#### BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma

Michael P. Randall, MD<sup>1\*</sup>; Laura E. Egolf, PhD<sup>1,2\*</sup>; Zalman Vaksman, PhD<sup>1+</sup>; Minu Samanta, MD<sup>1</sup>; Matthew Tsang, MS<sup>1</sup>; David Groff, MES<sup>1</sup>; J. Perry Evans, PhD<sup>3#</sup>; Jo Lynne Rokita, PhD<sup>3,4,5</sup>; Mehdi Layeghifard, PhD<sup>6</sup>; Adam Shlien, PhD<sup>6,7,8</sup>; John M. Maris, MD<sup>1,2,9</sup>; Sharon J. Diskin, PhD<sup>1,2,9\*</sup>; Kristopher R. Bosse, MD<sup>1,2,9\*</sup>

<sup>1</sup>Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA

<sup>2</sup>Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA

<sup>3</sup>Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA

<sup>4</sup>Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, PA 19104, USA <sup>5</sup>Division of Neurosurgery, Children's Hospital of Philadelphia, PA 19104, USA

<sup>6</sup>Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada

<sup>7</sup>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

<sup>8</sup>Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada

<sup>9</sup>Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

\*Present address: Genomics and Data Sciences, Spark Therapeutics, Philadelphia, PA 19104, USA

\*Present Address: New York Genome Center, New York, NY 10013, USA

^Correspondence

19104, USA

<sup>\*</sup>These authors contributed equally

#### **Supplemental Methods**

#### Cell culture

IMR-5 and RPE1 cells were obtained from the Children's Hospital of Philadelphia (CHOP) cell line bank. RPE1 cells are a human retinal pigment epithelium cell line immortalized through the retroviral insertion of human telomerase reverse transcriptase (hTERT) and were originally a kind gift from the laboratory of Dr. Michael Hogarty. Cell lines were cultured in RPMI containing 10% FBS and 2 mM L-Glutamine at 37°C under 5% CO<sub>2</sub>. Cells were regularly tested for the presence of mycoplasma and genotyped to confirm cell identity using short tandem repeat (STR) typing.

#### Generation of isogenic cell models

IMR-5 and hTERT RPE1 cells were electroporated using a Lonza 4D-Nucleofector X-unit™ with 1.6 µg pU6-(BbsI)\_CBh-Cas9-T2A-mCherry, into which one of four guide RNA sequences (R112\*, R150\*, E287fs, Q564\*; **Supplemental Table 2**) had been cloned, and 0.4 µg single-stranded donor oligonucleotides containing the desired *BARD1* mutation and a synonymous PAM-ablating mutation. The pU6-(BbsI)\_CBh-Cas9-T2A-mCherry plasmid was a gift from Ralf Kuehn (Addgene plasmid # 64324; http://n2t.net/addgene:64324; RRID:Addgene\_64324).¹ Following electroporation, cells were transferred to media containing 5 µM L755507 (Selleck Chemicals) to enhance homology-directed repair efficiency.² Two days later, single mCherry-positive cells were sorted into 96-well plates using a BD FACSJazz cell sorter. Genomic DNA from single cell clones was extracted using the Qiagen DNeasy Blood and Tissue kit and the *BARD1* DNA was PCR amplified and Sanger sequenced to screen for the desired *BARD1* mutation. Heterozygous *BARD1* variants were confirmed using the PolyPeakParser program.³ Clones that did not integrate a *BARD1* variant at either allele were also propagated for use as non-targeted control clones.

#### **Quantitative RT-PCR**

Total RNA was isolated from exponentially growing neuroblastoma cells utilizing RNeasy mini kits (Qiagen) and mRNAs were converted to cDNA using the SuperScript III system (ThermoFisher Scientific). Taqman® gene expression assays (Thermo Fischer Scientific) were used to quantitate *BARD1* (Hs00184427\_m1 [*BARD1* exon 1-2 boundary] and Hs00957655 m1 [*BARD1* exon 9-10 boundary]), *BRCA1* (Hs00183233 m1),

and *HPRT1* (Hs99999909\_m1) on an Applied Biosystems 7900HT Sequence Detection System using standard cycling conditions. Relative transcript abundance was determined by the 2<sup>-ΔΔCt</sup> method using *HPRT1* as an internal control.

#### **Immunofluorescence**

RPE1 *BARD1*\*/mut and wild-type cells were seeded on poly-L-lysine coated coverslips (Electron Microscopy Sciences) and treated with 4 μM cisplatin or vehicle. Twenty-four hours after treatment, cells were fixed with 4% paraformaldehyde, stained with primary antibody (RAD51, Abcam ab88572, 1:100 or Phospho-Histone H2A.X (Ser139) (20E3), Cell Signaling Technology #9718, 1:800) followed by a secondary Alexa 488 or Alexa 555 antibody. Cells were mounted with ProLong gold with DAPI (Thermo Fisher Scientific, #P36931) and visualized with a Leica DM5000B microscope and photographed with a Leica DFC365 FX camera. RAD51 and γ-H2AX foci were quantified using Focinator v2.0 software and ImageJ.<sup>4</sup>

#### mClover-LMNA assay

IMR-5 *BARD1*\*/mut and wild-type cells were co-transfected with 1.6 μg pX330-LMNA-gRNA1 and 0.4 μg pCR2.1 Clover-LMNA using the Lonza 4D-Nucleofector X-unit<sup>TM</sup> system. The mClover-LMNA reagents were a kind gift form the laboratory of Graham Dellaire. After 3 days, cells were fixed in 2% paraformaldehyde and analyzed on a CytoFLEX-LX flow cytometer to quantitate clover-positive cells.

