

simulated the induction of ERK pulses by exogenous EGF in drug

adapted cells, we observed modest increases in EGFR, DUSP and

SPRY mRNA levels (Fig 3A right), consistent with respective experi-

mental training data (Fig EV1C). However, at the protein level DUSP

and SPRY remained almost constant and EGFR decreased. We sur-

mised that this reflected the operation of transcriptional feedback on

a longer timescale (> 2 h) than a typical EGF-mediated pulse (30–
90 min). Thus, the transience of ERK activation is not a conse-

quence of negative feedback at the level of the MAPK pathway.
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subject to transcriptional control by pERK. Solid lines show median values,
shading indicates variability across 80% of 50 best parameter sets.
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Instead, model analysis showed that changes in EGFR protein

levels were a consequence of receptor endocytosis, and degradation.

Thus, it is EGFR trafficking that controls the duration of a pERK

pulse in drug adapted cells, consistent with existing models of EGFR

(Starbuck & Lauffenburger, 1992; preprint: Dessauges et al, 2021)

and other transmembrane receptors (Becker et al, 2010). However,

on the longer timescale of drug adaptation, transcriptional feedback

is the primary determinant of pERK levels. Similar separations in

timescale have been previously observed in other aspects of EGFR

and MAPK signaling. For example, individual kinase phosho-states

turn over on timescale of seconds but measurable changes in MAPK

activity are a least hundred-fold slower, requiring minutes to hours

(Kholodenko et al, 1999; Kleiman et al, 2011; Reddy et al, 2016).

Thus, slow population average responses mask underlying biochem-

ical reactions happening on faster timescales.

The presence of feedback loops in a network usually generates

cycles in the causal diagram (preprint: Mooij et al, 2013; Fig 3B left),

complicating model analysis (preprint: Pearl & Dechter, 2013;

preprint: Spirtes, 2013). In the case of MARM2.0, a cycle involving

positive regulation of feedback regulators by MAPK activities

means, for example, that pERK activity could ultimately control

DUSP levels or DUSP levels could control pERK activity. However,

timescale separation makes it possible to generate an acyclic causal

diagram for MARM2.0 (Hyttinen et al, 2012; Fig 3B right), in which

the effects of RAFi and MEKi on pERK are split into the rapid and

immediate effects of drug on kinase activity (direct drug action, pur-

ple shading) and a slower process involving changes in the levels of

feedback proteins (drug adaption, brown shading). Prior to EGF

stimulation, when only the BRAFV600E channel is active (Fig 2B left),

MEKi and/or RAFi levels control pERK levels in drug adapted cells

(drug adapted pERK; gray in Fig 3B), which in turn determine DUSP

and SPRY concentration and, thus, the strength of negative feedback

on pERK in the RAS channel (transient pERK, turquoise in Fig 3B).

The indeterminacy between drug adapted pERK and DUSP levels

remains (illustrated by a bidirectional edge in the graph), but this

does not affect the determinacy between drug adapted DUSP and

transient pERK levels. Thus, timescale separation during drug adap-

tion facilitates the establishment of a cell state that has distinct

“rewired” signal transduction properties and is not altered by a sin-

gle pERK pulse. Moreover, this timescale separation enables us to

causally attribute these changes in signal transduction properties to

distinct drug effects.

MAPK signaling is rewired by drug adaptation and direct
inhibition

The ratio of output to input signals in a network (the gain) is a fun-

damental property of a signal transduction system that can be used

quantify rewiring. Gain often varies along a series of reactions in a

single channel—for example, the number molecules of pERK gener-

ated per molecule of RAS-GTP when stimulated with EGF ligand.

Gain could in principle be quantified by sensitivity (Goldbeter &

Koshland, 1981), but as a mathematical concept, sensitivity is

defined at steady-state, whereas signaling in the RAS channel is

transient. Sensitivity could also be computed pointwise at every

time point (Chen et al, 2009), but this would not account for the fact

that input and output signals for any specific step in a network often

have different timescales. For example, modeling revealed

conditions in which an input signal (e.g., pEGFR levels) had started

to fall following EGF stimulation, while a downstream event (e.g.,

formation of active RAS-GTP) was still increasing. We therefore

defined the gain of a reaction channel as the ratio of L∞ or L1 norms

(with respect to a logarithmic timescale) between input and output

signals in corresponding model trajectories (see Materials and Meth-

ods; Signaling Gain). The L1 norm quantifies the area under the

curve of the signal, whereas the L∞ norm quantifies the height of

the peak of the signal. Both represent scalar, time-independent

quantities. For simplicity, we normalized gain to equal 1 in the

absence of inhibition.

Gain for each of the two MAPK reaction channels was investi-

gated graphically using a formalism in which each node represents

a “signal” that is defined as the sum of active model species, and

edges represent signaling steps that are defined as the action of one

or more PySB reaction rules. Gain was computed along each edge of

the graph by computing the ratio of norms of input and output

nodes. The graph in Fig 4A has been arranged so that each signaling

step (edge) is affected by as few drug actions as possible—ideally

only one—allowing changes in gain to be attributed to direct drug

action (purple) or drug adaptation (brown). The graph contains

three steps for the RAS channel (orange; steps R1-R3) and two steps

for the BRAFV600E channel (blue; steps B2-B3) with the channels

“aligned” at the third step (pMEK phosphorylation of ERK; Fig 4A).

We then used the calibrated model to compute time-resolved signals

for all nodes at multiple drug concentrations (Fig 4B) and deter-

mined the gain (Fig 4C). To visually summarize the inhibitor

concentration-dependent states of the graph, we generated separate

representations for RAFi (Fig 4D) and MEKi (Fig 4E), with signal

activity indicated as node opacity and gain as edge opacity.

We found that adaptation to RAFi and MEKi had a similar impact

on the first step (R1) for both drugs (Fig 4C, top panels). At low to

medium drug concentrations (RAFi: ~10−4 to10−2 μM, MEKi ~10−5

to 10−3 μM), the gain from pEGFR to RAS-GTP was close to zero,

representing almost complete inhibition of EGF-mediated signaling

by the combined actions of feedback regulators such as SPRY. At

medium to high drug concentrations (RAFi: ~10−2 to 10−1 μM,

MEKi: ~10−3 to 10−0 μM) a reduction in the levels of feedback regu-

lators led to a relief of feedback and an increase in gain. Moreover,

the transcriptional control of EGFR expression by MAPK activity

resulted in decreasing input activity (pEGFR, top left Fig 4B) at

higher drug concentrations (decreasing pEGFR opacity, Fig 4D and

E) of both drugs. At the second step, for medium to high RAFi and

MEKi concentrations, we found that B2 had gain close to zero, but

R2 gain was close to one (Fig 4C, middle panels), indicating

channel-specific effects for both drugs. For RAFi, we attributed this

channel specificity to difference in the affinity of the RAFi for mono-

meric RAF in the BRAFV600E channel and dimeric RAF in the RAS

channel (orange vs. blue colored nodes). The difference in affinity is

determined by the thermodynamic parameter ΔΔGdim (Box 3),

which encodes the ratio of drug affinities for the first and second

protomers of a RAF dimer; for vemurafenib this difference was esti-

mated to be ~600-fold (median of values from best 5% of fits).

