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S1. Chemical Schematic of Grayscale Polymerizable Material 
The UV curable ink formula used in this work is specially designed for grayscale digital light 

processing 3D printing. All components consist of moiety for hydrogen bonding. Thus, at lower 

conversion (G40) the printed part is a soft and rubbery organogel with abundant hydrogen bonding 

dominating the network properties; meanwhile, at high conversion (G0) the polymerized hard 

block (isobornyl acrylate) turns it into a glassy thermoset dominating the network properties. The 

detail is illustrated in Figure S1. 

Figure S1: Depiction of the chemical makeup of the UV curable ink used to obtain 

orders of magnitude stiffness difference. 

S2. Transversely isotropic material model 

Here, the fourth-order elastic tensor of the transversely isotropic material Ct is provided in the 

Voigt notation as follows: 
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𝐶𝑖𝑗𝑘𝑙
𝑡  (𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3) is given as



Here, the principal axis is assumed to be placed in the x1-direction. In the equations above, E1 and 

E2 are the Young’s moduli in the x1-direction and other direction, respectively. ν12, ν21, and ν23 are 

the Poisson’s ratios, G12 is the shear modulus, and G12 and ν21 are defined as 
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𝐸2

2(1 + 𝜈21)
, (S3𝑎) 

𝜈21 = 𝜈12

𝐸2

𝐸1
. (S3𝑏) 

In this work, we assume a unidirectional fiber composite with fiber volume fraction Vf , the moduli 

of elasticity in the longitudinal direction E1 and in the transverse direction E2 are given using a 

general rule of mixtures as follows: 

𝐸1 = 𝑉𝑓𝐸𝑓 + (1 − 𝑉𝑓)𝐸𝑚, (S4𝑎) 
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where Ef and Em are the Young’s moduli of the fibers and the matrix. For simplicity, we assume 

the fiber and the matrix have the same Poisson’ ratio. In the inverse design simulations, we used 

Ef = 122MPa, Em = 0.7MPa, and Vf = 0.5. 
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The above elastic tensor is defined in a local coordinate system defined by the fiber direction 

(or material orientation). As the composite is placed in a global coordinate, which is different from 

the material orientation, Ct is rotated by the orientation tensor a as follows 

𝐶𝑖𝑗𝑘𝑙
𝑟 = 𝐵1(𝒂)𝑖𝑗(𝒂)𝑘𝑙 + 𝐵2[(𝒂)𝑖𝑗𝛿𝑘𝑙 + (𝒂)𝑘𝑙𝛿𝑖𝑗]

+𝐵3[(𝒂)𝑖𝑘𝛿𝑗𝑙 + (𝒂)𝑖𝑙𝛿𝑗𝑘 + (𝒂)𝑗𝑘𝛿𝑖𝑙 + (𝒂)𝑗𝑙𝛿𝑖𝑘]

+𝐵4(𝛿𝑖𝑗𝛿𝑘𝑙) + 𝐵5(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (𝑆5)

wherein δij is Kronecker’s delta, and the coefficients Bi are determined by Cijkl
t as 

S3. Finite element method simulations in inverse design 

In the orientation optimization step, the above transversely isotropic material model is used in 

nonlinear 3-node shell finite elements of an in-house finite element method (FEM) program. The 

shell element is based on the formulation of the MITC3[53], whose key aspects rely on 

introduction of the assumed covariant transverse shear strain fields to alleviate the so-called shear 

and membrane locking phenomena. Sensitivities with respect to orientation variables are 

calculated with the shell finite element solutions using adjoint-based method. The optimization 

problem is solved with method of moving asymptotes (MMA)[54],  which is a standard 

mathematical programming method for structural optimization. 

S4. Parameter in anisotropic diffusion coefficients for controlling Turing patterns 

In the anisotropic reaction-diffusion model, Lu, Lv, Wu, and Wv in Eq. 9 can be designed to control 

the Turing pattern. They can be further designed as follows 
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𝐿𝑢 = 𝑙𝑢
2𝑊𝑢,    𝑊𝑢 = (𝑤𝑢𝑤)2,    𝐿𝑣 = 𝑙𝑣

2𝑊𝑣,    𝑊𝑣 = (𝑤𝑣𝑤)2. (12) 

lu, lv are magnitudes of anisotropy parameter, wu, wv are parameters for pitches of U, V, and w is 

the magnitude of lateral diffusion. These parameters control the resulting space filling Turing 

pattern. In this study the following values are used: lu = 1, lv = 1, wu
2 = 0.02, wv

2 = 0.5, w = 0.05, au 

= 0.08, bu = -0.08, cu = 0.04, du = 0.03, av = 0.1, bv = 0, cv = −0.15 and dv = 0.08. 