#### **Cytotoxicity studies**

IMR-5 and RPE1 *BARD1*\*/mut cells and paired wild-type cells were plated on Day 1 in a 96-well plate. On Day 2, serial dilutions of olaparib (Selleck Chemicals, DMSO) or cisplatin (Selleck Chemicals, H<sub>2</sub>O) were added. After 4 days, cell viability was determined using a CellTiter-Glo® Assay (Promega) in a GloMax (Promega) plate reader according to the manufacturer's instructions. Luminescence values were normalized to vehicle treated wells and data were analyzed and graphed in GraphPad Prism software and a log (inhibitor) vs. response nonlinear regression model was used to calculate IC<sub>50</sub>s.

#### In vivo IMR5 BARD1<sup>+/mut</sup> xenograft efficacy studies

In vivo murine xenograft efficacy studies were designed to assess the efficacy of olaparib in IMR5 *BARD1*\*/mut isogenic cell line derived xenograft models. IMR5 *BARD1*\*/mut isogenic cell lines were expanded *in vitro* and 5 x 10<sup>6</sup> cells were mixed with Matrigel (Corning, cat# 354234) and injected into the flanks of CB17-SCID mice (Taconic Farms, Germantown NY). When the tumors reached a size of 1-1.5 cm³, they were serially passaged into study CB17-SCID mice. When tumors reached enrollment size (0.15 cm³-0.3 cm³), mice were then randomly enrolled into 2 treatment cohorts (Olaparib or vehicle; n=10 per cohort), using a rolling enrollment to ensure almost identical tumor sizes across treatment cohorts. Olaparib was dosed intraperitoneally at 20mg/kg once daily for 28 days. Tumor sizes were measured at least twice weekly using calipers and tumor volumes were calculated as: volume = ((diameter1/2 + diameter2/2)3\*0.5236)/1000. Mice weights were also measured at least twice weekly, and mice were monitored daily for signs of any clinical toxicity. Mice were sacrificed when tumor burden reached 2 cm³ or they showed any signs of distress including excessive weight loss. All *in vivo* animal studies were performed according to Children's Hospital of Philadelphia (CHOP) policies in the Department of Veterinary Research (DVR) and were conducted according to an approved IACUC Protocol (#0006430). Up to 5 mice were maintained in cages under barrier conditions in a pathogen-free facility fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

#### **Quantification and statistical analysis**

Differences between groups were presented as the mean  $\pm$  SEM as noted in the figure legends. Experimental sample numbers (n) are indicated in the figures, figure legends and results section. All statistical analysis was done with GraphPad Prism and p-values < 0.05 were considered statistically significant. RAD51 and  $\gamma$ -H2AX foci were quantified using Focinator v2.0 software and ImageJ.<sup>4</sup>

#### Whole-genome sequencing of IMR-5 cells

All code is available on GitHub (<a href="https://github.com/diskin-lab-chop/nbl-bard1">https://github.com/diskin-lab-chop/nbl-bard1</a>), except when a public pipeline is referenced. After 20 passages, genomic DNA was extracted from three IMR-5 BARD1\*/mut clonal cell lines and one non-targeted control clone using the Qiagen Blood and Tissue kit and then treated with RNase to digest RNA. DNA integrity was assessed by pulse-field gel electrophoresis. Libraries were prepared with a 1%

PhiX spike-in, fragmented, and sequenced on an Illumina HiSeq 10X using S2 chemistry with 150 bp paired-end reads to at least 30X mean coverage. Separately, DNA from WT parental IMR-5 cells (prior to 20 passages) was isolated and sequenced with similar methods, and this parental sample served as the "normal" control for filtering variant calls from the *BARD1*+/mut and non-targeted control clones. FASTQ files were aligned against hg19 (b37 reference from the Broad Institute) with BWA-MEM 0.7.17<sup>5</sup> using the public Seven Bridges Genomics workflow "Whole Genome Sequencing - BWA + GATK 4.0 (with Metrics)" on CAVATICA (https://www.cavatica.org/, app ID: admin/sbg-public-data/whole-genome-sequencing-bwa-gatk-4-0, revision 41). After alignment, BAM files were randomly downsampled with Picard DownsampleSam to achieve 50x mean coverage, or 1.1 billion aligned reads, for each of the three *BARD1*+/mut clones and the non-targeted control clone. Only chromosomes 1-22, X, and Y were considered for subsequent analyses.