Thus, even at 10 μM, the highest vemurafenib concentration tested,

~75% of RAF dimers had one protomer not bound to drug (Fig 4F,

left), a configuration that is active as a kinase (Karoulia et al, 2017).

Estimated ranges for ΔΔGdim were similar for the two other type I½

RAFi drugs we tested (dabrafenib and PLX8394; Figs EV2 and
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EV4C). For MEKi, we attributed the channel specific potency in the

second step to a decrease in MEK phosphorylation rate by

BRAFV600E for BRAF-uMEK-MEKi complexes when compared with

BRAF-uMEK complexes; modeling suggested a ~6.9 × 103-fold

decrease in phosphorylation rate for BRAF-uMEK-cobimetinib when

compared with apo BRAF-uMEK. Estimated values were similar

(> 3,000 fold) for trametinib, but substantially lower (< 500 fold)

for binimetinib, PD0325901 and selumetinib, consistent with
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Figure 4. Quantification of signal transduction in RAS and BRAFV600E channels.

A Simplified network model depicting intertwined RAS and BRAFV600E channels and feedbacks. Nodes in the network correspond to key steps in signal transduction in
each of the reaction channels. Lines ending with arrowheads indicate signaling flow along multiple reaction steps and lines with ending with circles indicate direct
drug action (purple) and drug adaptation (brown) as introduced in Fig 3B.

B Decomposition of RAS and BRAFV600E channel signal activity at the different nodes of the simplified network from (A) for different concentrations of vemurafenib.
Color indicates vemurafenib concentration. Simulations were performed for a single, representative parameter vector.

C Quantification of signal transmissions in terms of gain along the edges of the simplified network in (A) (top, R1; middle R2/B2; bottom R3/B3) for different
concentrations of vemurafenib (left) and cobimetinib (right). Color indicates the reaction channel. Solid lines show median values, and shading indicates 20, 40 60
and 80% percentiles over 50 best parameter sets.

D, E Visualization of pathway rewiring as a result of drug adaptation in the simplified network in (A). The opacity of nodes denotes the median normalized signaling
activity (shown in B); the opacity of arrows denotes median normalized gain (shown in C), where 100% corresponds to a signaling gain of 2.

F Quantification of efficacy of drug inhibition for RAF monomers (blue) and RAF dimers (orange). For RAF dimers, each protomer is counted individually. Solid lines
show median values, and shading indicates 20, 40, 60 and 80% percentiles over 50 best parameter sets. Experiments were performed in CRISPRa-EGFR A375 cell
lines in 5% FBS medium following 24 h of drug adaptation. Cells were stimulated with EGF at a final concentration of 100 ng/ml. Single drug response data are
shown as point-ranges with average over technical replicates (n = 2) as point and estimated standard deviation (over all datapoints) as line. Data from different
experiments (biological replicates) are shown separately.
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previously reported differences in the activity of these drugs (Pino

et al, 2021). In all cases, the combination of lower RAFi affinity or

lower MEKi-dependent phosphorylation rate resulted in incomplete

inhibition of pMEK in the RAS channel (Fig EV3).

In the third step, we found that gain from pMEK to pERK (B3

and R3) increased at medium to high concentrations of RAFi

(Fig 4C, bottom left panel), due to a reduction in DUSP expression

levels. In contrast, MEKi did not have any effect on B3/R3 gain at

medium concentrations (~10−3 to 10−2 μM; Fig 4C, bottom right

panel). This was unexpected, since the analysis described above

shows that DUSP levels are controlled by drug adapted pERK levels,

which are lower at medium concentrations of MEKi and RAFi (blue,

middle panels, Fig 4C). However, B3/R3 are the only steps in which

the model implements two distinct effects for MEKi: increases in

ERK activity as a result of drug adaptation, i.e., DUSP downregula-

tion, (brown, Fig 4A) and reductions in ERK activity via direct drug

action on MEK (purple, Fig 4A). Modeling suggested that direct drug

action and adaptation balanced each other at intermediate MEKi

concentrations and direct inhibition became dominant only at high

concentrations. We observed few channel specific effects when

comparing R3 to B3, suggesting that neither small differences in the

apo-pMEK to MEKi-pMEK ratio (Figs 4F, right and EV4D) nor in

MEKi affinity for uMEK when compared with pMEK (Fig EV4F)

resulted in substantial channel-specific differences in MEKi potency

in the third step (see Materials and Methods Section on Causal

Decomposition for a detailed explanation of both mechanisms).

Thus, we concluded that the ~100-fold shift in MEKi potency for

pERK activated by EGFR when compared with BRAFV600E activated

pERK (Figs 2A and EV3A) primarily arises in the second step as a

result of a lower rate of phosphorylation rate of MEKi-uMEK by

BRAFV600E compared with apo uMEK.

Additionally, we found that, at high concentrations of RAFi

(Fig 4D, rightmost diagram), step B3 (blue) had high gain (due to

low DUSP activity) under conditions in which the channel transmit-

ted no signal and was functionally inactive (due to RAFi-BRAFV600E

binding). This “signaling primed” configuration implies that the

anti-proliferative effects of RAFi are highly sensitive to anything able

to activate MEK directly, such as a mutation in the kinase. Consis-

tent with this, activating mutations such as MEK1C121S are observed

to give rise to acquired drug resistance in patients (Wagle

et al, 2011). A directly analogous state of high gain but low activity

is observed in the RAS channel in adpated cells and potentiates the

mitogenic effects of ligand-mediated RTK activation and of RAS

mutation (e.g., NRASQ61K discussed below). It is possible that identi-

fying signaling steps with low activity but high gain may be gener-

ally useful in pinpointing mechanisms involved in acquired drug

resistance.

Pulsatile signaling induces apparent drug interactions

MEK and RAF inhibitors are normally used in combination. To

study drug interaction and also test the predictive power of

MARM2.0 in conditions distinct from those used for model training,

we simulated the effects of RAFi plus MEKi combinations on pERK

levels with a model trained on single-drug responses alone (the

model training described above). Drug dose–response relationships

were then visualized as surface plots (Fig 5A) and isobolograms

(Fig 5B). In the absence of stimulation with exogenous growth

factors (Fig 5A (i)), we predicted a monotonic decrease in pERK

levels with increasing doses of both drugs (left panels) and experi-

mental data were in agreement (right panels). In BRAFi-adapted and

EGF stimulated cells, we predicted a more complex landscape

(Fig 5A (ii)), in which pERK was relatively drug resistant along a L-

shaped region (red dashed outline) at intermediate MEKi and high

RAFi concentrations with a gradual decrease at high MEKi concen-

trations. Using isobolograms, we observed disconnected level sets

(bottom, Fig 5B), recapitulating the non-monotonic pERK response

to MEKi 5 min after EGF stimulation in Fig 2A, in which peak pERK

levels first rose and then fell with increasing drug concentration.

Experimental data (right panel, Fig 5A (ii)) were qualitatively simi-

lar to predictions (left panel) and differences were primarily in the

magnitude of pERK, not the shape of the response surface (bottom,

Fig 5B). Disconnected isobolograms (bottom, Fig 5B) are notewor-

thy, because measures of drug interactions such as Loewe additivity

(Loewe, 1928) or the Chou–Talalay combination index (Chou

et al, 1993) require a one-to-one mapping between dose and

response (a bijective curve) and cannot be applied in this context.

