
CAUSAL INFERENCE WITHIN CLOSE ACTION-PERCEPTION LOOPS
SUPPLEMENTARY INFORMATION

We here describe in detail the normative model that we used in the main text to predict behavioral signatures of
causal inference.

1. TASK SETUP AND GENERATIVE MODEL

A visual target appears on the screen for T = Nδt seconds, or N time steps of size δt. While, for intuition, one can
think of these time steps as individual video frames, our formulation is independent of the choice of δt. The target
appears at location z1 and thereafter moves with velocity v. Therefore, its location in the nth time-step is given by

zn = z1 + (n− 1)vδt = zN + (n−N)vδt. (1)

Across trials, we assume the target to be moving (γ = 1) with probability p(γ = 1) = pγ , and to be stationary (γ = 0)
otherwise. When moving, its velocity is drawn from p(v|γ = 1) = N

(
v|0, σ2

0

)
, a normal distribution with zero mean

and variance σ2
0 . Overall, this leads to the prior over v to be given by

p(v) = p(v|γ = 0)p(γ = 0) + p(v|γ = 1)p(γ = 1) = (1− pγ)δ(v) + pγN
(
v|0, σ2

0

)
, (2)

where δ(·) is the Dirac delta function. This is our causal inference prior as it encapsulates the two different hypotheses
(stationary vs. moving target, γ = 0 vs. γ = 1) for what caused the sensory percepts, together with their associated
priors on the underlying latent target velocity. We assume a uniform prior over the target’s initial location z1 over a
bounded range, whose form we make more precise later.

In each time step, the observer makes a noisy observation xn of the target’s true location zn, distributed indepen-
dently across time as

xn|zn ∼ N
(
xn|zn, σ2/δt

)
. (3)

We here scale the observation’s variance by 1/δt, such that the overall amount of information that the observer
receives per unit time remains invariant to the choice of δt.

Having observed x1:N ≡ x1, . . . , xN , the observer wants to infer whether the target is moving or not, that is
p (γ = 1|x1:N ). Furthermore, they want to infer the target’s final location for a stationary target, p (zN |γ = 0, x1:N ), or
the target’s final location and velocity for a moving target, p (zN , v|γ = 1, x1:N ). In the next section we derive these
quantities. Following this, we turn to the question of how the observer uses these quantities to act upon them by
reporting whether the target is stationary or moving, and how they steer toward the target.

2. INFERRING THE TARGET LOCATION AND VELOCITY

Here, we first start with assuming that the target is stationary to find p (zN |γ = 0, x1:N ). Then, we assume a moving
target and compute p (zN , v|γ = 1, x1:N ). Lastly, we use the found expressions to derive p (γ = 1|x1:N ).

2.1. A stationary target, γ = 0. For the stationary case, we only need to find the posterior over the target’s single
location z as its velocity is fixed to zero. Then, it is easy to show that

p (z|x1:N ) ∝ p(x1:N |z) ∝ N
(
z|x̄, σ

2

T

)
, (4)

where we have implicitly conditioned on γ = 0, have assumed a uniform prior over z over the relevant range of z’s,
and have defined

x̄ =
1

N

N∑
n=1

xn, (5)

that is, the average observed location.
Causal inference also requires the marginal likelihood of x1:N , which is given by

p (x1:N ) =

∫
p (x1:N |z) p (z) dz

= pz0

∫ zmax

zmin

[
N∏
n=1

N
(
xn|z, σ2/δt

)]
dz

= pz0

(
δt

2πσ2

)N/2 ∫ zmax

zmin

e−
δt
∑N
n=1(xn−z)2

2σ2 dz,

| (6)
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where we assumed a uniform prior of probability p(z) = pz0 over a wide z-range from zmin to zmax. The integral
evaluates to ∫

e−
δt
∑N
n=1(xn−z)2

2σ2 dz = −
√

πσ2

2Nδt
e−

δt
∑N
n=1(xn−x̄)2

2σ2 erf

(
N (x̄− z)√

2Nσ2/δt

)
, (7)

where the sum in the exponential equals Nvar (x), that is N times the empirical variance of x1:N . Furthermore, the
error function approaches −1 for large zmax and 1 for small zmin, such that its contribution in the definite integral
approaches −2. Therefore, the final marginal likelihood is

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
2πσ2

T
e−

T var(x)

2σ2 . (8)

We can find the same result by writing down Bayes’ rule for p(z|x1:N ) and solving for p(x1:N ), which appears in the
denominator.