#### Copy number analysis

Copy number segmentation profiles were generated with Control-FREEC v11.5<sup>6</sup> using a public Seven Bridges workflow on CAVATICA (app ID: admin/sbg-public-data/control-freec-11-5, revision 4) with default settings. The parental IMR-5 cell line (described above) was used as the normal control for paired analysis. Segments containing less than 5 genomic bins (approximately 5.6 kb) were removed. Segments overlapping 50% or more with the ENCODE hg19 blacklist<sup>7</sup> or segmental duplications (as defined by the UCSC Genome Browser<sup>8</sup>, considering only those with >95% identity) were removed. Copy number ratio thresholds for gain and loss were set at 1.2 and 0.8, respectively. Breakpoint analysis was performed with the *svpluscnv* R package (https://github.com/ccbiolab/svpluscnv)<sup>9</sup>, based on methods developed by Lopez *et al.*<sup>10</sup> Double-strand breaks were quantified by counting regions where the fold change between any two adjacent segments was greater than 1.2 or less than 0.8 (*fc.pct*=0.2).

#### Structural variant (SV) analysis

SVs were called with Delly v0.7.9<sup>11</sup> in paired mode, using the parental IMR-5 cell line as the normal control.

SVs were filtered for the default PASS criteria at the dataset and individual levels and required to have at least 5 reads supporting the alternate allele (considering both split-read and paired-read support). SVs with one or more breakpoints falling within the ENCODE blacklist or segmental duplications (described above) were

removed. Stringent filtering (shown in **Figure 3B-D**, **Supplemental Figure 2B-C**) considered only precise SVs supported by split reads, whereas relaxed filtering (shown in **Supplemental Figure 3A-E**) included both precise and imprecise SVs.

#### Single-nucleotide variant (SNV) and indel analysis

SNVs and indels were called with MuTect2<sup>12</sup> from GATK v4.1.3.0, again using parental IMR-5 as the normal control. The read orientation bias filter was applied. Variants flagged by FilterMutectCalls for any reason except "clustered\_events" were removed. Di- and tri-nucleotide polymorphism calls were removed. For all figures except the mutational signature analysis, variants were required to have at least 5 reads supporting the alternate allele.

#### Mutational signature analysis

The above filtered variant calls were used as input to the deconstructSigs v. 1.9.0 R package to perform mutational signature analysis using the following signature sets: COSMIC v2 SBS and COSMIC v3.2 SBS (https://cancer.sanger.ac.uk/signatures/). The v3.2 COSMIC mutational signatures were down-sampled to remove signatures driven by therapy, environmental exposures, and/or sequencing artifacts, along with SBS39 due to the high similarity to SBS3, while maintaining other neuroblastoma-specific<sup>13</sup> and biologically relevant signatures. Our analysis code can be found on GitHub (https://github.com/diskin-lab-chop/nbl-bard1).

#### **Supplemental Data**

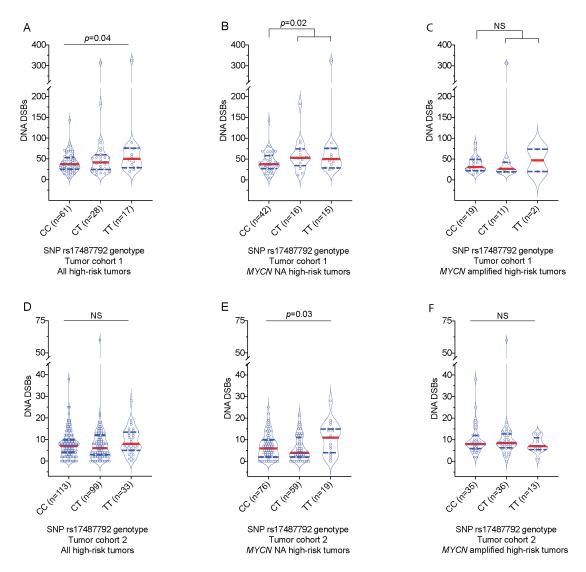
#### **Supplemental Table 1.** Characteristics of neuroblastoma-associated germline *BARD1* variants.

| USI    | Age at diagnosis (Days) | Sex    | MYCN | Risk group   | Variant                       | Exon | Cell line<br>models | Other cancers associated with germline <i>BARD1</i> variant                                                                       |
|--------|-------------------------|--------|------|--------------|-------------------------------|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| PATZRU | 833                     | Male   | NA   | High         | c.159-1G>T<br>(splice site)   | 2    |                     | Breast <sup>14</sup>                                                                                                              |
| PAHYWC | 704                     | Male   | Amp  | High         | c.C334T;<br>p.R112*           | 3    | IMR-5 x 2           | Breast <sup>14, 15</sup>                                                                                                          |
| PARSEA | 1779                    | Male   | NA   | High         | c.448C>T;<br>p.R150*          | 4    | IMR-5               | Breast <sup>14, 16</sup><br>Ovarian <sup>17</sup>                                                                                 |
| PATHJZ | 340                     | Female | NA   | Intermediate | c.860_861del;<br>p.E287fs     | 4    | IMR-5 x 3           | -                                                                                                                                 |
| PASGEE | 1825                    | Male   | NA   | High         | c.1677+1G>T<br>(splice donor) | 7    |                     | -                                                                                                                                 |
| PASFDU | 758                     | Female | NA   | High         | c.C1690T; p.<br>Q564*         | 8    | RPE1                | Breast <sup>14, 16, 18-22</sup><br>Ovarian <sup>16, 19, 23, 24</sup><br>Endometrial <sup>25</sup><br>Colorectal <sup>22, 26</sup> |
| PATGWT | 591                     | Male   | Amp  | High         | c.1921C>T;<br>p.R641*         | 10   |                     | Breast <sup>21, 27, 28</sup><br>Pancreatic <sup>29</sup>                                                                          |
| PASCIX | 1660                    | Male   | NA   | High         | c.1935_1954dup;<br>p.Glu652fs | 10   |                     | Breast <sup>16, 30, 31</sup>                                                                                                      |