However, comparing pERK levels to null models for Bliss indepen-

dence (Bliss, 1939; Bliss, Fig 5C) and highest single agent (Leh�ar

et al, 2007; HSA, Fig 5D) revealed negligible drug interaction

(white) in the absence of EGF (top panels) in simulation (left) and

experimental data (right). Under conditions of EGF stimulation (bot-

tom panels), we observed substantial discordance between the mag-

nitude and sign of drug interaction as scored by Bliss criteria

(Fig 5C) and HSA (Fig 5D). Thus, existing definitions of drug syn-

ergy and antagonism do not adequately describe the complex dose–
response landscapes we observed.

When we decomposed dose–response surfaces for EGF-

stimulated conditions (left, Fig 5E) into BRAFV600E (middle) and

RAS channels (right), we observed little RAFi and MEKi interaction

in the BRAFV600E channel (left, Fig 5F) and either strong synergy

(blue) or strong antagonism (red) in the RAS channel depending on

drug concentration (right). When we computed gain in the RAS

channel for R1, R2 and R3 (Fig 4A) at different drug concentrations,

we observed low gain for R1 at RAFi and MEKi concentrations

below 10 and 1 nM respectively (first panel, Fig 5G), gain close to 1

for R2 at all concentrations (second panel) and low gain for R3 at

MEKi at > 1 μM and high gain at RAFi at > 0.1 μM (third panel).

When the total gain for steps R1–R3 was computed as pointwise

multiplication of the three surfaces, the L-shaped region of drug

resistant pERK (fourth panel) was regenerated (Fig 5A (ii)). Thus,

the overall drug response landscape can be explained by the super-

position of adaptive drug response on R1 (brown, first panel), and

direct drug effects on R3 (purple, third panel).

Sustained signaling does not induce drug interaction

To study the effects of RAFi and MEKi on signaling in the RAS chan-

nel under conditions of sustained rather than transient EGFR activa-

tion, we over-expressed EGFR using CRISPRa (Gerosa et al, 2020),

yielding two cell lines with 4-fold (light blue) and 9-fold (turquoise,

referred to as A375 CRISPRa-EGFR below) increases in expression

levels (Fig 6A). It has previously been shown that, when EGFR is

overexpressed to this degree, mechanisms of receptor endocytosis

and degradation are saturated and EGFR becomes chronically rather

than transiently active in the presence of ligand (Wiley, 1988; Lund
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et al, 1990; Kiyatkin et al, 2020). Consistent with this, we found

that, upon ligand addition, pERK levels in RAFi-adapted CRISPRa-

EGFR cells rose rapidly to a peak at ~30 min and then fell slightly to

level at roughly ~75% of their levels in the absence of RAFi expo-

sure; pERK remained at this level for at least 24 h in both experi-

ments and simulations. Under these conditions, RAFi had

substantially lower efficacy (ECmax; Fig 6B) and MEKi had lower

potency (EC50; Fig 6C) than in cells not stimulated with EGF. Chan-

nel decomposition (Fig 6B right panels) revealed an increase in

pMEK and pERK levels in the RAS channel (orange) as a result of

sustained EGFR activity. Analysis of pERK phase space with DUSP

and SPRY mRNA and protein levels showed similar distributions at

8 h post EGF-stimulation in drug adapted CRISPRa-EGFR cells and

pre EGF-stimulation in drug adapted EGFRwt cells, suggesting that a

steady state had been reached 8 h post EGF-stimulation (Fig EV5D).

Thus, sustained activation of the RAS channel is a sufficient expla-

nation for the relative resistance of EGFR amplified cells to RAFi

and MEKi.

When we predicted the pERK dose–response surface for com-

bined RAFi and MEKi treatment of CRISPRa-EGFR cells (8 h after

stimulation with EGF) using single drug training data (Fig 6D left),

we observed incomplete pERK inhibition at high RAFi and medium

MEKi concentrations. The resulting isobolograms had a convex

shape (Fig 6E). Moreover, we observed minimal drug interaction by

Bliss (Fig 6F) or HSA criteria (Fig 6G). This differs from what was

observed with pulsatile RTK activation (Fig 5C and D bottom pan-

els) and suggests that drug interactions in the case of pulsatile sig-

naling were only possible due to timescale separation between drug

adaption and direct drug action.

Structure-Based model formulation enables generalization
across inhibitor classes

In MARM2.0, the thermodynamic parameter ΔΔGdim describes

changes in the stability of (RAFi-RAF)2 complexes; these have been

studied in detail via crystallographic structures (Rukhlenko

et al, 2018). Negative ΔΔGdim values manifest themselves as a loss

of drug affinity by the second protomer in a RAF dimer. It is well-

established that this leads to lower RAFi efficacy in the RAS channel

when compared with the BRAFV600E channel (Fig 4C and F). How-

ever, due to energy conservation (Box 3), ΔΔGdim < 0 also results

in a higher dissociation rate of RAF2 complexes at high RAFi
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concentrations (Fig EV4E). Thus, thermodynamically formulated

models are ideal for describing the phenotypic effects of different

kinase inhibitors based on their allosteric properties.

In contrast to type I½ RAF inhibitors, type II inhibitors (also

called panRAFi; Box 2) such as LY3009120 and AZ-628 (Henry

et al, 2015; Noeparast et al, 2018) inhibit both monomeric RAF in

the BRAFV600E and dimeric RAF in the RAS channel with similar

affinity. Crystallographic data suggest that this arises because

panRAF inhibitors do not destabilize (RAFi-RAF)2 complexes, i.e.,

they do not induce allosteric changes. To determine whether

MARM2.0 correctly predicts response to type II inhibitors based on

the absence of allostery, we calibrated MARM2.0 using data from

A375 cells that were treated with LY3009120 (Fig 7A) or AZ-628 for

24 h (Fig EV5A), but not stimulated with EGF. This allowed estima-

tion of drug affinity for monomeric RAF (ΔG); ΔΔGdim was fixed to

0 to reflect loss of allostery. We then generated predictions for

pMEK (top) and pERK (bottom) levels 8 h after EGF stimulation

(red) in cells adapted to LY3009120 (Fig 7A left panels). Predictions

matched experimental data under the same conditions and causal

decomposition confirmed that RAF was strongly inhibited in the

RAS channel (right panels). We also observed good agreement

between model predictions and experimental data for LY3009120 in

combination with cobimetenib in EGF-stimulated, drug adapted

cells (Fig 7B). Analysis of drug interactions using HSA and Bliss cri-

teria (Fig 7C) revealed a similar level of additivity (but little or no

synergy) in model predictions and experimental data (note that the

isoboles are curved not due to synergy but our use of logarithmic

concentration axes). These data show that MARM2.0 can correctly

predict the properties of different RAF inhibitors based on differ-

ences in their allosteric properties alone.

Successes and limitations in extending MARM2.0 to other
resistance mechanisms

NRASQ61K is a frequently observed resistance mutations found in

melanoma patients treated with RAF/MEK therapy (Long

et al, 2014; Shi et al, 2014). We modeled NRASQ61K as RTK-

independent activation of the RAS channel (Burd et al, 2014), with
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Figure 6. Drug resistance arising from EGFR upregulation.