2.2. A moving target, γ = 1. Using the previous identity, zn = zN − (N − n)vδt, leads to the likelihood of each xn to
be given by

p (xn|zN , v) = N
(
xn|zN − (N − n)vδt, σ2/δt

)
. (9)

Our aim is to find the joint posterior over zN and v, which is given by the expression

p (zN , v|x1:N ) ∝ N
(
v|0, σ2

0

) N∏
1:n

N
(
xn|zN − (N − n)vδt, σ2/δt

)
∝ e

− 1
2

((
1

σ2
0
+Tδt2−3T2δt+2T3

6σ2

)
v2+ T

σ2 z
2
N−T2−Tδt

σ2 zNv− 2Tx̄
σ2 zN+ 2

σ2 xaccv

)
,

(10)

where we implicitly conditioned on γ = 1, have used the same definition of x̄ as further above, and have defined

xacc = δt2
N∑
n=1

(N − n)xn (11)

To find the posterior moments we first take δt → 0, removing all the δt-dependent terms. To describe the full
posterior, we denote it by

p (zN , v|x1:N ) = N
((

zN
v

)
|
(
µz
µv

)
,

(
Σzz Σzv
Σzv Σvv

))
. (12)

A lengthy, but unspectacular, derivation reveals

Σzz =
4σ2

(
3σ2 + T 3σ2

0

)
T (12σ2 + T 3σ2

0)
, (13)

Σvv =
12σ2σ2

0

12σ2 + T 3σ2
0

, (14)

Σzv =
6Tσ2σ2

0

12σ2 + T 3σ2
0

, (15)

µz =
12σ2x̄+ 4T 3σ2

0 x̄− 6Txaccσ
2
0

12σ2 + T 3σ2
0

, (16)

µv =
6σ2

0

(
T 2x̄− 2xacc

)
12σ2 + T 3σ2

0

. (17)

Interestingly, in the σ0 → ∞ limit, the posterior variance Σzz scales as 1/T , as before. The posterior variance Σvv ,
in contrast, drops more rapidly with 1/T 3. Therefore, temporal integration of evidence provides qualitatively more
velocity than location information. Intuitively, this is because any (xi, xj) pair can be used to infer velocity, whereas
the location estimate relies on the across-xi average.

Understanding what the posterior means needs more work. In particular, let us define

v̂ =
6

T 3

(
T 2x̄− 2xacc

)
=

6

T

(
1

N

N∑
n=1

(
2n

N
− 1

)
xn

)
. (18)

The term in (outer) parenthesis is a weighted sum of the xn’s. In this sum, x1 is weighted by −1, and xN by 1.
Inbetween these extremes, the weights increase linearly from−1 to 1. Therefore, if we group equally-weighted terms
(modulus the sign of the weight), the sum is a weighted combination of location differences, with the highest weight
on xN − x1, less weight on xN−1 − x2, and so on. To see how this can act as a velocity estimate, assume a noise-free
xn = vnδt. Substituting this in the above expression shows that v̂ = v (this is where the 6/T pre-factor comes from).
This justifies denoting it v̂.
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Substituting v̂ into the posterior means results in the new expressions

µz =
12σ2x̄+ T 3σ2

0

(
x̄+ v̂T

2

)
12σ2 + T 3σ2

0

= x̄+
T 3σ2

0

12σ2 + T 3σ2
0

T

2
v̂, (19)

µv =
T 3σ2

0

12σ2 + T 3σ2
0

v̂ (20)

This shows that the posterior mean µz start with x̄ for small T , and then shifts toward x̄+ µvT/2, which is the mean
location plus half the estimated distance that the target moved, which is sensible. The posterior mean µv is initially
biased toward zero, due to the prior, and later approaches v̂. Overall, with σ2

0 → 0, the posterior approaches that for
a stationary target, as desired.