Amp., MYCN amplified tumor; NA, MYCN non-amplified tumor.

## **Supplemental Table 2.** Guide RNAs and repair template oligonucleotides used to generate *BARD1* isogenic. cell lines.

| Variant              | Guide RNA            | Single-stranded repair oligonucleotide                 | Notes        |
|----------------------|----------------------|--------------------------------------------------------|--------------|
| c.C334T;<br>p.R112*  |                      | ACTGATGAATTTAACTAAGAGAGATAGGGATAGTT                    |              |
|                      | CTTGAAGATAAATAGACAAC | CTTACCTGACAGCTCATTG                                    |              |
|                      | GTTGTCTATTTATCTTCAAG | TCATGTAGCAAATTTC <u>A</u> AAGCTTACTACAAAGTTGA          |              |
|                      | GITGICIATTIAICTICAAG | ATCATGCTGTC <u>G</u> AGTTGTC                           |              |
|                      |                      | TATTTATCTTCAAGTCTTGTATCCAGGCCGGG                       |              |
| c.C448T;<br>p.R150*  |                      | GCATCTTTTTTATTGCAGGCTGGGTTTGCACTGA                     |              |
|                      | ATCTGACTTTCTTACTTCGA | AGCTTTACTCACAACATAT                                    |              |
|                      | TCGAAGTAAGAAAGTCAGAT | CTGACTTTCTTACTTC <u>A</u> AGG <u>AGA</u> AAACCACATTTTA |              |
|                      |                      | ATTGAATTCTTCTTGTTTC                                    |              |
|                      |                      | CTGCATCATTAAACAAACTTTTCCTAGGTTTA                       |              |
|                      |                      | GGCTCCTTGACAGAATCTGAATGTTTTGGAAGTTT                    |              |
|                      |                      | AACTGAAGTCTCTTTACCA                                    | Utilzed for  |
|                      |                      | TTGGCTGAGCAAATAG <u>T</u> TCTCCAGACACTAAGAG            | E287 #1      |
|                      |                      | CAG <u>A</u> AATGAAGTAGTGACT                           |              |
| c.860_861d           | AGTCTCCAGACACTAAGAGC | CCTGAGAAGGTCTGCAAAAATTATCTTACATC                       |              |
| el; p.E287fs         | GCTCTTAGTGTCTGGAGACT | TAGATGTAAGATAATTTTTGCAGACCTTCTCAGGA                    |              |
|                      |                      | GTCACTACTTCATTC <u>T</u> ªTGC                          | Utilized for |
|                      |                      | TCTTAGTGTCTGGAGACTATTTGCTCAGCCAAT                      | E287 #2,3    |
|                      |                      | GGTAAAGAGACTTCAGTT                                     |              |
|                      |                      | AAACTTCCAAAACATTCAGATTCTGTCAAGGAGCC                    |              |
| c.C1960T;<br>p.Q564* |                      | TCACTGAGCATTTTCTGTTGTTCTGAAGACAGCCC                    |              |
|                      | TATATTAACAGATGAACACT | ACTGCCTATAAGTACAAGA                                    |              |
|                      | AGTGTTCATCTGTTAATATA | GGTCCATCCCTACGCT <u>A</u> TCCAGTGTTCATCTGTTA           |              |
|                      | ACIONICATORIANA      | ATATAAAAGGAGATACCAGTGTTAAAAACATTAGA                    |              |
|                      |                      | CGACTAGACAAGACAT                                       |              |