A Simulation of time course data for three different clones (two overexpression, one knockdown). Solid lines show median values, shading indicates variability across
80% of 50 best parameter sets. Top plot shows pERK response. Bottom plot shows mRNA (light colors) and protein (dark color) expression level changes.

B, C Simulation of pERK (top) and pMEK (bottom) dose response data with and without EGF (at 8 h after stimulation) in response to vemurafenib (B), cobimetinib (C).
Left panels show EGF stimulated (red) and unstimulated (black) conditions. Right panels show decomposed model simulations for EGF stimulated conditions as
colored areas (blue: BRAFV600E channel, orange: RAS channel) and for unstimulated conditions as white dashed lines. Thick lines or stacked areas show median
simulation values and shading indicates 80% percentiles over 50 best parameter sets. Thin vertical lines denote EC50 values, horizontal lines denote Emax values
(data: dashed, model: solid).

D Experimental data (right) and model predictions (left, median over 50 best parameters) for pERK (color) in response to vemurafenib plus cobimetinib at 8 h after
EGF stimulation. Training data have lower opacity and purple outline. Test data have a gray, dashed outline.

E Isobolograms of smoothed dose response surfaces from (A). Smoothing was performed using a Gaussian filter with 0.75 as standard deviation in log10-
concentration units.

F, G Analysis of drug synergy according to excess over Bliss (F) and HSA (G).
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baseline pERK levels inferred from drug-naı̈ve NRASQ61K BRAFV600E

double mutant melanoma cells (Fig 8A). Under these conditions,

simulations recapitulated higher baseline pERK and predicted 9-fold

lower efficacy for RAFi (NRASQ61K, turquoise; left panels) and 21-

fold lower potency for MEKi (Fig 8B, right panels) when compared

with NRAS wild-type cells (NRASwt, purple). These predictions were

confirmed in A375 cells engineered to conditionally express

NRASQ61K (Yao et al, 2015), but the observed loss of MEKi potency

was even greater than modeling predicted (32-fold). Causal decom-

position of (modeled) pERK activity in the presence of drug combi-

nations (varying MEKi plus 1 μM RAF; Fig 8C) showed that 1 μM
RAFi was sufficient to completely block activity in the BRAFV600E

channel (blue) without affecting the RAS channel (Fig 8B and C).

This made it possible to study NRASQ61K signaling without interfer-

ence from the BRAFV600E oncogene.

Based on this insight, we devised a triple combination experi-

ment to study drug interactions between panRAFi and MEKi in the

RAS channel alone (Fig 8D, top left panel). A375 BRAFV600E

NRASQ61K cells were grown in the presence of 1 μM vemurafenib

plus different concentrations of LY3009120 and cobimetinib for 24 h

and pERK levels then determined (top right panel). In contrast to

the analogous experiment without 1 μM vemurafenib (Fig 7C), we

observed pronounced synergy (blue) at low to medium concentra-

tions of both inhibitors (~1–100 nM) by Bliss (bottom left panel)

and HSA criteria (bottom right panel). Similar synergy has previ-

ously been observed in KRAS-driven cell lines of diverse origins

(Yen et al, 2018). However, we found that the effects of combining

three drugs in double mutant A375 cells were not accurately pre-

dicted by MARM2.0 (Fig EV5D). We hypothesized that drug synergy

is likely to arise due to a combined allosteric effect of both drugs on

RAS–RAF–MEK complexes, as similar interactions have been

described for combined treatment of MEKi and APS-2-79, a type II

inhibitor of the KSR scaffolding protein (Box 2; Dhawan et al, 2016).

MARM2.0 does not include such allosteric effects and was not

trained on combination data that would be necessary to infer the

strength of the combined effect a posteriori. This limitation of

MARM2.0 can be rectified in future studies, but serves to reveal

how the subtleties of drug interactions can be relatively difficult to

discern when multiple parallel reaction channels are active.

Model for melanoma cell line generalizes to colorectal cell line

BRAFV600E mutations are found in a variety of cancers other than

melanoma, notably colorectal cancers. To investigate whether

MARM2.0 could predict the responses of BRAFV600E colorectal

cancers to RAFi, we collected data from HT29 cells, which carry a

heterozygous BRAFV600E mutation and have high EGFR expression

(similar to A375 EGFR-CRISPRa cells). We anticipated that the

BRAFV600E channel would be a primary driver of pERK levels in the

absence of EGF (Fig 9A) and the RAS channel in the presence of

EGF (Fig 9B). To instantiate MARM2.0 for HT29 cells, we rescaled

baseline protein and mRNA expression levels according to relative
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Figure 7. Prediction of response to panRAF inhibitor LY3009120.

Experiments were performed in CRISPRa-EGFR A375 cell lines in 5% FBS medium after 24 h of drug adaptation. Cells were stimulated with EGF at a final concentration
of 100 ng/ml.
A Comparison of pMEK (top) and pERK (bottom) dose response predictions and experimental validation with and without 8 h of EGF stimulation. Left panels show EGF

stimulated (red) and unstimulated (black) conditions. Right panels show decomposed model simulations for EGF stimulated conditions as colored areas (blue:
BRAFV600E channel, orange: RAS channel) and for unstimulated conditions as white dashed lines. Thick lines or stacked areas show median simulation values and
shading indicates 80% percentiles over 50 best parameter sets. Data are shown as point-ranges with average over technical replicates (n = 2) as point and estimated
standard deviation (over all data points) as line.

B Experimental data (left panels) and predicted (right panels) pERK (color) for LY3009120 plus cobimetinib 8 h after EGF stimulation shown as heatmap (left panel
group) and smoothed isobolograms (right panel group). Model simulations represent median values over 50 best parameter sets. Smoothing was performed using a
Gaussian filter with 0.75 as standard deviation in log10-concentrations.

C Analysis of drug synergy according to excess over Bliss (left two panels) and HSA (right two panels) for data (left and model simulation (right) shown in (B).
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abundances in proteomic and transcriptomic data from the Cancer

Cell Line Encyclopedia (Barretina et al, 2012; Nusinow et al, 2020).

For simplicity, we did not account for the heterozygosity of the

BRAFV600E mutation. We simulated pERK drug response for RAFi

plus MEKi combinations for HT29 cells (bottom) and compared this

with simulations for A375 CRISPRa-EGFR (top) and Dox inducible

NRASQ61K A375 cells (middle). In all three cell lines, model predic-

tions (left panels) demonstrated pERK inhibition in high-dose com-

binations, a result confirmed by experimental data (right panels;

Fig 9C). Under conditions of EGF-stimulation, model predictions

(left panels) and data (right panels) revealed drug-resistant ERK

activation (Fig 9D) and an ~10-fold rightward shift in RAFi and

MEKi dose–response curves (red arrows). Causal decomposition

(Fig 9E) confirmed that these changes in drug potency are a conse-

quence of profound differences between the BRAFV600E (left) and

RAS (right) reaction channels.

Discussion

In this article, we develop an ODE-based model (MARM2.0) and a

quantitative framework for analyzing “pathway rewiring” during

the acquisition of adaptive resistance to RAF and MEK inhibitors in

BRAFV600E melanoma. In addition to its translational importance,

adaptive drug resistance represent an excellent setting in which to

advance the state of the art in mechanistic modeling of intracellular
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Figure 8. Prediction of drug response in the presence of an NRASQ61K mutations.