The effect of changing some of these parameters is depicted in Figure S2. The denser fiber pattern 

has the effect of making a more accurate and continuous curvature while using a coarser pattern 

makes a more uneven curvature. This is expected as a finer pattern should have more detail and 

smaller tunable resolution, which should more accurately approximate the target orientation field. 

The most important feature of the pattern appears to be fiber connectivity. If the stiff phase is not 

adequately connected throughout the actuator, then the resulting pattern will not produce the local 

stiffness differences required to produce the desired deformations. 

Figure S2: Effect of diffusion parameters on achieved Turing pattern. a) Original pattern 

presented in the main text. b) Decreasing the value of w leads to a much finer pattern. c) Increasing  



w leads to a much coarser pattern. d) Leaving w unchanged and decreasing bu has the effect of 

decreasing the connectivity of the fiber phase and increasing the connectivity of the matrix phase. 

S5. Comparison of Optimized Orientations and Turing Pattern 

In order to quantitatively compare directions between the optimized orientation field and Turing 

pattern, we discretized the edge lines of the Turing pattern into line elements as shown in Figure 

S3a. Then, we calculated the angles between the line elements and vectors from the optimized 

orientation field. Figure S3b, S3c, and S3d show distribution of the computed angle at each node 

of the line element for C-Shape, S-Shape and 3D C-shape design, respectively. In contour color of 

Figure S3b, S3c, and S3d, blue one indicates good agreement of their directions while yellow one 

means that they are perpendicular. According to those figures, although some positions show 

yellow colors, most of part appears in bule. Overall, the Turing pattern captures the optimized 

orientation field, and therefore the pattern can drive the optimized deformations. The discrepancy 

is because the Turing patterns are derived from reaction-diffusion equations and the effect of 

diffusion leads to a continuous pattern while the TO is not subject to the continuity constraint in 

fiber orientation. 

 



Figure S3: Quantitative comparison of anisotropic vector fields and Turing patterns. a) One 

example for discretization of edge lines of Turing pattern into line elements. Distribution of 

angle between the optimized orientation field and Turing pattern for b) C-Shape, c) S-Shape, d) 

3D C-Shape. 



S6. Stress-strain behaviors of g-DLP printed materials 

The stress-strain behaviors of the g-DLP printed materials used in this work were tested by using 

a Criterion C41.103 Electromechanical Load Frame (MTS Systems Corporation, Eden Prairie, 

MN, USA). Figure S3 shows the stress-strain curves.  

Figure S4: Stress-strain behavior of soft and stiff materials. The blue line represents the stiffer 

G0 material, and the red line represents the softer G40 material. Dashed lines represent linear fits 

for the small strain behavior. 

S7. Neo-Hookean hyperelastic material model used in FEM simulations of inflated structures 

with Turing patterns 

We used the ABAQUS\Explicit Finite Element simulation package (Dassault Systemes Simulia 

Corp., Johnston, RI, USA) to perform the detailed FEM simulations. We conducted 3D shell 

structure simulations using S4 and S3R elements using a fluid cavity interaction with mass flux to 

model inflation. A Neo-Hookean hyperelastic constitutive model was used in these simulations. 

The strain energy potential U of Neo-Hookean hyperelastic model is defined by 

𝑈 = 𝐶10(𝐼1̅ − 3) +
1

𝐷1

(𝐽 − 1)2, (17)



where C10 and D1 are material parameters, 𝐼1̅ is the first deviatoric strain invariant defined as 𝐼1̅ =

𝜆̅1
2 + 𝜆̅2

2 + 𝜆̅3
2 with the deviatoric stretches 𝜆̅𝑖 = 𝐽−1/3𝜆𝑖 (𝑖 = 1,2,3), and J is the total volume ratio

(Jacobian). The parameters C10 and D1 for stiff and soft materials used in these simulations are 

provided in Table 1. Both materials are assigned a density of 1.0×10−3 g/mm3. 