To find the marginal likelihood, we solve Bayes’s rule for the posterior for p(x1:N ), which yields

p (x1:N ) =
p (x1:N |zN , v) p (zN ) p (v)

p (zN , v|x1:n)

= pz0

(
δt

2πσ2

)N/2√
2π|Σ|
σ2
0

e−
T(var(x)+x̄2)

2σ2 + 1
2µ

TΣ−1µ,

(21)

where we have chosen zN = v = 0 for the second equality (as the expression holds for any choice of zN and v), and
µ and Σ denote the posterior mean and covariance. The remaining terms evaluate to

µTΣ−1µ =
T x̄2

σ2
+

T 6σ2
0 v̂

2

12σ2 (12σ2 + T 3σ2
0)
, (22)

|Σ| = 12σ4σ2
0

T (12σ2 + T 3σ2
0)
, (23)

such that the marginal likelihood becomes

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
24πσ4

T (12σ2 + T 3σ2
0)
e

T6v̂2σ2
0

24σ2(12σ2+T3σ2
0)

−T var(x)

2σ2 (24)

As for the posterior, this marginal likelihood approaches that for a stationary target with σ2
0 → 0.

2.3. Is the target stationary or moving? To find the full posterior over the target’s state, we use the causal inference
target velocity prior, p (v) = (1− pγ)δ (v − 0) + pγN

(
v|0, σ2

0

)
, with which the posterior becomes

p (zN , v|x1:N ) = p (zN |x1:N , γ = 0) δ (v − 0) p (γ = 0|x1:N ) + p (zN , v|x1:N , γ = 1) p (γ = 1|x1:N ) . (25)

In this mixture distribution, the first mixture component is that for the stationary target, and the second that for the
moving one. These two components are weighted by the causal modeling posterior p(γ|x1:N ) which indicates the
probability of the target being stationary or moving given the data. This probability can again be found by Bayes’
rule, and results in

p (γ = 1|x1:N ) =
p (x1:N |γ = 1) p(γ = 1)

p (x1:N |γ = 1) p(γ = 1) + p (x1:N |γ = 0) p(γ = 0)

=

√
12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ√

12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ + 1− pγ

,

(26)

where the last expression results from substituting the marginal likelihoods for the stationary and moving target, and
cancelling all the shared terms. This expression shows that, for a uniform prior, p(γ = 0) = p(γ = 1) = 1/2, the target
is deemed more likely moving for larger velocity estimates v̂. If this estimate is zero, that is, v̂ = 0, then, the more
time has passed, the less likely is the target considered to be moving.

3. ACTING UPON THE INFERRED TARGET LOCATION AND VELOCITY

3.1. Choosing stationary vs. moving. Decision-makers would choose between a stationary and a moving target
according to p (γ|x1:N ). In particular, they would decide that the target is moving if p(γ = 1|x1:N ) > 1/2, that is, if

1

2
log

12σ2

12σ2 + T 3σ2
0

+
T 6σ2

0 v̂
2

24σ2 (12σ2 + T 3σ2
0)
> log

p(γ = 0)

p(γ = 1)
. (27)
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3.1.1. Empirical distribution of stationary reports. As experimenters we cannot directly observe v̂, such that we need to
estimate it. Furthermore, it will fluctuate across trials, even if the same evidence is presented, making the decisions
more noisy.

To build a model for v̂ we note that v̂ is a weighted sum of xn’s, and rely on our generative assumptions of xn for
a stationary and a moving target. For a stationary target, we have xn ∼ N

(
z, σ2/δt

)
. In this case, 〈v̂|γ = 0〉 = 0, and

its variance is given by

var (v̂|γ = 0) =

(
6

TN

)2 N∑
n=1

(
2n

N
− 1

)2
σ2

δt
=

12σ2

T 3
. (28)

This variance decreases rapidly with time, as more and more xn’s are used to estimate v̂. This results in the required
moments 〈

v̂2|γ = 0
〉

=
12σ2

T 3
, var

(
v̂2|γ = 0

)
=
〈
v̂4|γ = 0

〉
−
〈
v̂2|γ = 0

〉2
=

288σ4

T 6
. (29)

If we denote the v̂2-related term in the above decision criterion, Eq. (27), by α, this α has moments

〈α|γ = 0〉 =
T 3σ2

0

2 (12σ2 + T 3σ2
0)
,

√
var (α|γ = 0) =

T 3σ2
0√

2 (12σ2 + T 3σ2
0)
, (30)

leading to the signal-to-noise ratio 〈α|γ = 0〉 /
√

var(α|γ = 0) = 1/
√

2. More relevant, under the assumption that α is
Gaussian whose parameters are fully determined by mean and variance, the probability that the decision criterion is
met becomes

p (choose γ = 1|γ = 0) = Φ

(
1√
2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
(31)

For T → 0 or σ2
0 → 0 this probability is dominated by the prior and lead to a choice of γ = 1 if p(γ = 1) > p(γ = 0).