Experiments were performed in A375 cell line with a Dox-inducible NRASQ61K mutation in 5% FBS medium after 24 h of Dox induction (where applicable) plus 24 h of
drug adaptation. EGF stimulation was added to 100 ng/ml. Data are shown as point-ranges with average over technical replicates (n = 2) as points and estimated stan-
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A Sketch of simplified model topology induced by NRASQ61K mutation.
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D Combination dose response to the triple combination of 1 μM RAFi (vemurafenib) plus varying doses of panRAFi (LY3009120) and MEKi (cobimetinib) in Dox
induced cells. Drug interaction analysis via Bliss (bottom left) and HSA (bottom right).
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networks: it has been extensively studied using classical molecular

biology methods (Solit et al, 2006; Hatzivassiliou et al, 2010; Pouli-

kakos et al, 2010; Lito et al, 2012, 2014; Haling et al, 2014; Yao

et al, 2015), which provide extensive structural, biochemical and

cell-based data for model formulation. Using MARM2.0, we show

that resistance to RAF and MEK inhibitors in BRAFV600E cells can

arise from the co-existence of two functionally distinct MAPK reac-

tion channels. Signaling in one channel is initiated by the constitu-

tive activity of oncogenic BRAFV600E and signaling in the other by

RAS, which is in turn activated by RTKs. Reaction channels in this

context are conceptually similar to “rewired pathways” but the term

“reaction channel” (from chemical physics) is a formalization in a

mechanistic model of a dynamic state in which transient but distinct

assemblies involving enzymes and other regulatory proteins are

able to mediate different aspects of signal transduction. The proteins

in these channels are largely the same, but they often have different

conformations, modes of drug binding, and/or states of post-

translational modification.

Depending on conditions, one or the other reaction channel can

be dominant in regulating ERK, but the two channels can also oper-

ate concurrently, potentially masking each other’s activity. For

example, in EGF-treated cells, pMEK levels remain roughly constant

over a 105-fold range of RAFi because MAPK signaling transitions

from the BRAFV600E to the RAS channel. The BRAFV600E and RAS
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Figure 9. A unified model of drug resistance in BRAF-mutant cancers.

Experiments were performed in 5% (A375) or 10% (HT29) FBS medium after 24 h of Dox induction (where applicable) plus 24 h of drug adaptation. Cells were stimulated
with EGF at a final concentration of 100 ng/ml. Data are shown as average over technical replicates (n = 2).
A Schematic illustration of reaction channels under unstimulated conditions shown in (C)
B Schematic illustration of reaction channels under stimulated conditions shown in (D)
C, D Predicted (left) and measured (right) pERK in cobimentinib plus vemurafenib for (i) EGFR-CRISPRa amplified A375 melanoma cell line with (D) or without (C) 8 h of

EGF stimulation (top row), (ii) NRASQ61K Dox-inducible A375 melanoma cell line with (D) or without (C) 24 h Dox induction (middle row) and (iii) HT29 colorectal cell
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E Channel decomposition of model predictions shown in (D).
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channels also influence each other indirectly via control over the

synthesis of feedback regulators. An additional feature of these reac-

tions is that they operate on multiple time scales; in the case of the

RAS channel this includes: (i) a time scale of seconds to minutes

involving post-translational modifications and the direct action of

inhibitory drugs (ii) a time scale of tens of minutes involving recep-

tor internalization, degradation and recycling and (iii) a time scale

of hours involving changes in the levels of negative feedback regula-

tors such as DUSPS and SPRY. Time-scale separation between signal

propagation and transcriptional rewiring is necessary for pulsatile

signaling to escape from negative feedback and homeostatic control.

In the treatment of melanoma, RAF and MEK inhibitors are used

in combination, which is consistent with the more general use of

drug combinations to improve reduce resistance to targeted therapy

(Leh�ar et al, 2009). Simulation represents an effective way to inves-

tigate mechanisms of drug interactions (Fröhlich et al, 2018; Yuan

et al, 2020) and it has been postulated, on theoretical grounds, that

inhibition of enzymes acting sequentially in a pathway is a means

to achieve synergistic drug interaction (Fitzgerald et al, 2006; Yin

et al, 2014). However, both data and modeling show that the activi-

ties of RAF and MEK inhibitors in BRAFV600E cells are additive over

the great majority of the dose–response landscape. In those rare

conditions in which drug synergy or antagonism is observed, analy-

sis suggests that transcriptional feedbacks and allosteric interactions

—rather than the presence of a serial network motif per se—are

responsible for drug interaction.

Methodological innovation

Methodological innovation in the current article focuses on combin-

ing rule-based modeling based on PySB and BNG with thermody-

namic formalisms that exploit the fact that protein–protein and

protein-small molecule binding and unbinding events do not con-

sume energy. This builds on the work of Kholodenko on structure-

based ODE models (Kholodenko, 2015) while creating a general-

purpose framework for programmatically generating model families

that make model calibration more efficient. In particular, submodels

were generated in PySB to optimally exploit the perturbational struc-

ture of the training data (the inclusion or not of drugs and growth

factors in each experiment) and combined this with multi-model

parameter estimation in the pyPESTO toolbox to substantially accel-

erate model training, an important consideration with large ODE

models and complex training data. Furthermore, PySB/BNG enabled

us to implement a labelling scheme for causal network decomposi-

tion that traces how species such as activated pERK are generated

by converging upstream sequences of activating events (which

define downstream reaction channels). Analogous generation and

analysis of causal traces (“stories”) has been described in agent-

based modeling (Boutillier et al, 2018) and their adaptation to the

MARM2.0 ODE model was essential for formalizing the concept of

network rewiring. As this approach provides a low dimensional,

interpretable representation of “signal flow” in a model, we expect

it to be generally useful for the analysis and interpretation of other

large and complex ODE models. These methods are applicable to

any PySB model (Lopez et al, 2013), and are complemented by even

more general methods such as gain analysis.

Using energies (ΔG and ΔΔG values) to describe molecular inter-

actions is a more natural and extendable framework for

parameterizing biochemical models than kinetic rates and is likely

to form the foundation of a structure-aware approach to dynamic

modeling. Energetic landscapes can be estimated from structural

studies, from mass-spectrometry measurements (Mason &

Covert, 2018; de Souza & Picotti, 2020), and increasingly from fold-

ing and docking algorithms that combine biophysical understanding

of protein structure with deep learning (AlQuraishi & Sorger, 2021;

Jumper et al, 2021). Approximate energy values can also mitigate

the parametric uncertainty that is pervasive in dynamical models:

We anticipate that future use of measured or predicted energy val-

ues will make it possible to place fairly tight priors on parameter

values during model calibration, generating more predictive and

interpretable models. Moreover, the use of energy-based methods

promises to bridge between fine-grained atomistic and structural

data on single proteins and the more coarse-grained description of

biomolecular interactions that are used for dynamical modeling of

cellular networks. Ultimately, structure-informed dynamic models

could be used to discover emergent cell-level properties such as

drug resistance, closing the structure–function gap.

