
Appendix A. Supplementary Information for the main text

Appendix A.1. The basic reproduction number with a disease-
free equilibrium

In our mathematical model, there is an equilibrium point
at which the booster vaccination rate α1=0 when the vacci-
nation program is essentially over. At this time, it can be
assumed that no infected individuals exist in the population,
and the susceptible population is divided into three groups
due to cross-immunity from previous infections: susceptible
to both strains, susceptible to strain 1 (Delta strain), and sus-
ceptible to strain 2 (Omicron strains). Therefore, E0 = I0 =

EV = IV = L0 = LV = 0, and the disease-free equilibrium
e0 =

(
S ∗, S ∗1, 0, 0, 0, S

∗
0, 0, 0, 0, S

∗
V

)
, where S ∗, S ∗1, S

∗
0, S

∗
V are

both non-negative numbers. Using the next generation method,
we can obtain the basic reproduction number in this disease-
free equilibrium. The basic reproduction number R0 is obtained
by solving the following equation: R0 = ρ(FV−1) [1]. F are the
derivatives of the new infections, V is the transition matrix of
the flow between compartments and ρ is the spectral radius.

The matrix of new infections F is given by

F =


β I0

N (S + S V )
0

β1IV (S+S 0)+β2IV (S 1−α1S V )
N
0

 .
While the transition matrix V is given by

V =


k1E0

−k1E0 + (γ1 + δ1)I0
k2EV

−k2EV + (γ2 + δ2)I0

 .
Hence, the Jacobian matrices are given by

F =

 0
βS ∗+βS ∗V

N∗ 0 0
0 0 0 0

0 0 0
β1S ∗+β1S ∗0+β2(S ∗1−α1S ∗V )

N∗

0 0 0 0

 ,
V =

 k1 0 0 0
−k1 (δ1+γ1) 0 0

0 0 k2 0
0 0 −k2 (δ2+γ2)

 .
Therefore,

FV−1 =


βS ∗+βS ∗V
N∗(δ1+γ1)

βS ∗+βS ∗V
N∗(δ1+γ1) 0 0

0 0 0 0
0 0 β1S ∗+β1S ∗0+β2(S ∗1−α1S ∗V )

N∗(δ2+γ2)
β1S ∗+β1S ∗0+β2(S ∗1−α1S ∗V )

N∗(δ2+γ2)
0 0 0 0

 .
The characteristic polynomial of FV−1 is given by
λ (λ − D) (λ − O), then the basic reproduction number is
given by R0 = max {|D|, |O|}.

RD
0 =

βS ∗ + βS ∗V
N∗ (δ1 + γ1)

. (A.1)

RO
0 =
β1S ∗ + β1S ∗0 + β2(S ∗1 − α1S ∗V )

N (δ2 + γ2)
. (A.2)

where R0 (D), R0 (O) are the basic reproduction numbers of
strain 1 and strain 2, respectively. To further evaluate the ef-
fect of vaccines as well as cross-immunity on the basic re-
production number. The disease-free equilibrium point was
given by

(
S ∗, S ∗1, 0, 0, 0,

η2L∗0
α1
, 0, 0, 0, η1L∗V

α1

)
. And we assume

that the percentages of S ∗, S ∗1, L
∗
0, L

∗
V in the total population

are θ∗, θ1∗, θ0∗, θV ∗ and their percentages can be computed by
booster vaccination coverage and the protective power given by
cross-immunity. Therefore, the basic reproduction number is
given by R0 = max

{
RD

0 ,R
O
0

}
. we simplified the basic reproduc-

tion numbers for each of the two strains as:

RD
0 =
β(θ∗ + η1θV

∗)
α1(δ1 + γ1)

. (A.3)

RO
0 =
β1(α1θ

∗ + η2θ0
∗) + α1β2(θ1∗ − η1θ

∗
V )

α1(δ2 + γ2)
. (A.4)

Appendix A.2. Stability of the disease- free equilibrium

The Disease-Free Equilibrium of our system is unstable if
R0 > 1 while it is locally asymptotically stable. The Jacobian
matrix of our system at the disease-free equilibrium e0 is given
by

JM =



−α1 − λ 0 0 −
βS ∗

N∗ 0 −
β1S ∗

N∗ 0 0 0 0
α1 −λ 0 0 0 −

β2(S ∗1−α1S ∗V )
N∗ 0 0 α1 α1

0 0 −k1 − λ
βS ∗+βS ∗V

N∗ 0 0 0 0 0 0
0 0 k1 − (δ1 + γ1) − λ 0 0 0 0 0 0
0 0 0 0 −k2 − λ

β1S ∗+β2(S ∗1−α1S ∗V )+β1S ∗0
N∗ 0 0 0 0

0 0 0 0 k2 − (δ2 + γ2) − λ 0 0 0 0
0 0 0 γ1 0 0 −η2 − λ 0 0 0
0 0 0 0 0 γ2 0 −η1 − λ 0 0
0 0 0 0 0 −

β1S ∗0
N∗ η2 0 −α1 − λ 0

0 0 0 −
βS ∗V
N∗ 0 0 0 η1 0 −α1 − λ



.