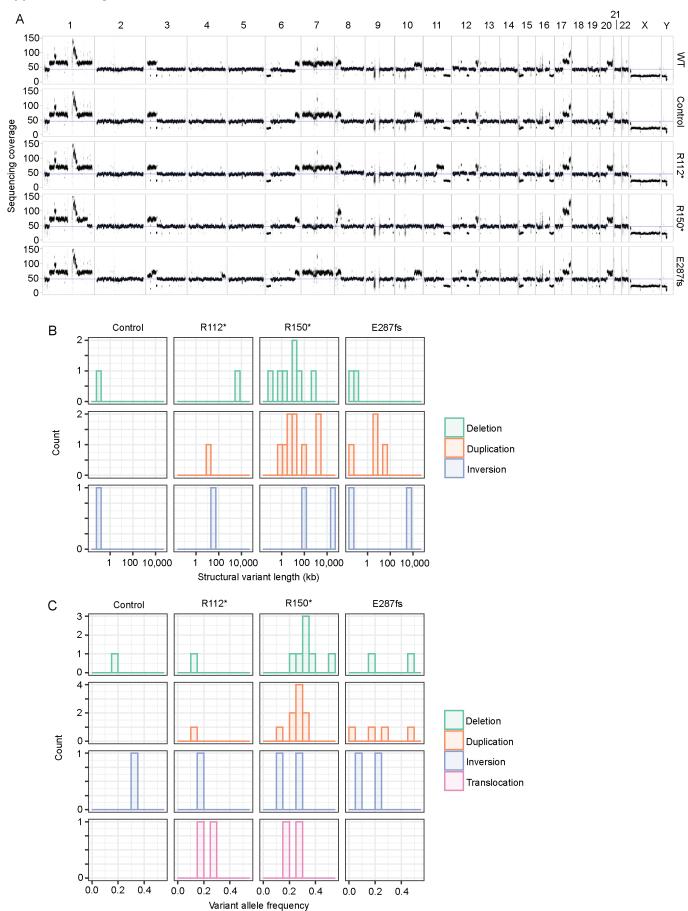

<sup>&</sup>lt;sup>a</sup>This PAM variant is non-synonymous, but occurs after the frameshift at codon 287 and subsequent truncating variant at codon 291 <a href="Double underline">Double underline</a>, Pathogenic variant; <a href="Italic">Italic</a>: Protospacer adjacent motif (PAM) variant.

### Supplemental Table 3. Possible CRISPR off-target sites evaluated via Sanger sequencing.

| Guide RNA | Type               | Forward Primer           | Reverse Primer            | CFD Score |
|-----------|--------------------|--------------------------|---------------------------|-----------|
|           | Intergenic         | ACCTCACATGTGCTAAGGATGT   | GTGATTTTCCTTACGAAGTGCTGA  | 0.90      |
| R112*     | Exon (RP6)         | AGGTCTTACTCCCAAAACATGTCA | ACATGCAAAGTAAACACTTGCA    | 0.13      |
|           | Exon (RP11)        | AGCTTTTACACATGCTGAGACT   | CACACACACAAACACCACACA     | 0.07      |
| R150*     | Intergenic         | AGGGCAAGACAAGACTGCAA     | CTTGGCTGGAAGGAGCATGA      | 0.41      |
| K150      | Exon (EPAS1)       | TGGTTCTCTGGCCATTTCCC     | CAAATGTGAGGTGCTGCCAC      | 0.14      |
|           | Intergenic         | GCATTTTAGCATGGTGTCTATGGT | ACGTATCAACAAATAGCATTCACT  | 0.67      |
| E287fs    | Exon (CCR9)        | TGTTATCGGGTAGCTGCCTG     | GATGCAACTCTCCCTGGGAC      | 0.41      |
|           | Exon<br>(LL22NC03) | TCCTGTCGTGTCTGTTTCGG     | GAGCCACAGGTGAGAGTGAC      | 0.05      |
|           | Intergenic         | TCATTGAACTGCATACAAGTGCT  | ATTGAAAACTGGATATTCTCTGCTT | 0.36      |
| Q564*     | Exon (RP11)        | CCTGGGACTCGAACCGTATG     | GTACAACCTGGTGTGGAGGG      | 0.33      |
|           | Exon<br>(UBE2G1)   | AAAGCCACCTCGTTCAGTGT     | ACTTCCCTTCCTCTGTCGGA      | 0.04      |

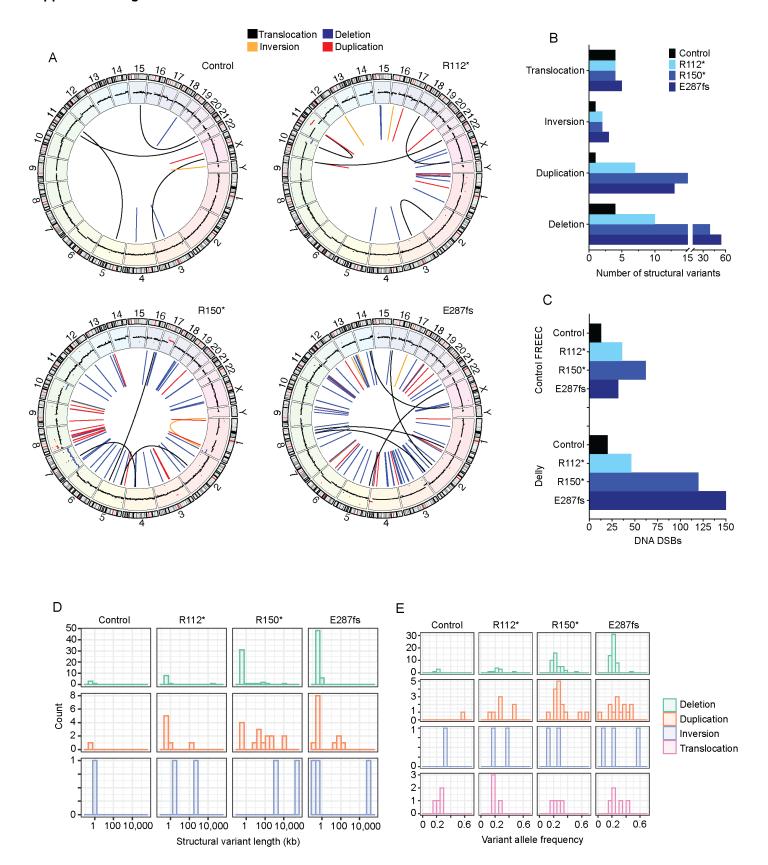
#### **Supplemental Figures and Figure Legends**