Limitations

At the current state of the art, ODE-based dynamical models are

unable to include all known or suspected molecular mechanisms for

even well-studied biological networks. This is most obvious at the

level of protein and mRNA species: MARM2.0 includes only 11 pro-

teins, three mRNA species and three small molecule drugs but it

nonetheless involves a network of over 105 distinct biochemical

reactions. This represents a substantial increase in complexity rela-

tive to previous models of MAPK signaling, but even so, the details

of BRAFV600E-BRAF-CRAF interaction in the presence and absence

of drugs omit many structurally distinct but functionally and kineti-

cally similar modes of kinase activation and inhibition (as described

in the literature). Nonetheless, MARM2.0 is applicable not only to

BRAFV600E melanoma cells (with and without EGFR overexpression)

under a wide variety of conditions but also, with small modifica-

tions, to BRAFV600E NRASQ61K melanoma and BRAFV600E colorectal

cancer cells. The good agreement between MARM2.0 simulations

and data across these four different settings suggests that the model

provides a sufficient explanation of much of the underlying MAPK

biochemistry. Conversely, we conclude that a substantial fraction of

the detailed molecular mechanisms obtained using vitro studies

with purified enzymes or inferred from crystal structures of drug-

bound enzymes do not give rise to properties that can be measured

at the level of cells, even with the aid of computational models. For

example, the variety of phosphorylation-dependent negative feed-

back mechanisms operating on MAPK signaling are not readily dis-

tinguishable from each other under most conditions, making it

difficult to discern their different roles. Thus, it is not only technical

limitations in model simulation and training that introduces an

unsatisfactory degree of personal choice into the formulation of

dynamical network models but also experimental non-observability.

Our data contain several clues about conditions in which the

MARM2.0 model breaks down and further extensions are necessary.

For example, when cells are treated with multiple ligands or drugs

in combination (BRAFV600E NRASQ61K cells exposed to multiple

kinase inhibitors, for example) simulations do not closely match

empirical data. This is likely to do the absence of molecular
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mechanisms such as KSR scaffolding proteins (McKay et al, 2009,

2011a, 2011b; Brennan et al, 2011; Dhawan et al, 2016; Khan

et al, 2020), cross-inhibitor allosteric interactions (Rukhlenko

et al, 2018) as well as higher order interactions between RAF, MEK

and MEKis (Pino et al, 2021). Moreover, MARM2.0 is not currently

able to distinguish between heterozygosity vs. homozygosity of

BRAFV600E alleles or resistance mechanisms involving BRAF splice

variants (Poulikakos et al, 2011), nuclear-cytoplasmic shuttling of

MEK and ERK (Fujioka et al, 2006), or new drugs targeting RAS.

The rule-based formulation of MARM2.0 makes it straightforward to

extend the model to specific new use cases. A key challenge for

models that include such additional mechanisms is to develop

appropriate experimental assays and conditions for measuring their

effects. A universal model of MAPK signaling that includes experi-

mental data still remains out of reach since model training would

currently be computationally intractable. Systematic methods for

coarse graining that account for mechanistic details without explic-

itly encoding them in model equations will be crucial next step, as

will means for more efficiently using multi-omic data in model train-

ing.

Materials and Methods

Cell lines and tissue culture

The following cell lines were used in this study with their source

indicated in parenthesis: A375 (ATCC), A375 with CRISPRa EGFR

overexpression (constructed from ATCC stock as reported in

(Gerosa et al, 2020)), HT29 (Merrimack Pharmaceuticals) and

A375 with doxycycline-inducible NRASQ61K (Yao et al, 2015; pro-

vided by Neal Rosen’s lab at Memorial Sloan Kettering Cancer

Center). A375 cells were grown in Dulbecco’s modified eagle

medium with 4.5 g/l D-glucose, 4 mM L-glutamine, and 1 mM

sodium pyruvate (DMEM; Corning), supplemented with 5% FBS.

HT29 cells were grown in RPMI media with L-glutamine supple-

mented with 10% FBS (50 ml). All media were supplemented with

1% penicillin and streptomycin. Cells were tested for mycoplasma

contamination using the MycoAlert mycoplasma detection kit

(Lonza).

Drugs and growth factors

The following chemicals from MedChem Express were dissolved in

dimethyl sulfoxide (DMSO) at 10 mM: vemurafenib, LY3009120,

AZ-628, cobimetinib. EGF ligand was obtained from Peprotech (cat#

100-15) and prepared in media supplemented with 0.1% bovine

serum albumin.

Experimental design for combined genetic, ligand and drug
perturbations

A375 cells with CRISPRa EGFR overexpression and HT29 cells were

treated with the indicated drugs for 24 h before being stimulated

with EGF or mock-media for 8 h. A375 cells with doxycycline-

inducible NRASQ61K were treated with doxycycline (10 μM) or

mock-media for 24 h before being treated with the indicated drugs

for 24 h.

Immunofluorescence staining, quantitation, and analysis for cell
cultures

The following primary and conjugated antibodies with specified

vendor, animal sources and catalog numbers were used in

immunofluorescence analysis of cells and tissues at the specified

dilution ratios: p-ERKT202/Y204 rabbit mAb (Cell Signaling Tech-

nology, clone D13.14.4 E, Cat# 4370), 1:800; p-MEKS217/221 rabbit

mAb (Cell Signaling Technology, Cat# 9121) 1:200, ANTI-FLAG®

mouse mAb (Sigma Aldrich, Cat# F1804), 1:1,000. Immunofluores-

cence assays for cultured cells were performed using cells seeded in

either 96-well plates (Corning Cat#3603) or 384-well plates (CellCar-

rier Cat#6007558) for 24 h and then treated with compounds or

ligands either using a Hewlett-Packard D300 Digital Dispenser or by

manual dispensing.

Cells were fixed in 4% PFA for 30 min at room temperature (RT)

and washed with PBS with 0.1% Tween-20 (Sigma; PBS-T), perme-

abilized in methanol for 10 min at RT, rewashed with PBS-T, and

blocked in Odyssey blocking buffer (OBB LI-COR Cat. No. 927401)

for 1 h at RT. Cells were incubated overnight at 4°C with primary

antibodies in OBB. Cells were then stained with rabbit and/or with

mouse secondary antibodies from Molecular Probes (Invitrogen)

labeled with Alexa Fluor 647 (Cat# A31573) or Alexa Fluor 488

(Cat# A21202) both at 1:2,000 dilution. Cells were washed with

PBS-T and then PBS and were next incubated in 250 ng/ml Hoechst

33342 and 1:2,000 HCS CellMask™ Blue Stain solution (Thermo Sci-

entific) for 20 min. Cells were washed twice with PBS and imaged

with a 10× objective using a PerkinElmer Operetta High Content

Imaging System. 9–11 sites were imaged in each well for 96-well

plates and 4–6 sites for 384-well plates.

Image segmentation, analysis, and signal intensity quantitation

were performed using the Columbus software (PerkinElmer).