The Jacobian matrix has a null eigenvalue λ1, five negative
eigenvalues λ2 = λ3 = λ4 = −α1, λ5=−η1, λ6=−η2. And the
other eigenvalues are given by[

−k1 − λ
βS ∗+βS ∗V

N∗

k1 − (δ1 + γ1) − λ

]
and [

−k2 − λ
β1S ∗+β2(S ∗1−α1S ∗V )+β1S ∗0

N∗

k2 − (δ2 + γ2) − λ

]
.

Their characteristic polynomials are
(k1 + λ)(δ1 + γ1 + λ) − k1

βS ∗+βS ∗V
N∗ = 0

and (k2 + λ)(δ2 + γ2 + λ) − k2
β1S ∗+β2(S ∗1−α1S ∗V )+β1S ∗0

N∗ = 0.
That is,(
1 + λ7

k1

) (
1 + λ8

δ1+γ1

)
= RD

0 ,
(
1 + λ9

k2

) (
1 + λ10

δ2+γ2

)
= RO

0 .

Thus, when RD
0 < 1,RO

0 < 1, which means λ7, λ8, λ9, λ10 < 0,
at this moment, the system is stable. When RD

0 > 1 or RO
0 > 1,

there exists at least one λi > 0 (i = 7, 8, 9, 10), Hence, the
system is unstable [2, 3].

Appendix A.3. Fitting real data from Malaysia, Iceland, and
Bahrain

The numerical simulation results for three countries, South
Korea, Denmark and Spain, are shown in the Fig A.1 The simu-
lations include the daily cases as well as cumulative cases. The
results show that our model is well-fitted to the real reported
data. In addition, we fit the Omicron sequence percentages for
a number of countries besides those in the main text. In Fig
A.2, our model fits the proportion of Omicron sequences for
each country separately very well, by comparing and fitting the

1



(a) (b)

(c) (d)

(e) (f)

Fig. A.1. Comparison of our model results with real data on the epidemic in Malaysia, Iceland, and Bahrain. (a),(d),(e) shows the fit of the model to the daily new
cases. (b) shows the fit of the model to the cumulative cases.

data for multiple countries, we obtain the timing of the replace-
ment of previous strains by Omicron strains and the competitive
advantage of each strain, as shown in section 4 of the main text.

Appendix A.4. Comparison of the predictive performance of
the models

This subsection aims to compare the prediction performance
from our model (multi-strain model), The traditional transmis-

sion SEIR model, machine learning and deep learning tech-
niques on COVID-19 dataset for seven countries including
Denmark, Malaysia, Spain, Iceland, Korea, Bahrain, and South
Africa all over the globe. LSTM, Stacked LSTM,GRU, and Bi-
directional LSTM are taken as deep learning models for sequen-
tial predictions. The training set is 120 days and the test set is 7,
30, 60, 120 days respectively. Both LSTM,GRU and BiLSTM
have a three-layer network with 256, 256 and 30 neurons per
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Fig. A.2. Comparison of Omicron sequence percentage fitting results with real data for each country. The red solid line indicates the simulation result of the model,
and the black hollow triangle indicates the real data.

Table A.1: Validation Metrics for Total cases COVID-19 forecasting using SEIR, LSTM, BiLSTM, ST-LSTM, GRU,and Multi-strain models.

Predicted days Models R2 MS E RMS E MAE MAPE S MAPE

7 Days Multi-strain model 0.3617 4.85 × 1011 696686.5704 670379.6835 8.5701 8.1699
LSTM 0.3094 2.56 × 1012 1600733.6841 1297212.3170 16.4966 15.1604
BiLSTM 0.8444 1.33 × 1012 1156398.5685 950167.6898 11.5816 11.8603
ST-LSTM 0.6268 2.03 × 1012 1426037.6088 1161184.6082 14.7856 13.7933
GRU 0.5877 2.14 × 1012 1463502.1113 1191411.2367 15.1512 14.1130
SEIR -0.9014 1.44 × 1012 1202543.9112 1113804.1814 13.2166 14.2628