#### Supplemental Figure 1




Supplemental Figure 1. Common *BARD1* germline risk variants correlate with genome-wide deficiencies in DNA repair in high-risk *MYCN* non-amplified primary neuroblastomas.

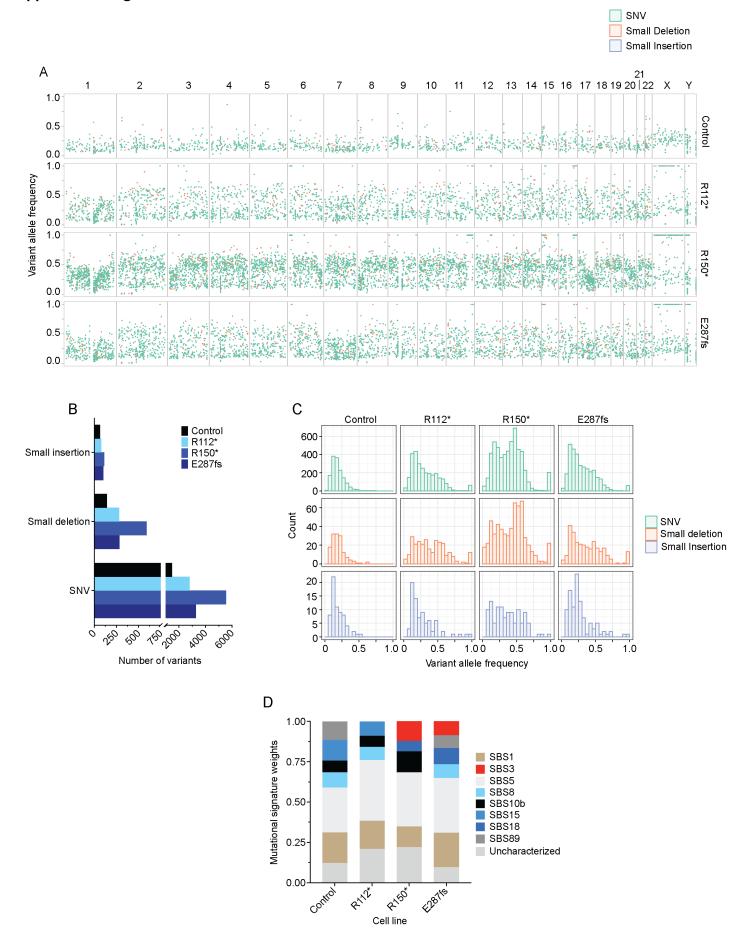
(**A-F**) Violin plots depicting the number of DNA DSBs in neuroblastoma tumors from only high-risk patients with different germline SNP rs174877792 genotypes. Panels **A**, **B** and **C** depict DNA DSBs in all high-risk tumors, high-risk tumors without *MYCN* amplification and high-risk tumors with *MYCN* amplification in tumor cohort 1, respectively. Panels **D**, **E** and **F** depict DNA DSBs in all high-risk tumors, high-risk tumors without *MYCN* amplification and high-risk tumors with *MYCN* amplification in tumor cohort 2, respectively. Red dotted line denotes median and blue dotted lines denotes quartiles.


MYCN NA, MYCN non-amplified.

Associated with Figure 1.



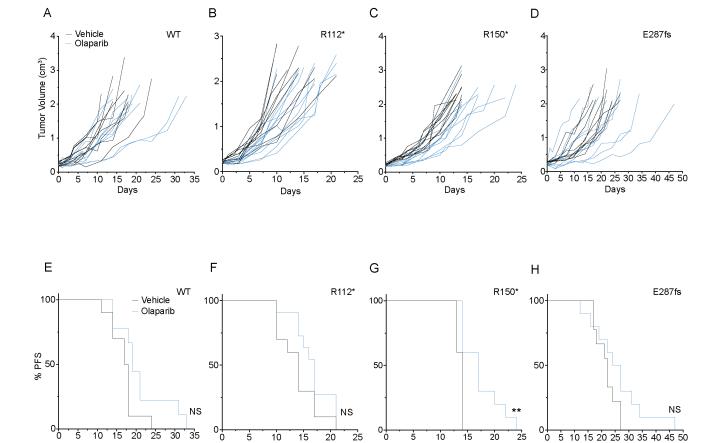
# Supplemental Figure 2. *BARD1*\*/mut neuroblastoma IMR-5 clonal cell lines exhibit genome-wide genomic instability.