Cytosol and nuclear areas were identified by using two different

thresholds on the CellMask™ Blue Stain (low intensity) and Hoechst

channels (~100-fold more intense) were used to define cytosolic and

nuclear cell masks, respectively. Cells were identified and enumer-

ated according to successful nuclear segmentation. Unless otherwise

specified, immunofluorescence quantifications are average signals

of the cytosolic area. In the case of the doxycycline-inducible

NRASQ61K A375 cells, low FLAG intensity was used to remove from

analysis cells not expressing FLAG-tagged NRASQ61K: in conditions

with doxycycline addition FLAG intensity distributions were mark-

edly bimodal with less than 40% of cells being FLAG negative. Pop-

ulation averages were obtained by averaging values from single-cell

segmentation using custom MATLAB 2017a code.

MultiModel fitting

To the best of our knowledge, all state-of-the-art toolboxes only

allow for fitting of individual models. To allow for simultaneous

training of multiple models, we implemented the AggregatedObjec-

tive class in pyPESTO (https://github.com/ICB-DCM/pyPESTO),

which implements the mapping between global optimization vari-

ables as well as respective gradients and local model parameter val-

ues and gradients.

To generate the individual model variants, we implemented the

function MARM.model.get_model_instance, which uses PySB to pro-

grammatically remove subsets of initial values of EGF, RAFi and
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MEKi species. For network generation, we use BNG to construct dif-

ferential equations only for species with non-zero concentrations.

To further reduce computational burden, we implemented the func-

tion MARM.model.cleanup_unused, which programmatically

inspects the generated model and removes unused rules, expres-

sions, parameters and energy patterns.

Model calibration

Model optimization was performed using pyPESTO 0.2.11 (https://doi.

org/10.5281/zenodo.5841204) with fides (Fröhlich & Sorger, 2022) ver-

sion 0.7.5 (https://doi.org/10.5281/zenodo.6038127) as optimizer and

AMICI (Fröhlich et al, 2021) version 0.11.28 (https://doi.org/10.5281/

zenodo.6426308) as simulation engine. 103 optimization runs were

performed using randomly sampled initial parameter values. Parame-

ter boundaries that were used for initial value sampling and as con-

straints for optimization are provided in the function

MARM.estimation.get_problem in the Code EV1. Initial parameter val-

ues where objective function values could not be evaluated were

resampled until evaluation was possible. Optimization convergence

settings were 10−12 as step-size tolerance and 10−4 as absolute gradient

tolerance. Objective function gradients were computed using forward

sensitivity analysis. Integration was limited to 106 steps and integration

tolerances were set to 10−11 (absolute) and 10−9 (relative). Steady-state

tolerances were set to 10−9 (absolute) and 10−7 (relative).

Causal signal decomposition

To track the causal origin of MEK and ERK phosphorylation, we

introduced the concept of reaction channels, which combines ideas

from causal pathway analysis (preprint: Babur et al, 2018) and

causal lineage tracing (Boutillier et al, 2018): Causal pathway analy-

sis explains the response to a perturbation by identifying a sequence

of regulatory mechanisms consistent with experimental data. This is

equivalent to finding a path in the causal analysis graph, con-

structed from the knowledge graph, that connects the perturbation

with the experimentally observed quantity (preprint: Babur

et al, 2018; Sharp et al, 2019). For rule-based models, the causal

analysis graph is equivalent to the influence map. Agent based sim-

ulations of rule-based models can be represented as random walks

on the influence map (Cristescu et al, 2019). Accordingly, causal

relationships can be extracted by analyzing the traces of individual

agents on the knowledge graph (Boutillier et al, 2018). As ODE rep-

resentations of rule-based models describe the average of a popula-

tion of agents, individual traces are not available and cannot be

used to extract causal properties.

To assign phosphorylated MEK and ERK to the BRAFV600E and

RAS channels, we added a “channel” site to MEK and ERK mole-

cules, which acts as a tag to track the source of phosphorylation.

Upon phosphorylation of MEK, this channel site is set according to

the source of phosphorylation “phys” for phosphorylation by RAS

bound RAF dimers and “onco” for phosphorylation by mutated

BRAF. The rule-based model formulation ensures that the channel

information is propagated on all subsequent modeling steps. For the

phosphorylation of ERK, we implement two separate rule variants

that set the channel site according to the value channel of the phos-

phorylating MEK molecule. For both pMEK and pERK, the label is

set to “NA” during both dephosphorylation and initialization.

Signaling gain

In systems biology, strength of signal transmission is typically quan-

tified as response coefficient or logarithmic gain

R ¼
ΔT
T
ΔS
S

between an input S and an output T at steady-state. However, this defi-

nition is not applicable for transient, temporally resolved signals as the

response coefficient does not account for the time dimension. As there

typically are delays in signal transduction, a pointwise evaluation at

individual timepoints does not yield meaningful results.

In signal processing, the gain of linear time invariant systems

can be computed as norm of the transfer function G

�
�
�G

�
�
� ¼

�
�
�
L T tð Þf g
L S tð Þf g

�
�
�

which permits the computation of a gain even for time-resolved

inputs S sð Þ and outputs T tð Þ. However, for nonlinear systems, such

as the model we developed, a transfer function generally does not

exist. However, we here extend the idea of using functionals such

as the Laplace function to map time-resolved input and outputs to

scalar values which can then be used to compute the gain. Specifi-

cally, we propose the supremum norm

Sk k∞ ¼ S tð Þ

as well as an L1 norm with exponential time transformation

Sk k1 ¼
Z log tf

log t0

S et
� �

dt

The supremum norm effectively computes the gain evaluated at

the peak of the signal, while the L1 norm computes the gain

between the area under the curve, where the exponential time trans-

formation aims to avoid problems when signals live on multiple

timescales.

The natural scale of gains is the ratio of molecules or concentra-

tions. However, pronounced parameter variability in the estimates

for scaling factors, suggested that absolute molecular concentrations

were subject to large uncertainties, which would propagate to these

norm estimates. Accordingly, we normalized all gains such that

baseline signal transmission had a gain of 1.

To numerically compute supremum and L1 norm, we used 50

log-uniformly spaced time points between 10−4 and 101 h. The inte-

gral was approximated using the sklearn.auc function, which uses

the trapezoidal rule.

Despite substantial variability in parameter estimates (Fig EV2),

we found that the variability in qualitative dependence of gain on

RAFi and MEKi concentrations is low. We observed the highest vari-

ability in the gain from RAS-GTP to physiological pMEK. This is not

surprising, as there is no experimental data on RAS-GTP levels.

However, the variability appears to primarily affect the absolute

levels of signaling gain and less the shape of the dose response

curve. Overall, this indicates that our conclusions were not subject

to parameter non-identifiability. Moreover, we found that the
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signaling gain analysis is consistent across different RAFis and

MEKis for L1 and L∞ norms (Fig EV4A and B), further corroborating

the validity of the approach.

Predictions for NRAS mutant cell lines

In lack of quantitative measurements of mutant NRAS protein abun-

dances in cell lines with acquired or mutated NRAS, we inferred respec-

tive levels from baseline data. In the model, the NRAS mutation was

implemented through a constitutive GTP loading reaction that activates

RAF independent of upstream receptor activity. Only the rate of this

reaction was estimated when retraining on baseline data from respec-

tive cell-lines, while all other parameters were kept fixed.