It shrinks with increasing T , as more evidence results in higher certainty that the target is not moving. Increasing
the observation noise σ2 has two counteracting effects. First, it increases the pre-factor to the inner-most brackets,
thus boosting the prior. Second it results in a weaker drop of the last term in brackets with time, indicating that more
evidence will be required to discard the possibility that the target is moving.

For a moving target, xn ∼ N
(
zN − (N − n)vδt, σ2/δt

)
. This yields v̂ to be Gaussian, with moments

p (v̂|v) = N
(
v̂|v, 12σ2

T 3

)
, (32)

which only differs in the non-zero mean from the v̂ for the stationary case. With the above, the moments of v̂ are
given by 〈

v̂2|γ = 1
〉

=
12σ2

T 3

(
1 + ṽ2

)
, var

(
v̂2|γ = 1

)
=

288σ4

T 6

(
1 + 2ṽ2

)
, (33)

where we have defined the time-rescaled velocity ṽ2 = T 3v2/(12σ2). The previously defined α then has moments

〈α|γ = 1〉 =
T 3σ2

0

(
1 + ṽ2

)
2 (12σ2 + T 3σ2

0)
,

√
var (α|γ = 1) =

T 3σ2
0

√
1 + 2ṽ2√

2 (12σ2 + T 3σ2
0)
, (34)

leading to the signal-to-noise ratio
(
1 + ṽ2

)
/
√

2 + 4ṽ2 which approaches the linear function |ṽ|/2 for larger ṽ2. Plug-
ging these moments into the decision criteria and assuming Gaussianity leads to the choice probability

p (choose γ = 1|γ = 1) = Φ

(
1 + ṽ2√
2 + 4ṽ2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

√
1 + 2ṽ2

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
. (35)

For ṽ2 → 0, this probability becomes equivalent to the one for γ = 0. The larger ṽ2, the stronger the influence of the
first term, and the weaker the influence of the remaining terms. In particular, the larger ṽ2, the higher the probability
of choosing γ = 1.

A non-approximate approach to computing p (choose γ = 1|γ = 1) is to re-write the decision criterion for p (γ = 1|x1:N ) >
1/2 as

|v̂| > β ≡ σ

T 3σ0

√
24 (12σ2 + T 3σ2

0)

(
log

p(γ = 0)

p(γ = 1)
− 1

2
log

12σ2

12σ2 + T 3σ2
0

)
. (36)

This criterion is only valid if the term in square-roots is non-negative, which is guaranteed as long as

p(γ = 0)

p(γ = 1)
>

√
12σ2

12σ2 + T 3σ2
0

. (37)

This is always satisfied if p(γ = 0) > p(γ = 1). In general, it requires little evidence about the target’s motion (i.e.,
small T and σ2

0 and large σ2), and a relatively strong prior toward the target not moving. If the above condition is
4
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violated, the decision criterion becomes |v̂| ≥ 0, which is always satisfied. That is, under these circumstances, the
target will always be considered moving.

Assuming there is a non-zero chance of the target being stationary, then the probability of the decision-maker
reporting a stationary target depends on the perceived v̂ which is Gaussian in the true v (see above). Then, as β ≥ 0,
|v̂| > β is satisfied if either v̂ > β or−v̂ > β. As these two options are mutually exclusive, their joint probability sums
and is given by

p(choose γ = 1|v) = Φ

(
v − β√
12σ2/T 3

)
+ Φ

(
−v − β√
12σ2/T 3

)
. (38)

Simulations confirmed that these expressions match simulated choices.