- (**A**) Whole-genome sequencing coverage for WT parental cells, a non-targeted control clone and *BARD1*+/mut isogenic IMR-5 cells.
- (B) Histograms showing length of structural variants in control and BARD1+/mut isogenic IMR-5 cells.
- (**C**) Histograms showing allele frequency of structural variants in control and *BARD1*<sup>+/mut</sup> isogenic IMR-5 cells. Associated with **Figure 3**.



Supplemental Figure 3. Structural variant analysis with relaxed filtering confirms increased genome instability in *BARD1*<sup>+/mut</sup> neuroblastoma IMR-5 clonal cell lines.

- (A) Circos plots depicting identified structural variants in control and *BARD1*+/mut isogenic IMR-5 models using less stringent filtering parameters.
- (**B**) Counts of structural variants in control and *BARD1*<sup>+/mut</sup> isogenic IMR-5 cells using less stringent filtering parameters.
- (**C**) Counts of DNA DSBs in control and BARD1<sup>+/mut</sup> IMR-5 cells, quantified from the Control-FREEC copy number (**top**) and the Delly structural variant data (**bottom**) using less stringent filtering parameters.
- (**D**) Histograms showing length of structural variants in control and *BARD1*<sup>+/mut</sup> isogenic IMR-5 cells using less stringent filtering parameters.
- (**E**) Histograms showing allele frequency of structural variants in control and *BARD1*\*/mut IMR-5 isogenic cells using less stringent filtering parameters.


Associated with **Figure 3**.



Supplemental Figure 4. IMR-5 *BARD1*\*/mut isogenic cells acquired more SNVs and indels than the non-targeted control clone.

- (A) Variant allele frequency distribution across the genome for SNVs and indels acquired in control clone and BARD1<sup>+/mut</sup> isogenic IMR-5 cells relative to WT parental IMR-5 cells.
- (B) Count of SNVs and indels identified in control and BARD1+/mut isogenic IMR-5 cells.
- (**C**) Histograms showing allele frequency of SNVs and indels identified in control and *BARD1*<sup>+/mut</sup> isogenic IMR-5 models.
- (**D**) Plot of mutational signature weights in non-targeted control and *BARD1*+/mut IMR-5 cells using COSMIC mutational signatures (v3.2).

Associated with **Figure 3**.



Supplemental Figure 5. IMR-5 and RPE1 *BARD1*<sup>+/mut</sup> models show increased sensitivity to olaparib and cisplatin.

Days

(**A-D**) Individual tumor growth curves of WT and *BARD1*<sup>+/mut</sup> IMR-5 xenografts treated with daily olaparib or vehicle [WT IMR-5 (**A**), *BARD1*<sup>+/R112\*</sup> (**B**), *BARD1*<sup>+/R150\*</sup> (**C**), *BARD1*<sup>+/E287fs</sup> (**D**)].

(**E-H**) Progression-free survival of mice with WT and *BARD1*<sup>+/mut</sup> IMR-5 xenografts treated with daily olaparib or vehicle [WT IMR-5 (**E**), *BARD1*<sup>+/R112\*</sup> (**F**), *BARD1*<sup>+/R150\*</sup> (**G**), *BARD1*<sup>+/E287fs</sup> (**H**)].

\*\*P < 0.01; NS, not significant.

Associated with Figure 4.

#### **Supplemental References**

- 1. Chu VT, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. *Nat Biotechnol*. May 2015;33(5):543-8. doi:10.1038/nbt.3198
- 2. Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. *Cell Stem Cell.* Feb 5 2015;16(2):142-7. doi:10.1016/j.stem.2015.01.003
- 3. Hill JT, Demarest BL, Bisgrove BW, Su YC, Smith M, Yost HJ. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. *Dev Dyn*. Dec 2014;243(12):1632-6. doi:10.1002/dvdy.24183
- 4. Oeck S, Malewicz NM, Hurst S, Al-Refae K, Krysztofiak A, Jendrossek V. The Focinator v2-0 Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification. *Radiat Res.* Jul 2017;188(1):114-120. doi:10.1667/RR14746.1
- 5. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. Jul 15 2009;25(14):1754-60. doi:10.1093/bioinformatics/btp324
- 6. Boeva V, Popova T, Bleakley K, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. *Bioinformatics*. Feb 1 2012;28(3):423-5. doi:10.1093/bioinformatics/btr670
- 7. Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. *Sci Rep.* Jun 27 2019;9(1):9354. doi:10.1038/s41598-019-45839-z
- 8. Karolchik D, Hinrichs AS, Furey TS, et al. The UCSC Table Browser data retrieval tool. *Nucleic Acids*Res. Jan 1 2004;32(Database issue):D493-6. doi:10.1093/nar/gkh103
- 9. Lopez G, Egolf LE, Giorgi FM, Diskin SJ, Margolin AA. svpluscnv: analysis and visualization of complex structural variation data. *Bioinformatics*. Jul 27 2021;37(13):1912-1914. doi:10.1093/bioinformatics/btaa878
- 10. Lopez G, Conkrite KL, Doepner M, et al. Somatic structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma. *Genome Res.* Sep 2020;30(9):1228-1242. doi:10.1101/gr.252106.119