Computation of EC50 and ECmax values

EC50 and ECmax were computed by fitting a three-parameter hill

function

ECmin�ECmin�ECmax

1þ EC50

x

�y xð Þ

to either experimental data or model simulations, where x are drug

concentrations and y are pMEK or pERK levels. ECmin (search interval

[0, 2.5], initial 0.5) and ECmax (search interval [0,1.5], initial

min max y xminð Þ; 0ð Þ; 2:5ð Þ) were estimated on a linear scale while EC50

(search interval [xmin, xmax], initial xmedian) was estimated on a logarith-

mic scale. scipy.optimize.least_squareswas used for curve fitting.

Computation of Bliss and highest single agent synergy scores

To compute drug interaction scores I according to a Bliss Indepen-

dence null model, we used

IBliss ¼ EAB� EA þ EB�EA � EBð Þ;

where EA and EB are the effects of individual drugs and EAB is the

combined drug effects. For the overall pERK signal, the drug effect

EX was computed by normalizating drug perturbed pERK levels

pERKX with baseline pERK levels pERK0:

EX ¼ pERK0�pERKX

pERK0

When computing Bliss synergy scores for RAS channel pERK,

normalization was omitted to avoid division by 0. Highest Single

Agent interaction scores were computed according to the formula

IHSA ¼ EAB�max EA; EBð Þ:

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Modeling and visualization computer scripts: GitHub (github.

com/labsyspharm/marm2-supplement)

• Modeling and visualization computer scripts: Zenodo (https://

zenodo.org/record/6979792#.YvOTSy8RqAk)

• Model files: BioModels (https://www.ebi.ac.uk/biomodels/

MODEL2207130001)

• Primary and Processed Immunofluorescence data: Synapse

(synapse.org/#!Synapse:syn32830920)

Expanded View for this article is available online.
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Expanded View Figures

◀ Figure EV1. Overview calibrated model simulation and experimental data.

Experiments were performed in A375 cell lines in 5% FBS medium following 24 h of drug adaptation (unless otherwise noted). EGF stimulation was at 100 ng/ml. Data are
shown as point-ranges with average over technical replicates (n = 2) as point and estimated standard deviation (over all data points) as line. Data from different experiments
(biological replicates) are shown separately. Median simulations are shown as thick lines and shading indicates 80% percentiles over 50 best parameter sets.
A Phospoproteomic training data (RAFi dose response). Experiments were performed after 24 h pretreatment with drug/DMSO without EGF stimulation.
B Proteomic training data (RAFi dose response). Experiments were performed after 24 h pretreatment with drug/DMSO without EGF stimulation.
C Transcriptomic training data. RAFi dose response (left three panels) and time course (right three panels). Dose response was performed after 24 h pretreatment with

drug/DMSO without EGF stimulation. Time-course measurements were collected after 24 h pretreatment with 1 μM vemurafenib.
D Time resolved RAFi and MEKi drug response immunofluorescence data.
E Time course immunofluorescence data for different pretreatment times (for drug adaption). Pretreatment time indicates the time between drug treatment (1 μM

vemurafenib) and EGF stimulation (100 ng/ml).
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▸Figure EV2. Variability in parameter estimates.

A Boxplot of parameter estimates for best 50 parameter sets. Optimization boundary is indicated as dashed lines. Type of parameters are indicated by suffix: _0
(expression level), _dG (thermodynamic encoding of affinity, not on log scale), _ddG (thermodynamic encoding of allosteric interactions, not on log scale), _eq
(baseline expression level), _gexpslope (RNA synthesis scaling factor), _kM (pERK concentration at which 50% activation is achieved), _kbase (baseline phosphorylation
rate), _kcat (catalytic rate), _kcatr (normalized kcat), _kdeg (degradation rate), _kf (binding rate), _offset (background intensity), _scale (observable scaling). Central
band shows media, box extends from lower to upper quartile values and whiskers show full range excluding outliers (points more than 1.5 interquartile ranges away
from lower and upper quartiles).

B Correlation plots of parameter estimates. Only statistically significant (P > 0.05, Bonferroni-Holm corrected two-tailed t-test) correlations are shown. Coloring shows
positive (red)/negative (blue) correlation.
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A Parameter Estimates

B Parameter Correlation

Figure EV2.
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Figure EV3. Causal Decomposition of RAS and BRAFV600E channels (extended).

Experiments were performed in A375 cell lines in 5% FBS medium after 24 h of drug adaptation. EGF stimulation was at 100 ng/ml.
A, B Comparison of experimental data and decomposed model simulations for pERK (left panels) and pMEK (right panels) at 5 min after EGF stimulation for five

different MEK inhibitors (A) and three different RAF inhibitors (B). Data are shown as point-ranges with average over technical replicates (n = 2) as point and esti-
mated standard deviation (over all data points) as line. Median (over 50 best parameter sets) simulations are shown as stacked areas with color corresponding to
channels (blue: BRAFV600E, orange: RAS). Shading indicates 80% percentiles over 50 best parameter sets.
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Figure EV4. Quantification of gain in RAS and BRAFV600E channels (extended).

A, B Quantification of signal transmissions in terms of gain (L1 and L∞) along the edges of the simplified network in Fig 4A for different concentrations of three different
RAF inhibitors (columns 1–3) and five different MEK inhibitors (columns 4–8). Color indicates the reaction channel (blue: BRAFV600E, orange: RAS). Solid lines show
median, and shading indicates 20, 40, 60 and 80% percentiles over 50 best parameter sets.

C, D Quantification of drug-free protomer fractions. Columns correspond to different RAFi/MEKi, as in A/B. Colors indicate different complexification (C), reaction channel
(D) or post-translational states (F). Solid lines show median, and shading indicates 20, 40, 60 and 80% percentiles over 50 best parameter sets.

E Simulated Assembly of RAF-RAFi complexes in response to different RAFi. Each color corresponds to a different complex. Complex assembly was quantified for RAFi-
adapted cells at 5 min after EGF stimulation. Solid line shows median, and shading indicates 20, 40, 60 and 80% percentiles over 50 best parameter sets.

F Quantification of drug-free protomer fractions. Columns correspond to different MEKi, as in A/B. Colors indicate different post-translational states. Solid lines show
median, and shading indicates 20, 40, 60 and 80% percentiles over 50 best parameter sets.
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Figure EV5. Additional training data for EGFR upregulation and Causal Decomposition.

Experiments were performed in CRISPRa-EGFR A375 cell lines in 5% FBS medium after 24 h of drug adaptation. EGF stimulation was at 100 ng/ml. Data are shown as point-
ranges with average over technical replicates (n = 2) as point and estimated standard deviation (over all data points) as line. Data from different experiments (biological
replicates) are shown separately. Thick lines or stacked areas show median simulations and shading indicates 80% percentiles over 50 best parameter sets.
A Model simulations and experimental data for pMEK (left) and pERK (right) in EGF stimulated (8 h) and unstimulated conditions.
B Comparison of experimental data and decomposed model simulations at 5 min after EGF stimulation. Simulations are shown as stacked areas with color

corresponding to channels (blue: BRAFV600E, orange: RAS).
C Relationship between DUSP and SPRY expression levels and ERK phosphorylation levels under different experimental conditions (shown as different colors). pERK

levels were binned into 20 equidistant discrete levels.
D Predicted dose response for combinations of LY3009120 and cobimetinib at 1 μM vemurafenib. Simulations were performed for BRAFV600E NRASQ61K double mutant

cells that were adapted to all three drugs.
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