4. STAGE II: INTERCEPTING THE TARGET

We assume agents travel at constant velocity, such that we only need to determine travel direction and stopping
time for the best target interception. The objective is to minimize the expected cost, 〈c (za(t), zo(t))〉, where za is the
agent’s location, zo is the target’s location, and the expectation is over the uncertainty involving both. We will assume
a simple cost function c (za, zo) = −δ (za − zo), which is minimized if za = zo.

The task itself is two-dimensional: the target appears at a certain distance and can move only laterally. We will
assume that the depth is known and denoted zo,d (o for object, and d for depth). The agent moves at a constant
velocity va at angle θ (θ = 0 is straight-ahead) for some time t. Then, what needs to be determined for optimal
interception is the agent’s stopping time t∗ and the angle θ∗ that minimizes the expected cost,

t∗, θ∗ = argmin
t,θ

〈c (za(t, θ), zo(t))〉 = argmax
t,θ

p (za(t, θ) = zo(t)) , (39)

where the second equality follows from the delta cost-function.

4.1. Agent motion model. We will use the self-motion estimation model from Lakshminarasimhan et al. (2018),
where they assume a Weber-like variance scaling of the self-location estimate,

za(t, θ) =

(
za,l
za,d

)
(t, θ) ∼ N

((
vat sin θ
vat cos θ

)
,

(
k2 (vat sin θ)

2λ
0

0 k2 (vat cos θ)
2λ

))
, (40)

with parameters k (k2 is the variance scaling factor) and λ (determines the sub/supra-linearity of the variance scal-
ing), and where we have assumed za(0, θ) = (0, 0)

T .

4.2. Target motion model. As the target depth is known, we only need to estimate its initial lateral location and
eventual velocity. To do so, we use the target location/velocity estimates derived further above, which provide the
joint estimate

p (zo,l(0), vo,l|X) = p (zo,l(0)|X, γ = 0) p (γ = 0|X) + p (zo,l(0), vo,l|X, γ = 1) p (γ = 1|X) , (41)

where X ≡ x1:N are all target observations up to the target offset, zo,l(0) is the inferred lateral position at target
offset (measured relative to agent), vo,l is the target’s lateral velocity, and γ ∈ {0, 1} denotes the target being station-
ary/moving. To compute the posterior over zo,l(t) for γ = 1, we use zo,l(t) = zo,l(0) + vo,l to get, as before,

µoz,l(t) = 〈zo,l(t)|X, γ = 1〉 = µz + µvt =
12σ2x̄+ T 3σ2

0

(
x̄+

(
T
2 + t

)
v̂
)

12σ2 + T 3σ2
0

, (42)

σ2
oz,l(t) = var (zo,l(t)|X, γ = 1) = Σzz + t2Σvv + 2tΣzv =

4σ2
(
3σ2 + σ2

0

(
T 3 + 3T 2t+ 3Tt2

))
T (12σ2 + T 3σ2

0)
, (43)

where µz , µv , and the Σ’s are the posterior moments of p(zo,l(0), vo,l|X, γ = 1), Eq. (12). Overall, this leads to the
posterior to be given by

p (zo(t)|X) = δ (zo,d(t)− zo,d)
(
N
(
zo,l(t)|x̄,

σ2

T

)
p (γ = 0|X) +N

(
zo,l(t)|µoz,l(t), σ2

oz,l(t)
)
p (γ = 1|X)

)
. (44)

4.3. Optimal steering angle and stopping time. To find the optimal steering angle θ∗ and stopping time t∗, we use
the independence of the components of za(t) and zo(t) to find

za,l(t)− zo,l(t)|X ∼ N
(
vat sin θ − x̄, k2 (vat sin θ)

2λ
+
σ2

T

)
p (γ = 0|X) (45)

+N
(
vat sin θ − µoz,l(t), k2 (vat sin θ)

2λ
+ σ2

oz,l(t)
)
p (γ = 1|X) ,

za,d(t)− zo,l(t)|X ∼ N
(
vat cos θ − zo,d, k2 (vat cos θ)

2λ
)

(46)
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The optimal θ∗ and t∗ maximize the probability of both differences being zero. This leads to the expression

t∗, θ∗ = argmax
t,θ

N
(

0|vat cos θ − zo,d, k2 (vat cos θ)
2λ
)
×

(
N
(

0|vat sin θ − x̄, k2 (vat sin θ)
2λ

+
σ2

T

)
p (γ = 0|X)

+N
(

0|vat sin θ − µoz,l(t), k2 (vat sin θ)
2λ

+ σ2
oz,l(t)

)
p (γ = 1|X)

)
. (47)

This optimization is complex and doesn’t have an analytical solution. Therefore, we need to use numerical optimiza-
tion to find θ∗ and t∗.