Table 1: Neo-Hookean constants used in detailed FEM simulation. 

C10 [MPa] D1

[MPa−1] 

Stiff material 0.643 0.15544 

Soft material 0.01067 9.375 

S8. Quantitative Inflation Comparison 

Figure S5a and S5b show the angles that were measured for the quantitative comparison for the 

C-Shape and S-Shape, respectively. For the C-Shape, the bend angle is measured from the line 

perpendicular to the axis of the tube, which is easier to measure consistently as the tube bends 

compared to tracking the deflection angle of the top directly. However, since these two lines should 

always be perpendicular, the bend angle measurement is identical. Figures S5c and S5d show the 

experimental and numerical results for bend angle vs. inflation pressure for the C-Shape and S-

Shape designs respectively. In both cases, the experimental results (in red) are similar to the 

simulated results (in black) up until a pressure around 20kPa. At this point, the simulated bend 

angle increases faster than the experiment show. However, by increasing the soft material from 

0.064MPa to 0.096MPa, the simulated curve aligns much more closely to the experimental result. 

This apparent stiffness difference can be attributed to the fiber-matrix interface artificially 

enhancing the stiffness of the matrix material. Through light penetration and diffusion, the softer 

material region may be slightly stiffer than the measurement of the neat material. This difference 

should not have a large effect on the final shape as demonstrated in Figure S7. As indicated in our 

Discussion and shown in Figure S7, we did find that using different modulus ratios between the 

stiff and soft materials we could obtain the similar shape morphing. Therefore, the Turning pattern 

may represent a more general design. 

 



Figure S5: Quantitative comparison of bend angle vs. inflation pressure. a) Depiction of 

measured angle for the C-Shape design. b) Depiction of measured angle for the S-Shape 

design. c) Comparison of the bend angle at different pressures for the C-Shape experiment 

and simulations. d) Comparison of the bend angle at different pressures for the S-Shape 

experiment and simulations. 

S9. Ring Structure 

In this work, to perform the anisotropic material distribution optimization, an in-house topology 

optimization (TO) code is used. This in-house TO is limited in the complexity of the objective 

function definition, which prevents us from studying much more intricate deformations. The 

present work focuses on using the Turing pattern method to match the output of the TO design 

process rather than on improving the output of the TO code.  

Therefore, we provide a brief example in Figure S6 with more complicated geometry to 

demonstrate the broad applicability of our proposed method. Figure S6a shows the deformation 

of a ring into a saddle-like shape upon inflation from the TO simulation, and the experimental 

result is shown in Figure S6b. Although the optimized design from the TO process has limited 

deformation, the printed example matches well with the predicted shape.  

 



The close match of the inflated ring structure with the target deformations from the TO design 

process suggests that this same method will be successful in other applications where a more 

complicated target deformation is available. 

Figure S6: Inflation optimization of ring structure. a) Anisotropic topology optimization result 

of ring. b) 3D-printed ring result with Turing pattern. 

S10. Influence of the properties of the soft and stiff materials 

While the material property difference between the fiber and matrix is essential during the initial 

orientation optimization simulations, no knowledge of the properties is carried through the 

diffusion calculations to generate the final Turing patterns. Therefore, this section investigates the 

sensitivity of the final deformation on the property difference between the two material phases in 

the printed Turing pattern. The results of the simulations with property differences ranging from 

1x to 100x are shown in Figure S7. 

Since the required pressure changes significantly as the properties are adjusted, comparisons are 

made at the point of greatest similarity between simulations. It can be seen that the desired shapes 

do not properly form when the property difference is only 1x, and the tube inflates as one would 

expect for a uniform material distribution. At 10x, however, the target deformations emerge, but 

bulging in soft spots along the actuators prevent them from achieving a larger deformation. At 20x 

and beyond, the achieved shapes are all similar and close to the target shape. 

 



Figure S7: Inflation simulations with the ratio between the stiff and soft material ranging 
from 1x to 100x. Simulations for a) C-Shape, b) S-Shape, and c) 3D C-Shape. 

Captions for Supplementary Videos: 

Video S1: Comparison between inflation of experimental and simulated 
actuators. 

Video S2: Pick-and-place of water tube using printed actuators. 

Video S3: Pick-and-place of soft lattice using printed actuators. 
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