- 11. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*. Sep 15 2012;28(18):i333-i339. doi:10.1093/bioinformatics/bts378
- 12. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat Biotechnol*. Mar 2013;31(3):213-9. doi:10.1038/nbt.2514
- 13. Brady SW, Liu Y, Ma X, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. *Nat Commun*. Oct 14 2020;11(1):5183. doi:10.1038/s41467-020-18987-4
- 14. Weber-Lassalle N, Borde J, Weber-Lassalle K, et al. Germline loss-of-function variants in the BARD1 gene are associated with early-onset familial breast cancer but not ovarian cancer. *Breast Cancer Res.* Apr 29 2019;21(1):55. doi:10.1186/s13058-019-1137-9
- 15. Gonzalez-Rivera M, Lobo M, Lopez-Tarruella S, et al. Frequency of germline DNA genetic findings in an unselected prospective cohort of triple-negative breast cancer patients participating in a platinum-based neoadjuvant chemotherapy trial. *Breast Cancer Res Treat*. Apr 2016;156(3):507-515. doi:10.1007/s10549-016-3792-1
- 16. Susswein LR, Marshall ML, Nusbaum R, et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. *Genet Med.* Aug 2016;18(8):823-32. doi:10.1038/gim.2015.166
- 17. Norquist BM, Harrell MI, Brady MF, et al. Inherited Mutations in Women With Ovarian Carcinoma. *JAMA Oncol.* Apr 2016;2(4):482-90. doi:10.1001/jamaoncol.2015.5495
- 18. Domagala P, Jakubowska A, Jaworska-Bieniek K, et al. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers. *PLoS One*. 2015;10(6):e0130393. doi:10.1371/journal.pone.0130393
- 19. Klonowska K, Ratajska M, Czubak K, et al. Analysis of large mutations in BARD1 in patients with breast and/or ovarian cancer: the Polish population as an example. *Sci Rep.* May 21 2015;5:10424. doi:10.1038/srep10424
- 20. Ratajska M, Antoszewska E, Piskorz A, et al. Cancer predisposing BARD1 mutations in breast-ovarian cancer families. *Breast Cancer Res Treat*. Jan 2012;131(1):89-97. doi:10.1007/s10549-011-1403-8

- 21. De Brakeleer S, De Greve J, Desmedt C, et al. Frequent incidence of BARD1-truncating mutations in germline DNA from triple-negative breast cancer patients. *Clin Genet*. Mar 2016;89(3):336-40. doi:10.1111/cge.12620
- 22. Adamovich AI, Banerjee T, Wingo M, et al. Functional analysis of BARD1 missense variants in homology-directed repair and damage sensitivity. *PLoS Genet*. Mar 2019;15(3):e1008049. doi:10.1371/journal.pgen.1008049
- 23. Ratajska M, Matusiak M, Kuzniacka A, et al. Cancer predisposing BARD1 mutations affect exon skipping and are associated with overexpression of specific BARD1 isoforms. *Oncol Rep.* Nov 2015;34(5):2609-17. doi:10.3892/or.2015.4235
- 24. Ramus SJ, Song H, Dicks E, et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. *J Natl Cancer Inst.* Nov 2015;107(11)doi:10.1093/jnci/djv214
- 25. Ring KL, Bruegl AS, Allen BA, et al. Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. *Mod Pathol*. Nov 2016;29(11):1381-1389. doi:10.1038/modpathol.2016.135
- 26. Blazer KR, Nehoray B, Solomon I, et al. Next-Generation Testing for Cancer Risk: Perceptions, Experiences, and Needs Among Early Adopters in Community Healthcare Settings. *Genet Test Mol Biomarkers*. Dec 2015;19(12):657-65. doi:10.1089/gtmb.2015.0061
- 27. Gass J, Tatro M, Blackburn P, Hines S, Atwal PS. BARD1 nonsense variant c.1921C>T in a patient with recurrent breast cancer. *Clin Case Rep.* Feb 2017;5(2):104-107. doi:10.1002/ccr3.793
- 28. Feliubadalo L, Tonda R, Gausachs M, et al. Benchmarking of Whole Exome Sequencing and Ad Hoc Designed Panels for Genetic Testing of Hereditary Cancer. *Sci Rep.* Jan 4 2017;7:37984. doi:10.1038/srep37984
- 29. Hu C, Hart SN, Bamlet WR, et al. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. *Cancer Epidemiol Biomarkers Prev.* Jan 2016;25(1):207-11. doi:10.1158/1055-9965.EPI-15-0455
- 30. Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. *J Clin Oncol*. Feb 1 2015;33(4):304-11. doi:10.1200/JCO.2014.57.1414

31. De Brakeleer S, De Greve J, Loris R, et al. Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. *Hum Mutat*. Mar 2010;31(3):E1175-85. doi:10.1002/humu.21200