30 Days Multi-strain model 0.0.9481 3.66 × 1011 605610.3559 585892.3154 5.3040 5.1380
LSTM 0.3108 1.62 × 1013 4031824.8036 3334720.9012 27.5387 30.8842
BiLSTM 0.6216 1.38 × 1013 3726051.7885 3071526.3982 26.0797 27.9793
ST-LSTM 0.4174 1.53 × 1013 3919467.5193 3238241.1291 26.9380 29.8226
GRU 0.5878 1.74 × 1013 4176708.5427 3466143.1701 27.5351 25.7431
SEIR 0.4278 4.04 × 1012 2012131.2154 1925828.2464 16.1196 17.6354

60 Days Multi-strain model 0.8780 1.22 × 1012 1108909.7615 1001466.1963 6.8017 6.5484
LSTM -0.2354 3.06 × 1013 5534794.7374 4626671.2296 32.2277 37.5170
BiLSTM 0.1258 3.45 × 1013 5877198.3903 4934520.2774 40.7825 33.0800
ST-LSTM 0.1346 3.76 × 1013 6135027.9231 5191191.4167 42.2210 34.7309
GRU 0.1229 2.73 × 1013 5228768.4593 4394749.2377 31.0043 28.5822
SEIR 0.0750 9.32 × 1012 3054100.1913 2496637.0082 16.9124 16.6585

120 Days Multi-strain model 0.7630 2.02 × 1012 1423417.3546 1339816.1121 8.0177 7.6867
LSTM -0.6379 4.37 × 1013 6612067.9305 5742102.0704 40.2196 34.4087
BiLSTM 0.0763 3.58 × 1013 5987247.3086 4994265.1605 34.3915 32.8880
ST-LSTM -0.0773 2.66 × 1013 5162518.1460 4173290.6045 27.0041 30.34795
GRU 0.0461 2.55 × 1013 5058781.0851 4050323.8159 26.4129 29.3212
SEIR -12.5084 1.15 × 1014 10747682.2970 8493327.6885 48.1990 36.4588
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Fig. A.3. Comparison among deep learning techniques ,SEIR model, and our model in terms of different error measures. (a) indicates the coefficient of determination,
the closer to 1 means the more accurate the prediction result. (b), (c), (d) indicate Root Mean Square Error, Mean Absolute Percentage Error, and Mean Absolute
Error respectively, the lower their values are means the prediction result is better.

layer, ST-LSTM stacking another layer of the network between
the lstm layers. The Optimizer is Adam with 0.01 learning rate
and epochs are 1000. In our model and in the SEIR model,
all parameters are set as realistically as possible, as shown in
Table ?? and the fitting method is the leastsq. In traditional
transmission models such as the SEIR model, the prediction of
epidemics is often only for early transmission. Therefore, it is
no longer applicable for the current stage. Deep learning tech-
niques can make short-term predictions of time series, but their
results are uninterpretable. Table A.1 and Fig. A.3 also show
that the above methods no longer have reference value when the
prediction time length reaches 30 days. In contrast, our model
outperforms in long-term forecasts and significantly improves
over traditional models. The reasons and preconditions for the
good performance of our model are analyzed in the discussion.

Our model shows well prediction performance on datasets

from seven countries, including South Korea, Malaysia, Ice-
land, Spain, Denmark, South Africa, and Bahrain. It is worth
mentioning that better prediction results require the training set
to contain the turning points of the epidemic. The training set
without the turning points of the epidemic still outperforms the
traditional prediction method, but the generated time series is
only the general trend of epidemic development.

As we can see in the table A.1, our model achieves the best
scores in almost all evaluation metrics compared to the other
models, except for the R-square score in 7-day short-term pre-
diction, which is due to the fact that our model focuses more
on long-term time series prediction. To better visualize the pre-
diction performance of each model at different time lengths, we
selected four evaluation metrics R-square score, RMSE, MAPE
and MAE, and plotted their predictive ability in different dimen-
sions in a three-dimensional diagram.
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Table A.2: Mean values of model parameters corresponding to the situation of South Korea

Parameter Description South Korea Malaysia Iceland Denmark Bahrain Spain South Africa

α1 Booster vaccination rate 0.0112 0.0091 0.0085 0.0428 0.0464 0.0602 0.0370

β Transmission coefficient of strain 1 0.3121 0.3246 0.4260 0.3930 1.2632 0.2112 0.1000

β1 Relative transmission coefficient of strain 2 0.8715 0.9412 0.8607 1.7130 2.111 3.2000 1.6466