For good initial guesses for this optimization, we consider the moving and stationary target case in isolation. For
a stationary target, the Gaussian peaks at vat sin θ = x̄ and vat cos θ = zo,d, which leads to parameters

θ∗γ=0 = tan−1 x̄

zo,d
, t∗γ=0 =

√
x̄2 + z2o,d

va
. (48)

For a moving target, the Gaussian peaks at vat sin θ = µoz,l(t) = µz + µvt and vat cos θ = zo,d, resulting in

θ∗γ=1 = tan−1
µz + µvt

∗
γ=1

zo,d
, t∗γ=1 =

µvµz ±
√
v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d

v2a − µ2
v

, (49)

where we provide two solutions to t∗γ=1 which result from solving a quadratic equation, and where µz and µv are
the posterior moments of p (zo,l(0), vo,l|X, γ = 1). To identify a unique t∗γ=1 we assume that v2a > µ2

z , such that the
agent is guaranteed to be able to catch up with the target. Furthermore, we require t∗γ=1 > 0 which is guaranteed

to be violated if µ2
zµ

2
v < v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d, or, equally,

(
z2o,d/µ

2
z + 1

) (
v2a − µ2

z

)
> 0. The latter holds if both

v2a − µ2
z > 0 (guaranteed by assumption) and z2o,d/µ

2
z + 1 > 0, or z2o,d > −µ2

z . As the right-hand side of the latter is
always negative, the last inequality is always true, confirming that the only solution to t∗γ=1 is the one with a sum
(rather than difference) in the numerator. Substituting the expressions of µz and µv in terms of x̄ and v̂ does not lead
to any appreciable simplifications.

Together, these two solutions allow us to approximate the optimal heading directions and stopping times by

θ∗ ≈ θ∗γ=0p (γ = 0|X) + θ∗γ=1p (γ = 1|X) , (50)

t∗ ≈ t∗γ=0p (γ = 0|X) + t∗γ=1p (γ = 1|X) . (51)

We use these approximations to initiate a gradient-descent procedure to find the correct t∗ and θ∗.

4.4. Experimentally observable optimal stopping, and perceived velocity estimate. As for the stationarity reports,
the experimenter does not observe x̄ and v̂ and needs to marginalize over them. They are distributed as

x̄|v, zN N
(
zN −

vT

2
,
σ2

T

)
, v̂|v ∼ N

(
v,

12σ2

T 3

)
. (52)

We estimate the associated statistics of θ∗ and t∗, by a Monte Carlo approximation. That is, we draw multiple x̄ and
v̂, compute the associated θ∗ and t∗, and use those to compute the posterior distributions over θ∗ and t∗.

To assess the decision maker’s estimate of the target’s velocity, we will infer the assumed velocity from the deci-
sion maker’s stopping location. The actual stopping location could feature a mismatch between the decision maker’s
depth and that of the target. By our initial assumption that the decision maker knows the target’s depth, this mis-
match arises from the decision maker’s actual location while actively steering, and thus doesn’t refect the decision
maker’s estimate. Thus, instead of using the agent’s final location as a measure for the assumed velocity, we will
instead use the point zo,d tan θ∗ and time t̂ = zo,d/(va cos θ∗) at which the agent crossed the target’s path (i.e. reaches
depth z0,d).

Therefore, we won’t take the depth mismatch into account, and instead only focus on lateral location, using

zo,l(0) + v̂ot̂ ≈ vat̂ sin θ∗, (53)

where the left-hand side is the target’s location at time t̂ (assuming velocity v̂o), and the right-hand side is the decision
maker’s location at the same time. Re-expressing the above in terms of v̂o results in

v̂o ≈ va
(

sin θ∗ − zo,l(0)

zo,d
cos θ∗

)
. (54)
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