β2 Transmission coefficient after immune escape 0.3123 0.1777 0.3080 0.4215 0.3067 0.3168 0.1056

k1 Inverse of the latency period of strain 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25

k2 Inverse of the latency period of strain 2 0.37 0.37 0.37 0.37 0.37 0.37 0.37

δ1 Death rate due to strain 1 0.0798 0.0514 0.0285 0.0776 0.1000 0.0499 0.0999

δ2 Death rate due to strain 2 0.009 0.0099 0.0099 0.0023 0.1000 0.0100 0.009

γ1 Rate of infectious loss of strain 1 infected patients 0.2089 0.3079 0.2251 0.1997 0.3000 0.0300 0.0908

γ2 Rate of infectious loss of strain 2 infected patients 0.3198 0.3898 0.3310 0.2999 0.3000 0.3260 0.2500

η1 Rate of loss of cross-immunity to strain 1 3 × 10−4 4 × 10−4 3 × 10−6 6 × 10−8 3 × 10−4 5 × 10−8 10−5

η2 Rate of loss of cross-immunity to strain 2 0.007 0.005 8 × 10−5 5 × 10−7 0.008 9 × 10−4 0.009

N Total country population 51780000 32800000 400000 5900000 1700000 47300000 60000000

Fig. A.3 shows that when the number of forecast days is 7
days, Almost all models except the SEIR model showed well
predictive performance. However, as the number of prediction
days reaches 30 days, the prediction results of deep learning
models become terrible, with a very small R2 (for visual rep-
resentation, when R2 < 0 are noted as 0 in the figure) and a
large RMSE, among other evaluation metrics. At this point,
all traditional models no longer have reference value. When
the prediction time reaches 120 days, the R2 of other models is
already all less than 0 and significantly different from the ac-
tual cases. Only our model can match the actual wells on the
prediction of such a long time series. The specific fit plots are
shown in the section Appendix A.3 and main text. It is worth
mentioning that Bi-LSTM has the best performance in deep
learning techniques for short-term forecasting and R2 is also
the largest among the models, but it is still our model optimal
among other evaluation metrics. Therefore, we can choose Bi-
LSTM in combination with our model for shorter-period time
series prediction, and firmly choose our model for long-term
time series prediction.

the predictive performance of our model performs well in the
following conditions.

• Competitive behavior between strains exists.

• The data in the training set already shows a preliminary
trend of exponential growth. If the turning point of the
epidemic is included, then the predictions will be more
accurate. (The 120-day training set contains the turning
point of the epidemic.)

• If the general trend of the epidemic development is not a
single peak such as in South Africa, changes in competing
strains need to be considered.

Appendix A.5. Parameter estimation

The parameters fitted to the real data for each country are
shown in Table A.2. The parameters for each country were
taken as realistically as possible, and the specific range of val-
ues is similar to the evaluation of the parameters in the main
text.

Appendix A.6. Competitive advantages of various lineages

We examined the subvariants of Omicron in a more refined
way. By fitting the evolutionary trends between various com-
peting variants using the multi-strain model for a total of 15
countries including those mentioned in the Appendix. The time
of mutual substitution of each strain and its daily growth of the
log-odds rate were evaluated by fitting a Multi-strain mathemat-
ical model to the daily proportions of the competing variants.
The time taken to increase the proportion of a strain sequence
from 5% to 50% was calculated assuming that only two strains
existed and using the pairwise difference in their growth rates.
Because of the assumed symmetry, the time taken to grow the
sequence of a strain from 5% to 95% is twice as long as the
time is taken to grow the sequence from 5% to 50%. The ta-
ble A.3 shows that the shortest time for the Omicron strain to
replace the non-Omicron strain as the dominant strain was 14
days, which also means that the competitive relationship be-
tween them is strong. The BA.2.12.1 took the longest time to
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Table A.3: Comparison of competitive advantage among strains. comparing daily growth rates of Delta, Omicron, and Omicron subvariants and substitution times
among strains.

Lineages competing Growth-rate advantage Time for growth from 5 to 50% (days) Time for growth from 5 to 95% (days)

Omicron versus Delta (December 2021 to January 2022) 0.209 14 28

BA.2 versus non-BA.2 Omicron (January to May 2022) 0.105 28 56

BA.2.12.1 versus non- BA.2.12.1 Omicron (May to July 2022) 0.053 50 100

BA.4/ BA.5 versus non- BA.4/ BA.5 Omicron (May to July 2022) 0.105 28 56

replace the non-BA.2.12.1 strain as the dominant strain, about
50 days, which also means that the competitive relationship be-
tween them is the weakest. Moreover, BA.4/5 was found to be
the most adaptive variant with the strongest competitive advan-
tage at this stage, due to the fact that no strains are currently
capable of replacing BA.4/5. What factors determine the out-
come of competition between strains? And what factors influ-
ence the strength of competition between strains? We will give
the answer in the main text.
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